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Abstract: The chalcogenides of p-block elements constitute a significant category of materials with
substantial potential for advancing the field of electronic and optoelectronic devices. This is attributed
to their exceptional characteristics, including elevated carrier mobility and the ability to fine-tune band
gaps through solid solution formation. These compounds exhibit diverse structures, encompassing
both three-dimensional and two-dimensional configurations, the latter exemplified by the compound
In;Ses. Sesqui-chalcogenides were synthesized through the direct reaction of highly pure elements
within a quartz ampoule. Their single-phase composition was confirmed using X-ray diffraction, and
the morphology and chemical composition were characterized using scanning electron microscopy.
The compositions of all six materials were also confirmed using X-ray photoelectron spectroscopy
and Raman spectroscopy. This investigation delves into the thermodynamic properties of indium and
gallium sesqui-chalcogenides. It involves low-temperature heat capacity measurements to evaluate
standard entropies and Tian—Calvet calorimetry to elucidate the temperature dependence of heat
capacity beyond the reference temperature of 298.15 K, as well as the enthalpy of formation assessed
from DFT calculations.

Keywords: In; Ga; sesqui-chalcogenides; heat capacity; enthalpy; entropy; Gibbs energy

1. Introduction

In the past decade, materials for low-energy electronics have emerged as a focal point
in current material research. The family of layered chalcogenides stands out as significant
candidates for the advancement of innovative electronic and optoelectronic devices, owing
to their exceptional properties such as high carrier mobility, a tunable band gap through
solid solution formation, and their layered structure. Sesqui-chalcogenides of indium and
gallium, denoted by the general formula M;Chs, exhibit diverse polymorphic forms based
on their composition and synthesis procedures. Gallium sulfide possesses a monoclinic
structure, while gallium selenide and telluride adopt cubic structures. Indium sulfide takes
on a tetragonal form, indium selenide features a hexagonal layered structure, and indium
telluride has a cubic structure. The layered van der Waals structure of InySes allows for its
exfoliation down to a single-layer material [1,2].

Indium and gallium chalcogenides, particularly, hold promise for the construction of
photodetectors and solar cell devices [3]; their high thermal stability is a great advantage
for these applications. These materials have been synthesized in various forms, including
bulk crystals from elemental sources, and thin films through chemical vapor deposition
(CVD) and physical vapor deposition (PVD) methods, as well as exfoliation [4-6]. Layered
indium(III) selenide, known for its semiconducting properties and ferroelectric charac-
teristics, exhibits different structural polymorphs [7]. Nanostructures of such layered
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materials can be crafted using both “top-down” methods, involving the exfoliation of bulk
materials, and “bottom-up” techniques, such as the formation of colloidal nanosheets and
nanoparticles [8,9].

Understanding the fundamental thermophysical properties is crucial for modeling,
developing, and optimizing deposition procedures for thin films, as well as for single
crystal growth. Additionally, this knowledge plays a vital role in device development, as
material characteristics like heat capacity and thermal conductivity are pivotal for creating
high-performance devices tailored for industrial applications.

Although the ab initio techniques of electronic structure calculations may offer an
alternative and feasible approach to assess these characteristics, as recently demonstrated
on some layered structures and interfaces [10,11], as well as on Ga and In monochalco-
genides [12], the experimental data obtained on real materials are indeed highly valuable,
in particular for defected and disordered structures that must be theoretically modeled
by ordered superstructures. This is also the case of GaySes, Ga,Tes, and InyTes, which
crystallize in a disordered zinc blende structure with 1/3 of vacancies on a cation sublattice.
This approach was thus applied in this study to calculate the enthalpy of formation of
GayTes, while the ordered counterparts were considered for Ga;Ses and In, Tes.

