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1. Introduction

We usually classify structures in terms of their external geometry. If all three dimen-
sions of a structural component are of similar size, it is a three-dimensional (3D) solid
(Figure 1a). If one dimension of a structural component is much smaller than the other
two dimensions, it is a plate (Figure 1b) or a shell (Figure 1c), depending on whether
the undeformed in-plane shape is flat or curved, respectively. The small dimension is
commonly called the thickness. If two dimensions of a structural component are much
smaller than the third dimension, it is a beam (Figure 1d). Usually the large dimension
is called the axis of the beam and a reference line can be defined for the beam along the
large dimension. The two small dimensions are commonly called the cross-section for
typical beam-like structures. The reference line can be as general as a spatial curve, which
is the case for initially curved and twisted beams. If the beam itself is made of thin-walled
components, that is, the wall thickness is much smaller than the cross-sectional size, it
is a thin-walled beam. We can collectively denote plates, shells, beams, and thin-walled
beams as dimensionally reducible structures, emphasizing the fact that one or more small
dimensions can be eliminated for developing a simplified structural model with reduced
dimensions for adequate prediction of their behaviors.

As far as modeling is concerned, this classification only considers the external geome-
try, whereas the internal construction of these structures can be arbitrary. For example, a
sandwich flat panel with a honeycomb core can be modeled as a plate and a high-aspect-
ratio wing of aircraft can be modeled as a beam without clearly defined cross-sections. In
this sense, all engineering structural systems, despite their complexity, can be considered as
formed by a combination of structural components in terms of three-dimensional (3D) struc-
tures, two-dimensional (2D) plates/shells, and/or one-dimensional (1D) beams, as shown
in Figure 1 with possible complex internal constructions with general anisotropic materials.
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1. Introduction

We usually classify structures in terms of their external geometry. If all three dimen-
sions of a structural component are of similar size, it is a three-dimensional (3D) solid
(Figure 1a). If one dimension of a structural component is much smaller than the other
two dimensions, it is a plate (Figure 1b) or a shell (Figure 1c), depending on whether
the undeformed in-plane shape is flat or curved, respectively. The small dimension is
commonly called the thickness. If two dimensions of a structural component are much
smaller than the third dimension, it is a beam (Figure 1d). Usually the large dimension
is called the axis of the beam and a reference line can be defined for the beam along the
large dimension. The two small dimensions are commonly called the cross-section for
typical beam-like structures. The reference line can be as general as a spatial curve, which
is the case for initially curved and twisted beams. If the beam itself is made of thin-walled
components, that is, the wall thickness is much smaller than the cross-sectional size, it
is a thin-walled beam. We can collectively denote plates, shells, beams, and thin-walled
beams as dimensionally reducible structures, emphasizing the fact that one or more small
dimensions can be eliminated for developing a simplified structural model with reduced
dimensions for adequate prediction of their behaviors.

(b) Plate(a) 3D Structure (c) Shell (d) Beam

Figure 1. Typical structural components [1].

Materials 2024, 1, 0. https://doi.org/10.3390/ma1010000 https://www.mdpi.com/journal/materials

Figure 1. Typical structural components [1].

Recent decades have witnessed great advances in materials technology and manu-
facturing techniques. Structures traditionally made of isotropic homogeneous materials
are now increasingly made of advanced materials featuring anisotropy and heterogene-
ity. Such structures are called composite structures in this paper. Since, in the literature,
composite structures usually refer to laminated structures made of unidirectional fiber-
reinforced composites (UDFRCs), it is emphasized that composite structures in this paper
refer to structures featuring anisotropy and heterogeneity at the continuum scale (the length
scale of micron and larger), such as laminates, sandwich structures, stiffened structures,
rotor blades made of UDFRCs, tow-steered composites, short fiber composites, particle-
reinforced composites, woven composites, metamaterials, etc. Cutting-edge manufacturing
techniques can routinely manipulate geometry and material at the continuum scale. It is
conventionally believed that the classical models (Cauchy continuum model for 3D solids,
Kirchhoff–Love model or Reissner–Mindlin model for plates/shells, Euler–Bernoulli model
or Timoshenko model for regular beams, Vlasov model for thin-walled beams) developed
for structures made of isotropic homogeneous materials several centuries ago are not
applicable for composite structures made of anisotropic and/or heterogeneous materials.
This motivated many non-classical models such as the Cosserat solid model, high-order,
zig-zag, or layerwise plate/shell models, or many advanced beam models developed to
tackle the complexity of composite structures introduced by anisotropy and heterogeneity
of advanced materials and arbitrary internal structural constructions. Although these
non-classical models provide better predictions than the classical models for some cases, it
is not easy to implement them in the existing structural solvers, including general-purpose
finite element analysis (FEA) packages such as Abaqus, Ansys, Nastran, or special-purpose
comprehensive analysis codes such as RCAS (Rotorcraft Comprehensive Analysis System).
Instead, special-purpose finite element codes must be developed. These codes cannot
be easily incorporated into commercial finite element codes due to their complexity and
limited uses. Thus, these non-classical models mainly have academic value and are not
used by practitioners very much.

To leverage existing structural solvers provided by off-the-shelf commercial finite
element packages, we have to find a way to construct models suitable for composite
structures featuring complex internal constructions and made of advanced anisotropic
heterogeneous materials, while at the same time being compatible with those available in
existing structural solvers. This can be achieved by recognizing the fact that each model
can be separated into three parts, including kinematics (displacements, strains, and the cor-
responding strain–displacement relations, and compatibility equations), kinetics (stresses,
forces, moments, and the corresponding equations of motion or equilibrium equations),
and energetics (constitutive relations). Both kinematics and kinetics are implemented in
existing structural solvers, while the constitutive relations can be obtained externally by
constitutive modeling and used as inputs for existing structural solvers. Now, instead of
constantly developing better non-classical models for composite structures, the challenge
can be met by developing better constitutive modeling to bridge the original model and a
desirable classical structural model so that the loss of accuracy between these two model
representations of the same structure can be minimized. The constitutive modeling was not
part of the traditional paradigm of structural mechanics, as traditional structural mechanics
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theories do not clearly separate constitutive relations from kinematics and kinetics, while it
is a distinctive feature of the work of Hodges and his collaborators [2].

Many reviews with an extensive bibliography on modeling of composite structures
are available in the literature (Grigolyuk et al. [3] with 161 references, Leissa [4] with
352 references, Grigolyuk et al. [5] with 74 references, Kapania et al. [6] with 145 references,
Noor [7] with 203 references, Carrera [8] with 325 references, Carrera [9] with 138 references,
Khandan et al. [10] with 159 references, Liew et al. [11] with 247 references, Li [12] with
261 references, Carrera et al. [13] with 168 references). This paper will not repeat these
efforts. Instead we will first provide a brief introduction to the classical models, then we
will review three main methods used to derive the Kirchhoff–Love model for composite
laminated plates. Finally, we will point out the future challenges and research directions
related to modeling composite structures.

2. Introduction to Classical Structural Models

In this section, we introduce the kinemics, kinetics, and constitutive relations of the
classical structural models commonly used in engineering, including the Cauchy continuum
model, the Kirchhoff–Love plate/shell model, the Reissner–Mindlin plate/shell model,
the Euler–Bernoulli beam model, the Timoshenko beam model, and the Vlasov beam
model. Since this paper focuses on the methodology on structural modeling, the process of
reducing the original 3D problem into a 1D model for beams and 2D model for plates/shells,
only the final model form in terms of kinematics, equilibrium equations, and constitutive
relations is presented here, without details of how these equations are obtained. Even
if historically the models are derived very differently, for example, the Reissner model
and the Mindlin model, as long as the final form remains the same, we collectively call
their model the Reissner–Mindlin model. Furthermore, this paper is not interested in how
to solve these models for specific static or dynamic behavior. Instead, we only focus on
contrasting the main methods used to derive these models.

For the purpose of illustrating the modeling method, we restrict this introduction to
linear elastic behavior. We use x1, x2, x3 to denote the coordinate systems. In particular, for
beams, x1 is along the beam reference line, and x2 and x3 describe the cross-sectional plane;
for plates/shells, x1 and x2 describe the reference surface, while x3 is along the transverse
normal.

2.1. Cauchy Continuum Model

The kinematics of the Cauchy continuum model contains three displacements u1, u2, u3
and six strains ε11, ε22, ε33, ε23, ε13, ε12. The infinitesimal strains are defined in terms of the
displacements as

ε11=
∂u1

∂x1
, ε22 =

∂u2

∂x2
, ε33 =

∂u3

∂x3

2ε23=
∂u2

∂x3
+

∂u3

∂x2
, 2ε13 =

∂u1

∂x3
+

∂u3

∂x1
, 2ε12 =

∂u1

∂x2
+

∂u2

∂x1

(1)

The kinetic variables of the Cauchy continuum model are six stresses σ11, σ22, σ33,
σ23, σ13, σ12. If Cauchy stress tensor is used, these stresses are governed by the following
equations of equilibrium:

∂σ11

∂x1
+

∂σ12

∂x2
+

∂σ13

∂x3
+ f1= 0

∂σ12

∂x1
+

∂σ22

∂x2
+

∂σ23

∂x3
+ f2= 0

∂σ13

∂x1
+

∂σ23

∂x2
+

∂σ33

∂x3
+ f3= 0

(2)
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where f1, f2, f3 are distributed body forces per unit volume in three directions. The constitu-
tive relations of the Cauchy continuum model for the linear elastic behavior are described
using the generalized Hooke’s law as

σ11
σ22
σ33
σ23
σ13
σ12


=



C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66





ε11
ε22
ε33

2ε23
2ε13
2ε12


(3)

The 6 × 6 symmetric matrix is the stiffness matrix, and its inverse is the compliance
matrix. 

ε11
ε22
ε33

2ε23
2ε13
2ε12


=



S11 S12 S13 S14 S15 S16
S12 S22 S23 S24 S25 S26
S13 S23 S33 S34 S35 S36
S14 S24 S34 S44 S45 S46
S15 S25 S35 S45 S55 S56
S16 S26 S36 S46 S56 S66





σ11
σ22
σ33
σ23
σ13
σ12


(4)

Material properties are usually measured in the material coordinate system, which
implies that we need to express constitutive relations in the material coordinate system
first. However, the kinematics and kinetics are usually formulated in the global coordinate
system. A proper transformation according to the tensorial transformation laws is needed
to transfer the constitutive relations into the global coordinate system.

For isotropic materials, the constitutive relations can be expressed in terms of Young’s
modulus E and Poisson’s ratio ν as

C11 = C22 = C33 =
E(1 − ν)

(1 + ν)(1 − 2ν)

C12 = C13 = C23 =
Eν

(1 + ν)(1 − 2ν)

C44 = C55 = C66 =
E

2(1 + ν)

and all other terms in the stiffness matrix of Equation (3) are zero.
Equations (1)–(3) form a system of 15 equations underpinning the Cauchy continuum

model to be solved along with appropriate boundary conditions for 15 unknowns (three
displacements, six strains, and six stresses, all of which are functions of three coordinates
x1, x2, x3 used to describe the 3D body). Kinematics and kinetics remain the same no
matter whether the structure is made of isotropic homogeneous materials such as metals or
anisotropic heterogeneous materials such as composites. This model has been implemented
in many FEA codes which have 3D solid elements.

2.2. Kirchhoff–Love Plate/Shell Model

Kirchhoff originally developed the classical plate model for flat panels based on a set
of ad hoc assumptions, including the transverse normal (a material line along the thickness
direction) being rigid in the thickness direction, remaining straight and perpendicular
to the reference surface, and the structure experiencing a plane stress state, during the
deformation. Love later extended the same set of assumptions to curved panels to develop
the classical shell model. Since both models are based on the same set of assumptions
and take the same functional form, we collectively call them the Kirchhoff–Love model.
Since the Kirchhoff–Love model is the first complete model developed in history, it is
also called the classical plate/shell model. Here, for simplicity, we use the classical plate
model for illustrative purposes. The kinematics of the Kirchhoff–Love plate model con-
tains three displacements u1, u2, u3, three in-plane strains ϵ11, ϵ22, ϵ12, and three curvatures
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κ11, κ22, κ12. It is noted that most traditional formulations of the classical plate model
only include the bending behavior (one displacement u3 and three curvatures κ11, κ22, κ12).
Here, for the connection to composite structures, we also include the in-plane behavior in
the formulation.

Specifically for a plate, the strain–displacement relations are given as

ϵ11=
∂u1

∂x1
, ϵ22 =

∂u2

∂x2
, 2ϵ12 =

∂u1

∂x2
+

∂u2

∂x1

κ11= −∂2u3

∂x2
1

, κ22 = −∂2u3

∂x2
2

, κ12 = − ∂2u3

∂x1∂x2

(5)

The kinetic variables of the Kirchhoff–Love model contain three in-plane forces
N11, N22, N12 and three moments M11, M22, M12. These kinetic variables are governed
by the following three equations of equilibrium:

∂N11

∂x1
+

∂N12

∂x2
+ p1 = 0

∂N21

∂x1
+

∂N22

∂x2
+ p2 = 0

∂2M11

∂x1
2 +

∂2M22

∂x22 + 2
∂2M12

∂x1∂x2
+

∂q2

∂x1
− ∂q1

∂x2
+ p3 = 0

(6)

where p1, p2, p3 are equivalent forces in three directions and q1, q2 are equivalent moments
in two in-plane directions distributed over the reference surface. It is noted here that most
traditional formulations of the classical plate model only include the transverse pressure
p3 as the distributed force. In fact, distributed forces could exist in three directions and
distributed bending moment could exist in two directions. These loads can be rigorously
derived from the distributed body forces, tractions on the top and bottom surfaces, as
shown in Equation (3).

The constitutive relations of the Kirchhoff–Love model can be expressed using the
following six equations:

N11
N22
N12
M11
M22
M12


=



A11 A12 A16 B11 B12 B16
A12 A22 A26 B21 B22 B26
A16 A26 A66 B61 B62 B66
B11 B21 B61 D11 D12 D16
B12 B22 B62 D12 D22 D26
B16 B26 B66 D16 D26 D66





ϵ11
ϵ22

2ϵ12
κ11
κ22

2κ12


(7)

This 6 × 6 symmetric matrix is the stiffness matrix and its inverse is the compliance
matrix for the classical plate model.

ϵ11
ϵ22

2ϵ12
κ11
κ22

2κ12


=



A11 A12 A16 B11 B12 B16
A12 A22 A26 B21 B22 B26
A16 A26 A66 B61 B62 B66
B11 B21 B61 D11 D12 D16
B12 B22 B62 D12 D22 D26
B16 B26 B66 D16 D26 D66



−1

N11
N22
N12
M11
M22
M12


(8)

We used the conventional notation, A, B, D matrices, well-known in the classical
lamination theory (CLT). One difference is noted here. B is known to be symmetric in
CLT due to the symmetry of the plane stress reduced stiffness matrix Q (i.e., B21 = B12,
B61 = B16, B62 = B26. However, it is not symmetric for a general anisotropic, het-
erogeneous flat panel to be modeled using the classical plate model. Thus, B used in
Equations (7) and (8) allows the possibility of being unsymmetric.
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If a homogeneous plate is made of a single isotropic material, and the origin of x3 is
chosen to be at the center of the thickness, the constitutive relations are

N11
N22
N12

 =
Eh

1 − ν2

1 ν 0
ν 1 0
0 0 1−ν

2


ϵ11
ϵ22

2ϵ12


M11
M22
M12

 =
Eh3

12(1 − ν2)

1 ν 0
ν 1 0
0 0 1−ν

2


κ11
κ22

2κ12


(9)

Equations (5)–(7) form a system of 15 equations underpinning the Kirchhoff–Love
model to be solved along with appropriate boundary conditions for 15 unknowns (three
displacements, six strain variables, and six stress resultants, all of which are functions of
x1 and x2 describing the two-dimensional (2D) reference surface). Kinematics and kinet-
ics remain the same no matter whether the structure is made of isotropic homogeneous
materials such as metals or anisotropic heterogeneous materials such as composites. The
only difference is that the plate/shell stiffness matrix in Equation (7) could be fully pop-
ulated if the plate/shell is made of composites. This model can be applied to model flat
panels with arbitrary heterogeneity (e.g., laminates, sandwich panels with honeycomb
cores, corrugated panels) as long as the thickness remains relatively small compared to the
in-plane dimensions. The Kirchhoff–Love model governed by these equations has been
implemented in many FEA codes which have plate/shell elements.