2. Materials and Methods
2.1. Synthesis

Gallium, indium, sulfur, selenium, and tellurium were used in a form of granules
(1-6 mm, 99.9999% purity, Wuhan XinRong New Materials Co., Wuhan, China). Gallium
and indium chalcogenides of general formula M,Ch; were produced through a direct
reaction from elements in a quartz ampoule under a high vacuum. Quartz ampoules with
dimensions of 25 x 120 mm and a wall thickness of 3 mm were used for the synthesis of
gallium selenide, gallium telluride, and all indium chalcogenides. For the synthesis of
GayS3, an ampoule of dimensions 30 x 280 mm with a 3 mm wall thickness was used. For
the synthesis, elements corresponding to 15 g of M,Chz with a precision better than +1 mg
were placed in the ampoule, which was further evacuated to the pressure of 1 x 1073 Pa
using a diffusion pump and sealed with an oxygen-hydrogen torch. The ampoules were
heated at a heating rate of 5 °C/min to a temperature of about 50 °C above the melting
point of the respective chalcogenide and kept at this temperature for 6 h. Subsequent
cooling to room temperature was carried out at a rate of 0.2 °C/min. The maximum
synthesis temperatures were 1050 °C for Ga,S3 and GaySes, 850 °C for GapTes, 950 °C
for InySes, 1100 °C for InySs3, and 720 °C for InpTez. A longer ampoule was used for the
synthesis of GayS; and the cold part of the ampoule was kept at 500 °C to avoid a high
pressure of gaseous sulfur, since the reaction of elemental gallium and sulfur only occurs
at temperatures exceeding 800 °C. The ampoules were opened in an argon atmosphere
(glovebox) and the products were ground inside the glovebox using an agate mortar and
pestle and sieved to a particle size of —100 mesh. In;Se; with a layered structure in a bulk
single-crystal form was used for the measurements.

2.2. Characterization

The X-ray diffraction was performed on all six indium(III) and gallium(III) chalco-
genides to identify the phase composition. X-ray diffraction patterns (Figure 1) show the
single-phase composition of the synthesized chalcogenides.
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Figure 1. X-ray diffraction patterns of indium and gallium chalcogenides (black) and their Rietveld
refinement (calculated profile—red, difference profile—gray).

Indium sulfide crystalized in a tetragonal structure (space group I4; /amd). Indium
selenide reveals a rhombohedral layered structure (space group R-3mH), and the X-ray
diffractogram exhibits a preferential orientation due to the layered structure. Gallium
telluride and gallium selenide crystallize in a cubic structure (space group F-43m) derived
from the zinc blende type with vacancies disordered on the cation sublattice, while gallium
sulfide and indium telluride represent, respectively, ordered monoclinic (space group Cc)
and orthorhombic (Imm2) forms of the metal-deficient zinc blende structure. The structure
parameters obtained using Rietveld refinement (Topas program) based on the space groups
given above are given in Table 1.
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Table 1. Lattice parameters of Ga,S3, GaySes, GapTes, InyS3, InySes, and InyTes as obtained with
Rietveld refinement of the recorded X-ray diffraction patterns using Topas program.

GazS3 GazSe; G32T€3 Il‘le3 Inzse:; InzTe3
Space group Cc F-43m F-43m 144 /amd R-3mH Imm2
a=11.1172
) a=13.083
Lattice b =°6.4041 a="7.617 a="°3.978 5
parameters/A  c=°7.0305 - >42%  a=590 c=3232 c= 2899 b ="4.361
R=°121.19 ¢="6.168

The morphologies and chemical compositions of the synthesized indium(III) and
gallium(III) chalcogenides were meticulously characterized using scanning electron mi-
croscopy (SEM, Tescan MAIA 3, Dortmund, Germany) coupled with energy-dispersive
X-ray spectroscopy (EDS, Oxford Instruments, Abingdon-on-Thames, UK), as shown in
Figure 2.
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Figure 2. SEM images, elemental mappings, and EDS spectrum of prepared indium and gallium
chalcogenides.

The SEM analysis revealed a distinctive layered stacking morphology present in
all chalcogenide compounds, encompassing both gallium and indium variants: GaySs,
GaySe3, GapTes, as well as InySs, InySez, and InyTe;. Elemental mapping through EDS
showcased a uniform distribution of constituent elements within the material matrix.
Additionally, the observed elemental ratios closely aligned with the stoichiometric 2:3 ratio
for gallium/indium to chalcogen, highlighting the precision of the synthetic approach.
These findings affirm the successful formation of the target compounds, emphasizing their
desired chemical composition and structural integrity.