It is noted that although the Kirchhoff–Love model was originally developed based
on a set of a priori assumptions as aforementioned, such assumptions are not absolutely
needed to derive this model. In fact, one can use a more advanced modeling technique
such as the variational asymptotic method (VAM) [14] to be illustrated later. Thus, the
Kirchhoff–Love model presented here only refers to the model which has 15 field variables
of x1, x2 governed by the 15 equations in Equations (5)–(7). In other words, the thickness
could be deformed, not necessarily perpendicular to the reference surface, and all six stress
components including both in-plane stresses and transverse stresses could exist.

2.3. Reissner–Mindlin Plate/Shell Model

When the thickness of the panel is not very small compared to the in-plane dimensions,
or when the deformation cannot be fully captured using in-plane strains (ϵ11, ϵ22, ϵ12) and
the curvatures (κ11, κ22, κ12), the Kirchhoff–Love model is inadequate and a refined model
is needed. A refined plate/shell model beyond the Kirchhoff–Love model is the Reissner–
Mindlin model, so named due to independent contributions of Reissner and Mindlin to its
development. The kinematics of the Reissner–Mindlin model contains five displacement
variables, including three displacements u1, u2, u3 and two rotations θ1, θ2. This model
features three in-plane strains ϵ11, ϵ22, ϵ12, three curvatures κ11, κ22, κ12, and two transverse
shear strains ϵ13, ϵ23. For a plate, the strain–displacement relations are given as

ϵ11=
∂u1

∂x1
, ϵ22 =

∂u2

∂x2
, 2ϵ12 =

∂u1

∂x2
+

∂u2

∂x1

κ11=
∂θ2

∂x1
, κ22 = − ∂θ1

∂x2
, 2κ12 =

∂θ2

∂x2
− ∂θ1

∂x1

2ϵ13=
∂u3

∂x1
+ θ2, 2ϵ23 =

∂u3

∂x2
− θ1

(10)



Materials 2024, 17, 446 7 of 23

The kinetic variables of the Reissner–Mindlin model contain in-plane forces N11, N22, N12,
moments M11, M22, M12, and transverse shear forces N13, N23. They are governed by the
following five equations of equilibrium:

∂N11

∂x1
+

∂N12

∂x2
+ p1 = 0

∂N21

∂x1
+

∂N22

∂x2
+ p2 = 0

∂N13

∂x1
+

∂N23

∂x2
+ p3 = 0

∂M12

∂x1
+

∂M22

∂x2
− q1 − N23 = 0

∂M11

∂x1
+

∂M21

∂x2
+ q2 − N13 = 0

(11)

The constitutive relations of the Reissner–Mindlin model can be expressed using the
following eight equations:

N11
N22
N12
M11
M22
M12
N13
N23


=



A11 A12 A16 B11 B12 B16 Y11 Y12
A12 A22 A26 B21 B22 B26 Y21 Y22
A16 A26 A66 B61 B62 B66 Y31 Y32
B11 B21 B61 D11 D12 D16 Y41 Y42
B12 B22 B62 D12 D22 D26 Y51 Y52
B16 B26 B66 D16 D26 D66 Y61 Y62
Y11 Y21 Y31 Y41 Y51 Y61 G11 G12
Y12 Y22 Y32 Y42 Y52 Y62 G12 G22





ϵ11
ϵ22

2ϵ12
κ11
κ22

2κ12
2ϵ13
2ϵ23


(12)

This 8 × 8 symmetric matrix is the stiffness matrix and its inverse is the compliance
matrix for the Reissner–Mindlin model. Gij (i = 1, 2; j = 1, 2) denote the transverse shear
stiffness terms and Yij (i = 1, . . . , 6; j = 1, 2) denote the coupling stiffness terms relating the
classical plate deformation modes and transverse shear deformation modes. It is noted that
A, B, D matrices could be different from those in Equation (7) due to possible nonzero Yij
(i = 1, . . . , 6; j = 1, 2).

Equations (10)–(12) form a system of 21 equations underpinning the Reissner–Mindlin
model to be solved along with appropriate boundary conditions for 21 unknowns (five
displacement variables, eight strain variables, and eight stress resultants, all of which are
functions of x1 and x2 describing the 2D reference surface). Kinematics and kinetics remain
the same no matter whether the structure is made of isotropic homogeneous materials such
as metals or anisotropic heterogeneous materials such as composites. The only difference
is that the plate/shell stiffness matrix in Equation (12) could be fully populated if the
plate/shell is made of composites. Again, this model can be applied to model flat panels
with arbitrary heterogeneity (e.g., laminates, sandwich panels with honeycomb cores,
corrugated panels) as long as the thickness remains relatively small compared to the in-
plane dimensions. The Reissner–Mindlin model governed by these equations has been
implemented in many FEA codes which have plate/shell elements.

It is noted that the first-order shear deformation theory (FOSDT) is often used to
model transverse shear deformation of composite plates/shells. It is actually a special
application of the Reissner–Mindlin model to composite laminated plates/shells based on
the particular assumptions that the transverse normal remains straight and rigid but not
necessarily normal to the deformed reference surface.

It is noted that although the Reissner–Mindlin model was originally developed based
on a set of a priori assumptions, such assumptions are not absolutely needed to derive
this model if one can use a more advanced modeling technique such as VAM. Thus,
the Reissner–Mindlin model presented here only refers to the model which has 21 field
variables as functions of x1, x2 and is governed by the 21 equations in Equations (10)–(12).
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The deformation and stress state of the structure along the thickness direction are not
necessarily assumed a priori.

2.4. Euler–Bernoulli Beam Model

The kinematics of the Euler–Bernoulli beam model contains three displacements u1, u2,
u3, and one twist angle θ1. This model also features four strain variables including the axial
strain ϵ11, the twist rate κ11, and the curvatures κ12, κ13 around x2 and x3, respectively. It
is pointed out that the Euler–Bernoulli beam model is often formulated for bending only,
and although some included extension, almost no formulation has also included torsion.
In fact, torsion is also a fundamental deformation mode of a slender beam and the twist
rate is of a similar order of magnitude of the bending curvatures for regular beams. Thus,
we also include torsion into the Euler–Bernoulli beam model. Since the Euler–Bernoulli
model is the first complete model developed in history, it is also called the classical beam
model. The strain–displacement relations of the Euler–Bernoulli beam model are given as

ϵ11 =
du1

dx1
, κ11 =

dθ1

dx1
, κ12 = −d2u3

dx2
1

, κ13 =
d2u2

dx2
1

(13)

The kinetic variables of the Euler–Bernoulli beam model contain four stress resultants
F1, M1, M2,M3, with F1 denoting the axial force and M1, M2, M3 the moments about the
three directions, governed by the following four equations of equilibrium:

dF1

dx1
+ p1 = 0

dM1

dx1
+ q1 = 0

d2M2

dx2
1

+ p3 +
dq2

dx1
= 0

d2M3

dx2
1

− p2 +
dq3

dx1
= 0

(14)

where p1, p2, p3 are equivalent forces and q1, q2, q3 are equivalent moments in three direc-
tions distributed along the reference line. It is noted here that most traditional formulations
of the classical beam model only include the transverse pressure p2 and p3 as the distributed
force. In fact, distributed forces could exist in three directions and distributed bending
moment could also exist in three directions. These loads can be rigorously derived from the
distributed body forces, tractions on the lateral surfaces. The two underlined terms in the
last two equations of bending equilibrium are missing from almost all other formulations
of the Euler–Bernoulli beam model.