The composition of all six materials was further confirmed with X-ray photoelectron
spectroscopy (XPS) using a SPECS spectrometer equipped with a monochromatic Al Ko X-
ray source (1486.7 eV) and a hemispherical electron analyzer, Phoibos 150. Figure 3 displays
high-resolution spectra of Ga-2p and In-3d core regions of the materials. In the gallium-
containing chalcogenides, two broad signals are evident—the Ga-2p3,, and Ga-2p; /, core
levels are situated at approximately 1118 and 1145 eV, respectively, and could be fitted with
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a single component each. Similarly, the spectra of the indium-based chalcogenides exhibit
two broad signals—the In-3d5,, and In-3d3/, core levels are located at approximately 453
and 445 eV, respectively. Like the gallium derivatives, these could be fitted with a single
component each. The binding energy values correspond to the expected values for this
class of compounds.

Ga 2p In 3d
InS,
|n25e3
ln2Te3
""""" | I B L A L S L
460 450 440
E, [eV] E, [eV]

Figure 3. The Ga-2p (left) and In-3d (right) core regions of the XPS spectra of the chalcogenides of
interest. Black dots represent the acquired data, the green curves the applied background correction,
the red curves the fits.

Similarly, the spectra of the core regions of the chalcogenides (S-2p, Se-3d, and Te-34d,
respectively) show the characteristics expected for this type of compounds (Figures S1-53).
The S-2p regions of both sulfides show a single signal locate at ~162 eV, with well-resolved
S-2p;1/» and S-2p;3/, components in the case of InyS3. Both selenides (InySes as well as Ga;Ses)
show one broad signal in the Se-3d region at ~54 eV that could be fitted with a single pair
of the 3d3/, and 3d5/, components each. There are two well-resolved signals in the spectra
of the Te-3d core region of both, InpTe3 as well as GayTes, located at ~573 eV (3d5;) and
~583 eV (3d3)y), respectively. Each of the signals could be fitted with a single component.

The Raman spectra of all the chalcogenides were recorded using a 532 nm Nd laser
with low incident power and a 20 x objective lens. There are two main resonance peaks
in the spectrum of Ga,Ss; (Figure 4) identified at 235 and 389 cm ™!, assigned to the A,
and F, modes, respectively [13], accompanied with several lower intensity peaks in the
regions 70-170 and 300-360 cm ™. The spectra of the other two gallium(III) chalcogenides,
GaySe; and Ga,Tes, contain no sharp peaks but not-well-resolved broad signals with the
maximum intensities at 157, 243, and 290 cm ! for the selenide and 58 and 118 cm ™! for the
telluride. The shape and quality of these spectra correspond to the data reported [14,15]. In
the Raman spectrum of In2S3, there are several well-resolved peaks that could be assigned
to the Agg modes (245, 309, and 369 cm 1), Eg mode (269 cm™1), and Fog modes (117, 183,
and 326 cm™1) [16]. Similarly to the heavier gallium chalcogenides, the spectra of indium
selenide and telluride are also less resolved than the spectrum of the sulfide (Figure 4). In
the spectrum of InySe;, there are three major signals at 106, 181, and 200 cm ! assigned to
the A; modes [17]. The spectrum of In2Te3 corresponds to the only reported spectrum of
this compound [18], with four main features at 63, 105, 121, and 140 cm L
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Figure 4. Raman spectra of the chalcogenides.

2.3. Calorimetric Measurements

A Tian—Calvet-type calorimeter (SETARAM pDSC Illa, Caluire, France) was used
to determine the heat capacity in the temperature range 258-358 K. The heat capacities
were obtained using a continuous method [19]. A three-step procedure was used, where
the reference cell was always empty, while the measuring cell was empty, filled with
a reference substance (synthetic sapphire, NIST standard reference material No. 720,
Gaithersburg, MD, USA) and a sample. The combined expanded uncertainty of the heat
capacity measurements (confidence level 0.95) is estimated to be Uc(Cym) = 0.01 Cpy [20].

Physical Property Measurement System (PPMS) Model 6000 EverCool II (Quantum
Design, San Diego, CA, USA), equipped with a heat capacity module (*He, Tpin = 1.8 K),
was used for the heat capacity measurements in the low-temperature region (2-300 K).
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The measurements were performed using the relaxation method under a high vacuum
(pressure of 102 + 1073 Pa) to avoid heat loss through the exchange gas. The samples were
wrapped in a copper foil and pressed into a pellet (with the exception of InySe3, which was
in the form of a monocrystal). These pellets were then mounted on a calorimeter platform
using cryogenic grease, Apiezon N (supplied by the calorimeter manufacturer Quantum
Design) [21]. The sample heat capacity was obtained as the difference between two data
sets resulting from the sample run and the addenda (a blank sample holder with Apiezon
N) performed under identical conditions. The uncertainty of heat capacity obtained using
PPMS was recently investigated in our laboratory [21,22]. Based on tests with several
compounds [21,22], the combined expanded uncertainty (0.95 level of confidence) of the
heat capacity measurements is estimated to be 10 percent below 10 K, 3 percent in the
temperature range of 10-40 K, and 2 percent in the temperature range of 40-300 K. To
enhance the accuracy of the PPMS data, the results from this calorimeter were slightly
adjusted to align with the results from the more accurate SETARAM uDSC Illa, following
common practice [23].

The following equation proposed by Archer [24] was used to describe temperature de-
pendence of heat capacity in a wide temperature range (including literature heat capacities
obtained using adiabatic calorimetry and data obtained using Quantum Design PPMS):

T 3
Co Cref _ 1
where T = 1 K and C;‘;ﬂ =1J- K tmol~! and
F(T) = (T = T;)> + bi(T = T;)* + (T = Ty) + d; 2

where only one parameter, d;, needs to be optimized for each temperature interval, while the
values of the other three are determined using the continuity and smoothness constraints
of the resulting temperature dependence. The parameter b is determined from the slope of
f(T) at temperatures greater than 70 K [24].

2.4. DFT Calculations

The electronic structure calculations were performed within the VASP 5.4 program as
implemented in the MedeA 3.6 software package using a Projector Augmented Waves
method (PAW) [25] and a Generalized Gradient Approximation (GGA) with a PBE
parametrization scheme [26]. The integration was performed using a tetrahedron method
with Blochl corrections on a mesh of k-points within the first Brillouin zone with a density
of 0.25 A1, The structure parameters of group 13 sesqui-chalcogenides given in Table 1
were considered, with the exception of Ga;Sez whose ordered form with monoclinic Cc
symmetry (analogous to Ga;S3) was adopted. The obtained total energies were referred to
the constituent elements in their ground state structure forms to evaluate the respective
enthalpies of formation.

3. Results
3.1. Heat Capacities

The experimental heat capacities obtained in this work using SETARAM uDSC Illa and
Quantum Design PPMS are listed in the Supplementary Materials (SMs) in Tables S1-512.
The available literature data on solid-phase heat capacities are summarized in Table 2. Se-
lected experimental data from Table 2 (written in bold) were fitted to Equations (1) and (2),
the parameters of which are listed in Table 3.
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Table 2. Overview of the Literature Crystal Heat Capacities of Ga,S3, GaySes, GapTes, In,Ss, InpSes,