The constitutive relations of the Euler–Bernoulli beam model can be expressed using
the following four equations:

F1
M1
M2
M3

 =


Cb

11 Cb
12 Cb

13 Cb
14

Cb
12 Cb

22 Cb
23 Cb

24
Cb

13 Cb
23 Cb

33 Cb
34

Cb
14 Cb

24 Cb
34 Cb

44




ϵ11
κ11
κ12
κ13

 (15)

This 4 × 4 symmetric matrix is the stiffness matrix and its inverse is the compliance
matrix for the Euler–Bernoulli beam model.

In strength of materials, we have learned the following formulas for beams made of a
single isotropic material:

F1 = EAϵ11, M1 = GJκ11, M2 = EI2κ12, M3 = EI3κ13 (16)
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with EA denoting the extension stiffness, GJ the torsion stiffness, and EI2 and EI3 the
bending stiffness about x2 and x3, respectively. It is also noted here for a single isotropic
material, E is the Young’s modulus, G is the shear modulus, A is the cross-sectional area,
J is the torsion constant, and I2 and I3 are the area moments of inertia about x2 and x3,
respectively. If the beam is made of multiple materials (possibly anisotropic), extension
stiffness should not be interpreted as a single Young’s modulus times the cross-sectional
area (i.e., E × A). In these cases, extension stiffness may still be referred to as EA but it
should be calculated differently. Because each material has its own Young’s moduli along
different directions, it is unlikely to obtain the extension stiffness using Young’s modulus
of a real material multiplied by the area. The same comments apply to GJ, EI2, and EI3.
The constitutive relations in Equation (16) can be written in the following matrix form as

F1
M1
M2
M3

 =


EA 0 0 0
0 GJ 0 0
0 0 EI2 0
0 0 0 EI3




ϵ11
κ11
κ12
κ13

 (17)

Equations (16) and (17) imply that the four fundamental deformation modes (extension,
torsion, and bending in two directions) are completely decoupled. This is true for isotropic,
homogeneous beams if the origin of the cross-sectional coordinates x2, x3 is chosen to
be at the tension center of the cross-section, and x2 and x3 are chosen to align with the
principal bending directions of the beam. Otherwise, even if the beam is made of a single
isotropic material, the four fundamental deformation modes will be coupled and some of
the off-diagonal terms in the stiffness matrix in the right-hand side of Equation (17) will
be nonzero. Therefore, the formulas in Equation (16) should not be used blindly. Proper
offsets, including both positional and orientational offsets, must be used.

Equations (13)–(15) form a system of 12 equations underpinning the Euler–Bernoulli
model to be solved along with appropriate boundary conditions for 12 unknowns (four
displacement variables, four strain variables, and four stress resultants, all of which are
functions of x1 describing the beam reference line). Kinematics and kinetics remain the
same no matter whether the structure is made of isotropic homogeneous materials such as
metals or anisotropic heterogeneous materials such as composites. The only difference is
that the beam stiffness matrix in Equation (15) could be fully populated if the beam is made
of composites. These equations have been implemented in many FEA codes which have
beam elements. Simple beam problems, particularly those with a uniform cross-section,
can be solved analytically using the Euler–Bernoulli model.

It is noted that although the Euler–Bernoulli model was originally developed based
on a set of a priori assumptions, including the cross-section being rigid in its own plane, re-
maining planar and perpendicular to the reference line, and the uniaxial stress assumption,
such assumptions are not absolutely needed to derive this model if one can use a more
advanced modeling technique such as VAM. Thus, the Euler–Bernoulli model presented
here only refers to the model which has 12 field variables of x1 governed by the 12 equations
in Equations (13)–(15). In other words, the cross-section could be deformed, not necessarily
perpendicular to the reference line, and all six stress components could exist. Actually, a
beam-like structure which is modeled using the classical beam model may not even have
clearly defined cross-sections, such as aircraft wings. As long as the structure is slender, a
classical beam model can be used for the analysis. Furthermore, a slender structure can
be analyzed using this model or any other model without specifically assuming that the
cross-section should deform in a certain fashion or assuming that the structure should
experience a certain type of stress state. Thus, calling a structure an Euler beam can cause
unnecessary confusion and should be avoided.

2.5. Timoshenko Beam Model

When the cross-section of the beam is not very small compared to the length, or
when the deformation cannot be fully captured using extension, twist, and two bending
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curvatures, the Euler–Bernoulli model is inadequate and a refined model is needed. A
refined beam model beyond the Euler–Bernoulli model is the Timoshenko model. The
kinematics of the Timoshenko beam model contains three displacements u1, u2, u3 and three
rotations θ1, θ2, θ3. The Timoshenko beam model features the axial strain ϵ11, the transverse
shear strains ϵ12, ϵ13, the twist rate κ11, and the curvatures κ12, κ13. The strain–displacement
relations are given as

ϵ11 =
du1

dx1
, 2ϵ12 = −θ3 +

du2

dx1
, 2ϵ13 = θ2 +

du3

dx1

κ11 =
dθ1

dx1
, κ12 =

dθ2

dx1
, κ13 =

dθ3

dx1

(18)

The kinetic variables of the Timoshenko beam model contain six stress resultants F1, F2,
F3, M1, M2, M3 with F1 denoting the axial force, F2 and F3 the transverse shear forces, and
M1, M2, M3 the moments about three directions, governed by the following six equations
of equilibrium:

dF1

dx1
+ p1 = 0

dF2

dx1
+ p2 = 0

dF3

dx1
+ p3 = 0

dM1

dx1
+ q1 = 0

dM2

dx1
− F3 + q2 = 0

dM3

dx1
+ F2 + q3 = 0

(19)

The constitutive relations of the Timoshenko beam model can be expressed using the
following six equations:

F1
F2
F3
M1
M2
M3


=



Cb
11 Cb

12 Cb
13 Cb

14 Cb
15 Cb

16
Cb

12 Cb
22 Cb

23 Cb
24 Cb

25 Cb
26

Cb
13 Cb

23 Cb
33 Cb

34 Cb
35 Cb

36
Cb

14 Cb
24 Cb

34 Cb
44 Cb

45 Cb
46

Cb
15 Cb

25 Cb
35 Cb

45 Cb
55 Cb

56
Cb

16 Cb
26 Cb

36 Cb
46 Cb

56 Cb
66





ϵ11
2ϵ12
2ϵ13
κ11
κ12
κ13


(20)

This 6 × 6 symmetric matrix is the stiffness matrix and its inverse is the compliance
matrix of the Timoshenko model. It is noted that Cb

ij, i = 1, 2, 3, 4; j = 1, 2, 3, 4 in this stiffness
matrix could be different from those corresponding terms in Equation (15) due to possible
couplings between the transverse shear modes and classical beam deformation modes.

From traditional structural mechanics, we know the following formulas for beams
made of a single isotropic material:

F1 = EAϵ11, F2 = k2GA(2ϵ12), F3 = k3GA(2ϵ13)

M1 = GJκ11, M2 = EI2κ12, M3 = EI3κ13
(21)

with k2 and k3 the shear correction factors along x2 and x3, respectively, modifying the
transverse shear stiffness GA due to the oversimplified constant strain assumption over
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the cross-section made in the traditional structural mechanics. These constitutive relations
can be written in the following matrix form as

F1
F2
F3
M1
M2
M3


=



EA 0 0 0 0 0
0 k2GA 0 0 0 0
0 0 k3GA 0 0 0
0 0 0 GJ 0 0
0 0 0 0 EI2 0
0 0 0 0 0 EI3





ϵ11
2ϵ12
2ϵ13
κ11
κ12
κ13


(22)

Equations (21) and (22) imply that the six fundamental deformation modes (extension,
shear in two directions, torsion, and bending in two directions) are completely decoupled.