and In, Tes.
Reference Na (Tmin — Tmax)/K 1,(Cpm)/% P Method
Ga253
Knacke et al. [27] S¢ 298-1213 nosp. nosp.
This work 18 271-353 1.0 Tian—Calvet
This work 126 2-302 d Relaxation
Ga25e3
Knacke et al. [27] S¢ 298-1278 nosp. nosp.
Tyurin et al. [28] 101 15-324 0.2 Adiabatic
This work 19 266-353 1.0 Tian—Calvet
This work 125 2-302 d Relaxation
Ga2T63
Knacke et al. [27] S¢ 298-1063 nosp. nosp.
Tyurin et al. [29] 134 9-310 0.2 Adiabatic
This work 19 271-353 1.0 Tian—Calvet
This work 132 2-303 d Relaxation
In253
Knacke et al. [27] S¢ 298-660 nosp. nosp.
This work 14 262-323 1.0 Tian—Calvet
This work 125 2-302 d Relaxation
In25e3
Knacke et al. [27] S¢ 298-470 nosp. nosp.
Koshchenko et al. [30] 99 4-304 0.5 Adiabatic
Boehnke et al. [31] 138 6-285 0.1 Adiabatic
Mills [32] 5 298-486 0.5 DSC
This work 19 262-350 1.0 Tian—-Calvet
This work 104 2-226 d Relaxation
This work 22 232-302 d Relaxation
InzTeg,
Knacke et al. [27] S¢ 298-898 nosp. nosp.
Zlomanov et al. [33] 75 5-313 0.2 Adiabatic
This work 19 262-348 1.0 Tian—-Calvet
This work 126 2-303 d Relaxation

@ N = number of data points. ? 1:(Cym) stands for relative uncertainty in heat capacity as stated by the authors. ¢ S

stands for smoothed data (given in the form of an equation); ¢ the combined expanded uncertainty of heat capacity
with 0.95 level of confidence (k = 2) of PPMS using thermal relaxation measurement technique is LIC(C,,m) =0.1 Cpm
below 10 K; Uc(Cpm) = 0.03 Cp in temperature range 10 to 40 K; Uc(Cpm) = 0.02 Cp in temperature range 40 to
300 K.

The thermodynamic functions obtained using Equations (1) and (2) are tabulated at
298.15 K in Table 4, and at other temperatures in Tables S13-518 in the SM, and shown in
Figure 5.
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Table 3. Parameters of Equations (1) and (2) for Crystal Heat Capacities in J- K1 mol 1.
a; b; G d; T;/K T;, max/K N2 s P
Ga253 b=0.18
1.10116 x 1072  —2.03631 x 101 9.61860 x 101 1.23920 x 10! 0 5 14 0.93
281063 x 1073 —3.84571 x 1072  —2.48579 x 10! 1.34870 x 10! 5 12 8 1.17
—6.13516 x 10~* 2.05661 x 1072 —3.73816 x 107! 1.08266 x 101 12 20 8 2.74
—6.72147 x 107> 584174 x 1073 —1.62553 x 107! 8.83815 20 50 17 1.09
1.43753 x 1076 —2.07582 x 104 6.47156 x 1073 7.40433 50 100 19 0.56
1.74864 x 107 8.04748 x 107¢  —3.50518 x 1073 7.38864 100 200 30 0.40
—1.34810 x 107 6.05065 x 10~° 3.35023 x 1073 7.29346 200 353 48 0.36
Ga28e3 b = 0.19
5.69538 x 1072  —8.73244 x 101 4.22755 2.28158 0 5 10 1.60
1.75173 x 1073 —1.89368 x 1072  —2.33356 x 10! 8.70745 5 12 10 1.00
—6.36373 x 1074 1.78496 x 1072 —2.40966 x 10~1 6.74691 12 20 8 1.07
—3.14760 x 10~° 257666 x 1073 —7.75553 x 102 5.63574 20 50 16 0.77
257153 x 107 —2.56181 x 10~% —7.94088 x 103 4.77822 50 100 19 0.42
—3.97876 x 10~ 1.29549 x 1074  —1.42725 x 102 4.06217 100 200 30 0.26
7.82412 x 1078 1.01860 x 107°  —2.99051 x 104 3.53252 200 353 37 0.18
GayTes b=0.19
1.11589 x 1072 —1.47396 x 1071 2.08914 x 1071 7.96519 0 5 14 0.90
—1.70943 x 10~4 1.99869 x 1072  —4.28133 x 1071 6.71971 5 12 8 1.70
—6.39490 x 10~* 1.63972 x 1072 —1.73444 x 10~} 4.64351 12 20 8 2.18
—1.32927 x 105 1.04939 x 1073  —3.38717 x 102 3.97796 20 50 16 0.74
1.62523 x 107¢  —1.46950 x 107% —6.79852 x 103 3.54735 50 100 20 0.56
—3.13065 x 10~ 9.68342 x 107>  —9.30432 x 1073 3.04321 100 200 30 0.29
1.02416 x 107 2.91463 x 107 6.70564 x 104 2.76805 200 353 34 0.18
II’1253 b = 019
2.79528 x 1072 —3.99655 x 10! 1.29063 1.00431 x 10! 0 5 14 1.78
494311 x 1074 1.96370 x 1072 —6.09463 x 10~} 9.99897 5 12 8 3.11
—1.21050 x 1073 3.00175 x 1072  —2.61881 x 10! 6.86449 12 20 8 2.61
—1.61253 x 107> 9.65519 x 10~%  —1.40172 x 102 6.07079 20 50 17 0.69
410646 x 107  —4.85758 x 10~4 3.75668 x 10~4 6.08385 50 100 19 0.48
—3.81795 x 107 1.30212 x 107%  —1.74016 x 102 5.40155 100 200 30 0.29
2.88444 x 107 1.56732 x 107>  —2.81313 x 103 458171 200 323 38 0.33
In25e3 b=0.18
151705 x 1072 —1.95861 x 10~} 3.7698 x 1081 8.19467 0 5 14 0.94
—8.54900 x 104 3.16966 x 1072  —4.43834 x 107! 7.07940 5 12 14 3.24
—5.67811 x 10~% 1.37437 x 1072 —1.25752 x 10~} 5.23246 12 20 18 1.71
—3.28446 x 1077 1.16225 x 1074 —1.48729 x 102 4.81532 20 50 41 1.03
9.00517 x 108 8.66649 x 1075 —8.78617 x 1073 446487 50 100 66 0.59
—3.04634 x 107 1.00173 x 10~* 5.55706 x 10~4 4.25348 100 200 100 0.31
—5.99553 x 108 8.78254 x 1076 1.14512 x 1072 5.00614 200 350 56 0.20
In2Te3 b = 019
1.46034 x 1072  —1.76452 x 101 1.85958 x 101 6.88854 0 5 14 0.33
—1.45817 x 1073 425984 x 1072  —4.83311 x 10! 5.23244 5 12 8 1.60
—5.00450 x 104 1.19768 x 1072 —1.01284 x 10~1 3.43644 12 20 8 2.36
—9.09745 x 1078 —3.39669 x 107>  —5.74150 x 103 3.13645 20 50 16 0.87
9.49425 x 1077  —4.21546 x 107>  —8.02514 x 1073 2.93118 50 100 20 0.45
—3.69997 x 107 1.00259 x 107% —5.11991 x 103 2.54321 100 200 30 0.23
9.21853 x 1078 —1.07400 x 107> 3.83202 x 1073 2.66382 200 348 49 0.28

2 N stands for number of experimental data points in given temperature interval used for correlation.

2

1/2

n
by, = 100{ x [(Com8 = Comn) / Con|
i=
(Equations (1) and (2)) heat capacity, N is the number of fitted data points, and m is the number of independent
adjustable parameters.

/(N — m)} , where C;ﬁf and Cpy, are the experimental and calculated

i
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Table 4. Standard Thermodynamic Functions of Ga(Ill) and In(III) chalcogenides derived from heat
capacity measurements and the calculated enthalpies of formation at T = 298.15 K and p = 0.1 MPa ?.