The diagonal stiffness matrix in Equation (22) is possible under four conditions: (i) the
origin of the cross-sectional coordinates x2, x3 is at the tension center of the cross-section,
(ii) x2, x3 align with the principal bending directions of the beam, (iii) the origin of x2, x3
is at the shear center, and (iv) x2, x3 align with the principal shear directions of the beam.
Compared to the Euler–Bernoulli beam model, the diagonal stiffness matrix in Equation
(17) only requires conditions (i) and (ii). All four conditions can be satisfied simultaneously
only for idealized cross-sections, where the shear center is the same as the tension center
and the principal shear directions the same as the principal bending directions. In other
words, for most beams, even if the beam is made of a single isotropic material, a diagonal
stiffness matrix for the Timoshenko model is not possible and some of the six fundamental
deformation modes are coupled. Proper offsets, including both positional and orientational
offsets, must be used before we can use the formulas in Equation (21).

Equations (18)–(20) form a system of 18 equations underpinning the Timoshenko
beam model to be solved along with appropriate boundary conditions for 18 unknowns
(six displacement variables, six strain variables, and six stress resultants, all of which are
functions of x1 describing the beam reference line). Kinematics and kinetics remain the
same no matter whether the structure is made of isotropic homogeneous materials such as
metals or anisotropic heterogeneous materials such as composites. The only difference is
that the beam stiffness matrix in Equation (20) could be fully populated if the beam is made
of composites. These equations have been implemented in many FEA codes which have
beam elements. Simple beam problems, particularly those with a uniform cross-section,
can be solved analytically using the Timoshenko model.

It is noted that FOSDT is also used to model transverse shear deformation of composite
beams. It is actually a special application of the Timoshenko beam model to composite
laminated beams based on the particular assumptions that the cross-section remains straight
and rigid but not necessarily normal to the deformed reference line.

It is noted that although the Timoshenko beam model was originally developed based
on a set of a priori assumptions, commonly called the Timoshenko assumptions, including
the cross-section being rigid in its own plane, remaining in-plane during deformation,
and experiencing special stress states, these assumptions are not absolutely needed to
derive this model if one can use a more advanced modeling technique such as VAM. Thus,
the Timoshenko beam model presented here only refers to the model which has 18 field
functions of x1 governed by the 18 equations in Equations (18)–(20). A beam-like structure
can be analyzed using this model without specifically assuming that the cross-section
should deform in a certain fashion or that the structure should experience a certain stress
state. Thus, calling a structure a Timoshenko beam can cause unnecessary confusion and
should be avoided.

2.6. Vlasov Beam Model

For thin-walled beams with open sections, the so-called constrained warping or
nonuniform warping becomes significant. We need to refine the Euler–Bernoulli beam
model into the Vlasov beam model, including the derivative of the twist rate as one of
its strain variables. The displacement variables remain the same as the Euler–Bernoulli
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beam model, and the strain variables are ϵ11, κ11, κ12, κ13, and κ′11 with prime denotes the
derivative with respect to x1 with the following strain–displacement relations:

ϵ11 =
du1

dx1
, κ11 =

dθ1

dx1
, κ12 = −d2u3

dx2
1

, κ13 =
d2u2

dx2
1

, κ′11 =
d2θ1

dx2
1

(23)

The kinetic variables of the Vlasov beam model contain five stress resultants F1, M1,
M2, M3, Mω with Mω denoting the bi-moment conjugate to κ′11. These five stress resultants
are governed by the following four equations of equilibrium:

dF1

dx1
+ p1 = 0

dM1

dx1
− d2Mω

dx2
1

+ q1 = 0

d2M2

dx2
1

+ p3 +
dq2

dx1
= 0

d2M3

dx2
1

− p2 +
dq3

dx1
= 0

(24)

The constitutive relations of the Vlasov beam model can be expressed using the
following five equations:

F1
M1
M2
M3
Mω

 =


Cb

11 Cb
12 Cb

13 Cb
14 Cb

15
Cb

12 Cb
22 Cb

23 Cb
24 Cb

25
Cb

13 Cb
23 Cb

33 Cb
34 Cb

35
Cb

14 Cb
24 Cb

34 Cb
44 Cb

45
Cb

15 Cb
25 Cb

35 Cb
45 Cb

55




ϵ11
κ11
κ12
κ13
κ′11

 (25)

This 5 × 5 symmetric matrix is the stiffness matrix and its inverse is the compliance
matrix for the Vlasov model. It is noted that Cb

ij, i = 1, 2, 3, 4; j = 1, 2, 3, 4 in this stiffness
matrix could be different from those corresponding terms in Equation (15) due to possible
coupling between κ′11 and the classical beam deformation modes.

Equations (23)–(25) form a system of 14 equations to be solved along with appropriate
boundary conditions for 14 unknowns (four displacement variables, five strain variables,
and five stress resultants, all of which are functions of x1 describing the beam reference
line). Kinematics and kinetics remain the same no matter whether the structure is made of
isotropic homogeneous materials such as metals or anisotropic heterogeneous materials
such as composites. The only difference is that the beam stiffness matrix in Equation (25)
could be fully populated if the beam is made of composites. These equations have been
implemented in some FEA codes which have beam elements. Simple beam problems,
particularly those with a uniform cross-section, can be solved analytically using the Vlasov
model.

3. Common Methods for Deriving the Kirchhoff–Love Model for Composite
Laminated Plates

Except the Cauchy continuum model, the other five models in Section 2 are also called
structural models for beams, plates, and shells. These structural models are often derived
from the Cauchy continuum model using three different methods, including the axiomatic
method, the variational asymptotic method [14], and the formal asymptotic method [15].
Instead of commenting on what has been done using different methods, as is normal in
other review papers, this paper will focus on illustrating the differences of these three
methods to derive the Kirchhoff–Love model for composite laminated plates. This model is
used for illustration because almost every student in mechanics of composite structures
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understands this model and it is the most extensively used model in the composites
industry.

3.1. Kirchhoff–Love Model Derived Using the Axiomatic Method

The axiomatic method is the most used method to model composite plates/beams/shells
because it is relatively straightforward and intuitive. This method starts with some a
priori assumptions for the displacement fields and/or the stress fields containing known
functions of the thickness coordinate (for plates/shells) or the cross-sectional coordinates
(for beams) and unknown functions of the large dimension(s). These assumed expressions
are then usually substituted into a variational statement of the original 3D model (usually
the Cauchy continuum model) to carry out the integration through the small dimensions
to reduce the original 3D formulation into a one-dimensional (1D) formulation in terms
of the beam axis for beams, and 2D formulation for plates/shells. This is essentially the
application of the Kantorovich method [16] to composite structures. When this method is
used to construct the Kirchhoff–Love model for composite laminates, it is also called CLT

To derive CLT for a composite laminate, the axiomatic method first introduces the
so-called Kirchhoff–Love assumptions to express the displacement field as

u1(x1, x2, x3) = u1(x1, x2)− x3u3,1

u2(x1, x2, x3) = u2(x1, x2)− x3u3,2

u3(x1, x2, x3) = u3(x1, x2)

(26)

With these expressions, the transverse normal line is assumed to be infinitely rigid
along its own direction and remain straight and normal to the reference surface during
deformation, which means additional constraints should be introduced to force the plate to
behave in this fashion. In other words, with these assumptions, the structure is artificially
made stiffer. Here, a comma denotes derivatives with respect to the in-plane coordinates,
i.e., f,α = ∂ f

∂xα
. Here and throughout the rest of this chapter, Greek indices α, β, . . .denote

1 or 2 and Latin indices denote 1, 2, or 3. Summation convention is applied to repeated
indices.