Cpm/]- K- 1-mol-1 A /kJ-mol-1  S5,/J-K-1-mol~1 AJHS/kJ-mol-1 AJGS/k]-mol-1

GayS3 112.6 —353.5 142.8 21.51 —21.06
GaySes 120.6 —299.9 183.2 25.54 —29.09
GayTes 125.1 —140.7 214.2 27.97 —35.88

InyS3 114.6 —282.5 159.6 23.05 —24.53
In,Ses 123.8 —263.6 203.1 27.21 —33.36
InyTes 124.7 —68.4 234.1 29.02 —40.78

@ The combined expanded uncertainty of heat capacity Uc(Cym) as well as of all calculated thermodynamic values
(with 0.95 level of confidence, k = 2) is U.(X) = 0.01 X in temperature range 260 to 340 K, where X represents the
heat capacity or the thermodynamic property. Values are reported with one digit more than is justified by the
experimental uncertainty to avoid round-off errors in calculations based on these results.
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Figure 5. Standard molar thermodynamic functions at p = 0.1 MPa. Ga;S3 (black —), GaySes (red —),
GayTes (blue —), InyS3 (green —), InySes (purple —), InpTes (olive —). (a) Isobaric heat capacity,
(b) entropy, (c) enthalpy, and (d) Gibbs energy.

The experimental heat capacities for all studied chalcogenides are compared with the
smoothed values obtained using Equations (1) and (2) in Figure 6. The deviations of the
selected experimental data from the smoothed values generally do not exceed 2% (except
for a few outliers, which are not considered in the correlation).
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Figure 6. Relative deviations 100 Cp¥

- C,‘g’m> / Cpm of individual experimental heat capacities C;ﬁ)
from values C;,’m calculated by means of Equations (1) and (2) with parameters from Table 2. Red H,
this work (Tian—Calvet calorimetry); blue A, this work (relaxation calorimetry); purple —, Knacke
et al. [27] (for all compounds except In, Tes, all data by Knacke et al. [27] are out of scale); green @,
Tyurin et al. [28,29]; olive ®, Boehnke et al. [31]; black 4, Koshchenko et al. [30]; orange

et al. [33]; cyan

, Zlomanov
, Mills [32]. Vertical lines mark knot temperatures T;. Data represented by filled
symbols have been used to obtain parameters of Equations (1) and (2). Relaxation calorimetry data of
this work for InySez above 230 K have been excluded due to low coupling.

3.2. Enthalpies of Formation

The total energies calculated in VASP with the PAW-GGA method were first recalcu-
lated to enthalpies of formation at T = 0 K using the total energies of constituent elements
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in their stable forms obtained with the same technique. As mentioned, the refined lattice
parameters and atomic positions were used for the sesqui-chalcogenides (see Table 1, except
for GaySej3, see Section 2.4), while the structure data of elements were adopted from the
InfoMatica-ICSD database implemented in the MedeA software. The disordered structure
of Ga;Sej of the zinc blende type was modeled in terms of a1 x 1 x 3 supercell (12 formula
units) with four vacant Ga positions (000, 1/21/21/3,1/20 1/2,1/21/2 2/3). The enthalpies
of formation at 0 K were further recalculated to cohesive energies using the enthalpies
of vaporization of the constituent elements [34] and to the enthalpies of formation at a
reference temperature of T = 298.15 K (see Table 4) using the relative enthalpies 0—>298 also
given in Table 4 and the analogous relative enthalpies of elements [35].

4. Discussion

The heat capacity of the studied chalcogenides was measured using the SETARAM
uDSC IMla and QuantumDesign PPMS calorimeters. In,Se; was measured in the form of
a crystal, and the rest of the chalcogenides were grinded into powders and pressed into
pellets covered with copper foil.

The results were compared with available literature (see Figure 6). A handbook by
Knacke et al. [27] provides parameters for the heat capacity of these chalcogenides in a
wide temperature range. These values differ significantly from our measurements (by 4 to
20%) with the exception of InyTez which agreed with our measurements within 1% in the
range of overlap—from 300 to 350 K. The adiabatic heat capacity data by Tyurin et al. [28]
agree with our measurements within 2% above 50 K in the case of GaySe3. Below 50 K, the
difference increases to 20% at 15 K, the lowest point of Tyurin et al. [28]. Therefore, we
decided not to include this data set in our correlation. On the other hand, adiabatic data
by Tyurin et al. [29], Koschenko et al. [30], Boenke et al. [31], and Zlomanov et al. [33] are
in good agreement with our measurements, with the exception of the tellurides (Ga;Tes,
In,Tes), which deviate for temperatures above 100 K (with maximum deviation of 5%
for InpTes [33] and 9% for GayTes [29]). However, at temperatures lower than 100 K, the
agreement is also very good. The reason for the discrepancy observed above 100 K remains
unclear and requires further elucidation.