Substituting the displacement assumptions in Equation (26) into the 3D strain defini-
tions in Equation (1) using Equation (5), we obtain

ε11(x1, x2, x3)= u1,1 − x3u3,11 = ϵ11 + x3κ11

ε22(x1, x2, x3)= u2,2 − x3u3,22 = ϵ22 + x3κ22

2ε12(x1, x2, x3)= u1,2 + u2,1 − 2x3u3,12 = 2ϵ12 + x3κ12

ε13(x1, x2, x3)= ε23(x1, x2, x3) = ε33(x1, x2, x3) = 0

(27)

Because the transverse shear and normal strains (ε13, ε23, ε33) vanish, the Kirchhoff–
Love assumptions actually force a plane strain state to the composite laminates.

Next, the axiomatic method further adopts the plane stress assumption by assuming
that only in-plane stresses (σ11, σ12, σ22) exist in each layer and transverse shear and normal
stresses (σ13, σ23, σ33) vanish. This assumption agrees well with the exact solution if the
thickness of the laminate is much smaller than the in-plane dimensions. Then, the 3D
constitutive relations in Equation (3) are reduced to be

σe =

Q11 Q12 Q16
Q12 Q22 Q26
Q16 Q26 Q66

εe = Qεe (28)
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with Q as the plane stress reduced stiffness matrix and

σe =


σ11
σ22
σ12

, εe =


ε11
ε22

2ε12


Next, the axiomatic method proceeds using either the Newtonian method or the

variational method to derive the equilibrium equations. The more common approach
is to use the variational method because it is more systematic and directly applicable to
higher-order models.

The principle of virtual work of the plate structure can be stated as∫
S

δU2DdS = δW (29)

with U2D as the 2D strain energy density defined over the reference surface, denoted using
S and δ as the variation symbol in calculus of variations. The 2D strain energy density is
the integration of the 3D strain energy density over the thickness such that

U2D =
1
2

〈〈
σT

e εe

〉〉
(30)

Double angle brackets indicate integration through the thickness, i.e., ⟨⟨ f ⟩⟩ =
∫

h f dx3.
The virtual work δW due to applied loads can be expressed as

δW =
∫

S

(
⟨⟨ fiδui⟩⟩+ βiδui

(
x1, x2,−h

2

)
+ τiδui

(
x1, x2,

h
2

))
dS +

∫
Ω
⟨⟨αiδui⟩⟩dΩ (31)

Here, fi denotes the body force per unit volume, βi the traction on the bottom surface,
τi the traction on the top surface, αi the traction on the lateral surface, and Ω the boundary
curve. Substituting the 3D displacement field expressed in Equation (26) into Equation (31),
we have

δW =
∫

S
(piδui + qαδΦα)dS +

∫
Ω
(Piδui +QαδΦα)dΩ (32)

with

pi= ⟨⟨ fi⟩⟩+ βi + τi, q1 =
h
2
(β2 − τ2)− ⟨⟨x3 f2⟩⟩, q2 =

h
2
(τ1 − β1) + ⟨⟨x3 f1⟩⟩

Pi= ⟨⟨αi⟩⟩,Q1 = −⟨⟨x3α2⟩⟩,Q2 = ⟨⟨x3α1⟩⟩
(33)

and Φ1 = u3,2 and Φ2 = −u3,1 due to the axiomatic assumption that the transverse normal
remains normal to the deformed reference surface. Here, we actually provided a systematic
way to obtain the distributed forces pi(x1, x2) and moments qα(x1, x3) along the reference
surface, and the distributed forces Pi and moments Qα along the boundary curve in terms
of the body forces and surface tractions applied on the original 3D structure.

Substituting the 3D stress field expressed in Equation (28) into Equation (30), we have

U2D =
1
2

〈〈
εT

e σe

〉〉
=

1
2

〈〈
εT

e Qεe

〉〉
(34)

The in-plane strains εe can be expressed in terms of the plate strains and curvatures as

εe = ϵ + x3κ
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with ϵ = ⌊ϵ11 ϵ22 2ϵ12⌋ and κ = ⌊κ11 κ22 2κ12⌋. Substituting the above expressions into
Equation (34), we have

2U2D =

{
ϵ
κ

}T[ ⟨⟨Q⟩⟩ ⟨⟨x3Q⟩⟩
⟨⟨x3Q⟩⟩

〈〈
x2

3Q
〉〉]{ϵ

κ

}
=

{
ϵ
κ

}T[ A B
BT D

]{
ϵ
κ

}
(35)

with A = ⟨⟨Q⟩⟩, B = ⟨⟨x3Q⟩⟩, D =
〈〈

x2
3Q
〉〉

. It is noted that B is symmetric because Q is
symmetric for composite laminates.

Carrying out the partial derivatives of U2D in Equation (35), we obtain

∂U2D
∂ϵ

= Aϵ + Bκ = N,
∂U2D

∂κ
= BTϵ + Dκ = M (36)

which is the same as the constitutive relations in Equation (7).
Substituting Equations (32) and (35) into Equation (29), following the usual procedure

of calculus of variations, one can derive the equilibrium equations in Equation (6) as the
Euler–Lagrange equations and corresponding boundary conditions. Equation (29) can also
be used directly to formulate numerical solutions of the Kirchhoff–Love plate model.

The axiomatic method can be easily extended to develop other plate/shell models.
One just needs to adjust the assumptions (different thickness functions, and unknown
functions) for the displacements and/or the stresses, and decide whether these assump-
tions are applied to the entire structure or each individual layer. One can refer to many
aforementioned review articles and the references listed in those articles to obtain a more
comprehensive appreciation of the axiomatic method [3–13]. The following observations
can be made regarding this method:

• This method must start with assumptions for the displacements and/or the stresses.
• These assumptions could be contradictory to each other. For example, CLT based on

this method actually assumes both plane strain and plane stress, which cannot co-exist
in general.

• This method does not provide a rational way to determine the loss of accuracy. For
example, Kirchhoff assumptions make CLT stiffer than the original 3D model, while
the plane stress assumptions make it softer. The combined effects of both are unknown
in comparison to the original 3D model. The next refinement, FOSDT, corresponding
to the Reissner–Mindlin model, derived by this method could actually be less accurate
than CLT for some cases.

• This method has difficulty in directly satisfying the traction conditions on the top
and bottom surfaces, and the continuity conditions for transverse shear and normal
stresses on the interface between different layers. A mixed formulation using both
displacements and stresses as variables is needed.

• Other than CLT and FOSDT, other models are different from what has been commonly
implemented in commercial finite element packages, preventing their practical use in
dealing with realistic structures using commercial finite element packages with readily
available elements corresponding to the common engineering models presented in
this paper.

3.2. Kirchhoff–Love Model Derived Using the Variational Asymptotic Method

As shown in the previous subsection, the 2D model corresponding to CLT is the
Kirchhoff–Love plate model. Although CLT and the Kirchhoff–Love model were originally
developed based on a set of ad hoc assumptions as aforementioned, such assumptions are
not absolutely needed. In fact, one can use a more advanced modeling technique such as
VAM to derive the Kirchhoff–Love model without these assumptions.
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Considering laminates made of homogeneous layers, the linear elastic behavior is
governed by the Cauchy continuum model. To construct a plate model, we need to first
express the 3D displacements in terms of 2D plate displacements as:

u1(x1, x2, x3) = u1(x1, x2)− x3u3,1 + w1(x1, x2, x3)

u2(x1, x2, x3) = u2(x1, x2)− x3u3,2 + w2(x1, x2, x3)

u3(x1, x2, x3) = u3(x1, x2) + w3(x1, x2, x3)

(37)

Here, ui(x1, x2, x3) are 3D displacements, while ui(x1, x2) are plate displacements
which are functions of x1, x2 only. We also introduce 3D unknown fluctuating functions
(also commonly called warping functions in structural mechanics) wi(x1, x2, x3) to describe
the information of 3D displacements which cannot be described by the simpler Kirchhoff–
Love kinematics. Note that the displacement expressions in Equation (37) are not based
on the Kirchhoff assumptions we have previously discussed. It can be considered as a
change of variables to express the 3D displacements in terms of the displacement variables
of the Kirchhoff–Love model and fluctuating functions. The Kirchhoff assumptions are
equivalent to assuming no fluctuation (i.e., wi = 0). Since we consider that the Cauchy
continuum model is our true model, we construct the Kirchhoff–Love plate model as an
approximation to the true model. To this end, we need to define the plate displacements in
terms of 3D displacements. A natural choice is:

hu3(x1, x2) = ⟨⟨u3⟩⟩, huα(x1, x2) = ⟨⟨uα(x1, x2, x3)⟩⟩+ ⟨⟨x3⟩⟩u3,α (38)

which implies the following constraints on the fluctuating functions:

⟨⟨wi⟩⟩ = 0 (39)

Note that if the origin of the thickness coordinate is at the middle of the plate thick-
ness, Equation (38) actually defines the plate displacements to be the average of the 3D
displacements.

Then, the 3D strain field can be obtained as

ε11= ϵ11 + x3κ11 + w1,1

2ε12= 2ϵ12 + 2x3κ12 + w1,2 + w2,1

ε22= ϵ22 + x3κ22 + w2,2

2ε13= w1,3 + w3,1

2ε23= w2,3 + w3,2

ε33= w3,3

The 3D strain field can also be written in the following matrix form:

εe = ϵ + x3κ + Iαw∥,α, εt = w′ + eαw3,α (40)

with w∥ = ⌊w1 w2⌋T , w = ⌊w1 w2 w3⌋T , εt = ⌊2ε13 2ε23 ε33⌋T , and

I1 =

1 0
0 1
0 0

, I2 =

0 0
1 0
0 1

, e1 =


1
0
0

, e2 =


0
1
0

 (41)

The linear elastic problem of the composite laminate is governed by the variational
statement in Equation (29) with the potential energy due to applied loads given in
Equation (31) and double the 2D strain energy density expressed in the following form as

2U =

〈〈{
εe
εt

}T[Ce Cet
CT

et Ct

]{
εe
εt

}〉〉
(42)
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In view of Equation (31), the work done by applied loads in the original 3D structure
can be obtained as

δW =
∫

S
piδui + q1δu3,2 − q2δu3,1dS +

∫
Ω

Piδui +Q1δu3,2 −Q2δu3,1dΩ

+
∫

S

(
⟨⟨ fiδwi⟩⟩+ τiδwi

(
x1, x2,

h
2

)
+ βiδwi

(
x1, x2,−h

2

))
dS +

∫
Ω
⟨⟨αiδwi⟩⟩dΩ

(43)
Substituting Equations (42) and (43) into Equation (29), dropping smaller terms ac-

cording to VAM, we have

0 =
∫

S δ
〈〈

(ϵ + x3κ)TCe(ϵ + x3κ) + w′TCtw′ + 2(ϵ + x3κ)TCetw′
〉〉

dS
−
∫

S piδui + q1δu3,2 − q2δu3,1dS −
∫

Ω Piδui +Q1δu3,2 −Q2δu3,1dΩ
(44)

Minimizing this energy with respect to the fluctuating function wi along with the
constraints in Equation (39), we reach the following Euler–Lagrange equations:(

(ϵ + x3κ)TCet + w′CT
t

)′
= λ (45)

where λ contains three Lagrange multipliers enforcing the constraints in Equation (39). The
boundary conditions on the top and bottom surfaces are

(ϵ + x3κ)TCet + w′Ct = 0 (46)

We can conclude that the above equation should be satisfied at every point through
the thickness and solve for w′ as

w′ = −(ϵ + x3κ)TCetC−1
t (47)

wi can be solved by simply integrating through the thickness along with the interlaminar
displacement continuity.

Substituting the solved fluctuating functions into Equation (44), we have

2U0 =
〈〈

(ϵ + x3κ)TQ(ϵ + x3κ)
〉〉

=

{
ϵ
κ

}T[ A B
BT D

]{
ϵ
κ

}
(48)

Replacing the strain energy term in Equation (44) with that in Equation (48), we
will obtain a 2D variational statement exactly the same as that obtained in the previous
subsection, which leads to the same equilibrium equations and boundary conditions.

This strain energy along with the work done by applied loads can be used to solve the
2D plate problem to obtain ui, ϵ, κ. The 3D displacements can be obtained after we have
solved for wi.

u1(x1, x2, x3) = u1(x1, x2)− x3u3,1 + w1(x1, x2, x3)

u2(x1, x2, x3) = u2(x1, x2)− x3u3,2 + w2(x1, x2, x3)

u3(x1, x2, x3) = u3(x1, x2) + w3(x1, x2, x3)

(49)

It is clear that the transverse normal does not remain rigid and normal according to
the Kirchhoff–Love assumptions in CLT. Instead, the transverse normal can be deformed
according to wi.

The 3D strains can be obtained after neglecting the higher-order terms wi,α which are
not contributing to the strain energy captured by the Kirchhoff–Love plate model:

εe = ϵ + x3κ, εt = −(ϵ + x3κ)TCetC−1
t (50)

Clearly, the strain field is not in-plane as is traditionally assumed using the Kirchhoff
assumptions in CLT. Instead, transverse shear and normal strains could both exist.
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The 3D stresses can be obtained by directly using the above strain field along with
Hooke’s law of the original 3D elasticity theory as

σe = Q(ϵ + x3κ) (51)

and transverse shear and normal stresses vanish. It can be observed that the Kirchhoff–Love
model derived using VAM exhibits a plane stress state. However, this is not assumed a
priori as in the axiomatic method but derived by using VAM instead.

Comparing to the CLT derived using the axiomatic method, we observe that VAM does
not require a priori assumptions such as the Kirchhoff–Love assumptions and plane stress
assumption. The displacement field, strain field, and stress field are completely compatible
with each other. The CLT derived by VAM features layerwise quadratic distributions of
the 3D displacements, layerwise linear distributions for the transverse shear, and normal
strains. As shown in [17–19], VAM can be used to derive the Reissner–Mindlin model with
the following features:

• The transverse displacement is a piecewise quadratic function of x3, and the in-plane
displacements are piecewise cubic functions of x3.

• The in-plane stresses and strains are piecewise cubic functions of x3, and the transverse
shear stresses and strains are piecewise quadratic functions of x3, and the transverse
normal stress and strain are piecewise cubic functions of x3.

• The 3D displacements and stresses satisfy both the displacement and traction continu-
ity on the interfaces.

• The 3D stresses satisfy traction conditions on the top and bottom surfaces.
• The 3D stresses satisfy the first two equations of the 3D equilibrium asymptotically

up to the second order and the third equation in the sense of minimal energy loss in a
Reissner–Mindlin model.

The accuracy of the Reissner–Mindlin model derived using VAM is almost the same as
fourth-order zigzag theories or lower-order layerwise theories for regular laminates. Such
a theory can easily satisfy many of the needs mentioned in [13] for refined theories beyond
the Kirchhoff–Love model and the Reissner–Mindlin model if such models were derived
using the axiomatic method.

VAM was originally invented by Berdichevsky [20] and applied and popularized by
Hodges to composite structures [18,21–56]. Another unique feature of the work by Hodges
and his co-workers is that those structure models they developed are geometrically exact,
which is far beyond the von Karman-type nonlinearity commonly used in those models
developed using the axiomatic method.

Like the two other methods, VAM also has some drawbacks. First, it relies on asymp-
totical analysis of functionals, which is less intuitive than the axiomatic method and FAM.
Second, the second-order asymptotically correct energy is not in the form of a Reissner–
Mindlin model; some transformation, which might lose accuracy, needs to be employed.
Lastly, it is becoming much harder to derive higher-order models. Fortunately, higher-order
models are not frequently used in practical structural design and analysis.