The resulting heat capacities were fitted with the reverse spline function suggested by
Archer et al. [24] and their comparison is shown in Figure 7.

T T T T ) 0.5 T T T T T T
120 — Ga,S;
o (@ GazS; (b)
— 100} 0.4 Ga,Te,
[ = In,S,
g 80+ ‘.0«0 031} In,Se;
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¥ 60 - Ga,Se;| E 02
— — 02r 7
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20r In,Te, | /
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Figure 7. Heat capacity of Ga and In sesqui-chalcogenides studied in this work. (a) Molar, (b) specific.

As we can see in Figure 7a, the order of heat capacities (from highest to lowest) is
Iny > Gay and Te3 > Sez > S3. This clear trend is a manifestation of (i) increasing molar
masses (M(GayS3) = 235.64; M(In,Te3) = 612.44) and (ii) softer force constants related to
chemical bond weakening with increasing atomic size (due to less effective valence orbital
overlap), both resulting in an enhanced phonon mode population at lower temperatures.
In contrast, if we compare their specific heat capacities instead (Figure 7b), we obtain an
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exact opposite order at ambient temperatures. Interestingly, the specific heat capacities
cross over at about 40 K and at very low temperatures, the order of specific heat capacities
being the same as for molar heat capacities (see the inset of Figure 7b).

The calculated enthalpies of formation at 298 K and cohesive energies at 0 K referred,
respectively, to elements in their stable solid forms and to a noninteracting monoatomic
gas are plotted in Figure 8a,b against the atomic number of chalcogen. In both cases, a
decreasing stability with an increasing atomic number of group 16 as well as group 13
elements is apparently a result of decreasing strength of the covalent bond due to a less
effective overlap of more diffused valence orbitals, which is also in line with the observed
trend in molar heat capacities.

-50 T T T T T T T T
(a) o (b) %
-100 InCh 4 -1200 - n E
50+ O _ 0O
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© -1400 -
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Figure 8. Enthalpies of formation (a) and cohesive energies (b) of Ga and In sesqui-chalcogenides
evaluated from DFT calculations.

Although the calculated enthalpies of formation reveal an expected trend, their values
are underestimated with respect to the data given in tables published by Knacke et al. [27].
However, the heat capacities of this work also do not agree well with Knacke et al. [27]
so the two discrepancies might compensate each other in cases where the enthalpies of
formation were assessed from high-temperature equilibrium data.

5. Conclusions

In this work, six sesqui-chalcogenides of indium and gallium were synthesized and
characterized using XRD, SEM, XPS, and Raman spectroscopy. The heat capacity of gallium
and indium sesqui-chalcogenides was determined by means of relaxation calorimetry
(QuantumDesign PPMS) and Tian—Calvet calorimetry (SETARAM uDSC Illa). Both tech-
niques yielded consistent results comparable to available literature data obtained using
adiabatic calorimetry. Moreover, the enthalpies of formation were assessed from DFT calcu-
lation of total energies. Experimental and theoretical data of this work, along with selected
literature data, were used to derive standard thermodynamic data (enthalpy, entropy, Gibbs
energy) in the temperature range from 0 K to 340 K.

Supplementary Materials: The following Supporting Information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/mal17020361/s1, X-ray photoelectron spectroscopy (XPS) re-
sults for the core regions of the chalcogenides (Figures S1-53), Auxiliary properties describing the
quality of PPMS measurement (Figures S4 and S5), Experimental heat capacity data obtained in
this work (Tables S1-512), Tabulated thermodynamic functions of studied sesqui-chalcogenides
(Tables S13-518).
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