3.3. Kirchhoff–Love Model Derived Using the Formal Asymptotic Method

The formal asymptotic method (FAM) is another method commonly used to derive
models for composite structures [15,57–61]. The basic idea is to expand all the field vari-
ables asymptotically and solve the governing different equations or the corresponding
variational statement asymptotically according to different orders. The asymptotic ex-
pansion is performed in terms of the small parameter (ζ), which is used to describe the
smallness of a certain structural dimension such as the thickness with respect to the in-plane
dimensions for composite laminated plates. In particular, we scale the thickness coordinate
for a composite laminated plate so that
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y3 =
x3

ζ
,

∂ f
∂x3

=
1
ζ

∂ f
∂y3

(52)

FAM starts with the assumption that the displacement field can be expanded into an
asymptotic series such that

ui = u(0)
i + ζ u(1)

i (x, y) + ζ2u(2)
i (x, y) + O

(
ζ3
)

(53)

Here, FAM assumes u(0)
α = 0, u(0)

3 = v(0)3 (x1, x2). It is noted that the superscripts here
indicate the asymptotic order of the corresponding quantities, not powers.

Substituting Equation (53) into Equation (1) and considering Equation (52), we obtain

εij = ε
(0)
ij + ζ ε

(1)
ij + O

(
ζ2
)

(54)

with

ε
(0)
αβ = 0, ε

(0)
α3 =

1
2

(
v(0)3,α +

∂u(1)
α

∂y3

)
, ε

(0)
33 =

∂u(1)
3

∂y3
(55)

ε
(1)
αβ =

1
2

(
u(1)

α,β + u(1)
β,α

)
, ε

(1)
α3 =

1
2

(
u(1)

3,α +
∂u(2)

α

∂y3

)
, ε

(1)
33 =

∂u(2)
3

∂y3
(56)

FAM continues to assume that there is no need to expand the elasticity tensor Cijkl into
an asymptotic series, which implies that we can obtain the following:

σij = σ
(0)
ij + ζ σ

(1)
ij + O

(
ζ2
)

(57)

with
σ
(0)
ij = Cijklε

(0)
kl , σ

(1)
ij = Cijklε

(1)
kl

Substituting the asymptotic expansion into Equation (30), we can obtain the asymptotic
expansion of the 2D strain energy density up to the second order as

U2D = ζU(0)
2D + ζ2U(1)

2D + ζ3U(2)
2D + O

(
ζ4
)

(58)

with

U(0)
2D=

1
2

〈(
σ(0)

)T
ε(0)
〉

(59)

U(1)
2D=

1
2

〈(
σ(1)

)T
ε(0) +

(
σ(0)

)T
ε(1)
〉

(60)

U(2)
2D=

1
2

〈(
σ(1)

)T
ε(1) +

(
σ(0)

)T
ε(2) +

(
σ(2)

)T
ε(0)
〉

(61)

Here, ⟨⟨·⟩⟩ = ζ
∫
·dy3 = ζ⟨·⟩.

To expand the virtual work asymptotically, FAM assumes the following asymptotic
orders for body forces and tractions:

fα ∼ αα ∼ ζ, f3 ∼ α3 ∼ ζ2, βα ∼ τα ∼ ζ2, β3 ∼ τ3 ∼ ζ3

The virtual work can be written as

δW =
∫

S

(〈〈
fαδu(1)

α + f3δv(0)3

〉〉
+ βαδu(1)

α

(
− h

2

)
+ (β3 + τ3)δv(0)3 + ταδu(1)

α

(
h
2

))
dS+∫

Ω

〈〈
ααδu(1)

α + α3δv(0)3

〉〉
dΩ + O

(
ζ4)

(62)
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The first-order variational statement is δU(0)
2D = 0, which can be used to conclude

ε(0) = 0, σ(0) = 0 (63)

One can obtain u(1)
i as

u(1)
α = v(1)α (x1, x2)− y3v(0)3,α , u(1)

3 = v(1)3 (x1, x2) (64)

which is the same as those in Equation (26) given by the Kirchhoff–Love assumptions after
some simple changes of variables.

Based on the first-order solution in Equation (64), we can write out the second-order
solution as

u(2)
α = v(2)α (x1, x2)− y3v(1)3,α + wα(x1, x2, y3), u(2)

3 = v(2)3 (x1, x2) + w3(x1, x2, y3) (65)

Substituting Equation (65) into Equation (56), we obtain the first-order strains as

ε
(1)
αβ =

1
2

(
v(1)α,β + v(1)β,α

)
− y3v(0)3,αβ, ε

(1)
α3 =

1
2

∂wα

∂y3
, ε

(1)
33 =

∂w3

∂y3
(66)

In view of Equation (63), we can conclude

U(1)
2D = 0, U(2)

2D =
1
2

〈(
σ(1)

)T
ε(1)
〉

If we let
uα = v(1)α , u3 = v(0)3

and
ϵαβ =

1
2

(
v(1)α,β + v(1)β,α

)
, καβ = −v(0)3,αβ

then the second order of the virtual work in Equation (62) is exactly the same as
Equation (32), and the variation in the total potential energy of the second order is exactly
the same as that derived by VAM in Equation (44). This further implies that the warp-
ing functions solved from FAM are exactly the same as those solved by VAM given in
Equation (47). The corresponding macroscopic plate model, CLT, remains the same. Since,
at this stage, we have only solved v(1)α , v(0)3 , the 3D displacements, strains, and stresses can

be computed in the same way if we do not include the higher-order 2D functions v(2)α , v(1)3
to be solved later in the macroscopic 2D plate model of the next asymptotic expansion. To
reproduce the expressions exactly the same, we need to set ζ = 1, and y3 becomes x3.

Although both VAM and FAM provide the same Kirchhoff–Love model, we can
observe that FAM requires more careful set up of the asymptotic order and lengthier
derivation. Also, it introduces more 2D functions to construct the Kirchhoff–Love model
and there are no relations of the 2D functions for different orders. In fact, each asymptotic
expansion corresponds to a macroscopic plate model with five new 2D functions which
can be solved recursively, as shown in Ref. [15]. These models are not compatible with
those plate/shell elements in off-the-shelf commercial FEA codes such as Abaqus, Ansys,
or Nastran.

4. Future Directions for Modeling of Composite Structures

The author believes that it is unnecessary to go beyond the classical structural models
as long as the models are constructed without a priori assumptions. These structural
models constructed by VAM are sufficient for most engineering practices as long as the
basic requirements are satisfied, such as the plate/shell being thin and the beam being
slender. To obtain better predictions than these models usually requires more sophisticated
models with not much computational savings in comparison to the original 3D model,
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particularly in view of the fact that we need to develop special-purpose finite element codes
for those sophisticated models. The model setup time and loss of versatility in modeling
realistic structures quickly outweigh the insignificant computing speed-up by those models
which are more sophisticated than the classical models introduced in this paper.

As far as the future directions are concerned, the global structural analysis using the
classical structural models is already implemented in many commercial finite element
packages. Not much research to be carried out there; instead, we need to convince those
codes to open up to accept fully populated stiffness matrices, or tangent stiffness matrix for
nonlinear behavior.

Since VAM does not rely on a priori assumptions, which are usually heavily dependent
on the particular structure, such as laminates, these approach can be easily extended to
other types of structures.

Many linear problems have been worked out by Hodges and his co-workers and the
advantages of such models are clearly shown [18,21–56]. It is time to explore using VAM
to solve nonlinear static or dynamic problems such as local buckling, damage and failure
analysis, simulation of manufacturing processes, multiscale design, dynamic properties for
anisotropic heterogeneous materials and structures, and transport properties needed for
composites manufacturing. All these directions are actively pursued by the author and his
co-workers.

5. Conclusions

Modeling of composite structures is reviewed in terms of the modeling methods,
including the axiomatic methods VAM, and FAM. Their differences were highlighted
through deriving CLT. The advantages of VAM was compared with respect to the axiomatic
method and VAM. VAM was invented by Berdichevsky and was applied and popularized
by Hodges and his co-workers. Because of his work, a special area of research, constitutive
modeling of structures, is established and should be more vigorously pursued. Classical
structural models constructed by VAM are better than most high-order equivalent single-
layer models, zigzag models, or layerwise models developed using the axiomatic methods.
The practical advantages of classical structural models already present in commercial
finite element packages cannot be emphasized enough because those are the tools used by
engineers everyday. Several promising directions for future research are pointed out.
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