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Abstract: This paper provides a brief review on modeling of composite structures. Composite
structures in this paper refer to any structure featuring anisotropy and heterogeneity, including but
not limited to their traditional meaning of composite laminates made of unidirectional fiber-reinforced
composites. Common methods used in modeling of composite structures, including the axiomatic
method, the formal asymptotic method, and the variational asymptotic method, are illustrated in
deriving the classical lamination theory for the composite laminated plates. Future research directions
for modeling composite structures are also pointed out.
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1. Introduction

We usually classify structures in terms of their external geometry. If all three dimen-
sions of a structural component are of similar size, it is a three-dimensional (3D) solid
(Figure 1a). If one dimension of a structural component is much smaller than the other
two dimensions, it is a plate (Figure 1b) or a shell (Figure 1c), depending on whether
the undeformed in-plane shape is flat or curved, respectively. The small dimension is
commonly called the thickness. If two dimensions of a structural component are much
smaller than the third dimension, it is a beam (Figure 1d). Usually the large dimension
is called the axis of the beam and a reference line can be defined for the beam along the
large dimension. The two small dimensions are commonly called the cross-section for
typical beam-like structures. The reference line can be as general as a spatial curve, which
is the case for initially curved and twisted beams. If the beam itself is made of thin-walled
components, that is, the wall thickness is much smaller than the cross-sectional size, it
is a thin-walled beam. We can collectively denote plates, shells, beams, and thin-walled
beams as dimensionally reducible structures, emphasizing the fact that one or more small
dimensions can be eliminated for developing a simplified structural model with reduced
dimensions for adequate prediction of their behaviors.

As far as modeling is concerned, this classification only considers the external geome-
try, whereas the internal construction of these structures can be arbitrary. For example, a
sandwich flat panel with a honeycomb core can be modeled as a plate and a high-aspect-
ratio wing of aircraft can be modeled as a beam without clearly defined cross-sections. In
this sense, all engineering structural systems, despite their complexity, can be considered as
formed by a combination of structural components in terms of three-dimensional (3D) struc-
tures, two-dimensional (2D) plates/shells, and /or one-dimensional (1D) beams, as shown
in Figure 1 with possible complex internal constructions with general anisotropic materials.
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(a) 3D Structure (b) Plate (c) Shell (d) Beam

Figure 1. Typical structural components [1].

Recent decades have witnessed great advances in materials technology and manu-
facturing techniques. Structures traditionally made of isotropic homogeneous materials
are now increasingly made of advanced materials featuring anisotropy and heterogene-
ity. Such structures are called composite structures in this paper. Since, in the literature,
composite structures usually refer to laminated structures made of unidirectional fiber-
reinforced composites (UDFRCs), it is emphasized that composite structures in this paper
refer to structures featuring anisotropy and heterogeneity at the continuum scale (the length
scale of micron and larger), such as laminates, sandwich structures, stiffened structures,
rotor blades made of UDFRCs, tow-steered composites, short fiber composites, particle-
reinforced composites, woven composites, metamaterials, etc. Cutting-edge manufacturing
techniques can routinely manipulate geometry and material at the continuum scale. It is
conventionally believed that the classical models (Cauchy continuum model for 3D solids,
Kirchhoff-Love model or Reissner-Mindlin model for plates/shells, Euler-Bernoulli model
or Timoshenko model for regular beams, Vlasov model for thin-walled beams) developed
for structures made of isotropic homogeneous materials several centuries ago are not
applicable for composite structures made of anisotropic and/or heterogeneous materials.
This motivated many non-classical models such as the Cosserat solid model, high-order,
zig-zag, or layerwise plate/shell models, or many advanced beam models developed to
tackle the complexity of composite structures introduced by anisotropy and heterogeneity
of advanced materials and arbitrary internal structural constructions. Although these
non-classical models provide better predictions than the classical models for some cases, it
is not easy to implement them in the existing structural solvers, including general-purpose
finite element analysis (FEA) packages such as Abaqus, Ansys, Nastran, or special-purpose
comprehensive analysis codes such as RCAS (Rotorcraft Comprehensive Analysis System).
Instead, special-purpose finite element codes must be developed. These codes cannot
be easily incorporated into commercial finite element codes due to their complexity and
limited uses. Thus, these non-classical models mainly have academic value and are not
used by practitioners very much.

To leverage existing structural solvers provided by off-the-shelf commercial finite
element packages, we have to find a way to construct models suitable for composite
structures featuring complex internal constructions and made of advanced anisotropic
heterogeneous materials, while at the same time being compatible with those available in
existing structural solvers. This can be achieved by recognizing the fact that each model
can be separated into three parts, including kinematics (displacements, strains, and the cor-
responding strain-displacement relations, and compatibility equations), kinetics (stresses,
forces, moments, and the corresponding equations of motion or equilibrium equations),
and energetics (constitutive relations). Both kinematics and kinetics are implemented in
existing structural solvers, while the constitutive relations can be obtained externally by
constitutive modeling and used as inputs for existing structural solvers. Now, instead of
constantly developing better non-classical models for composite structures, the challenge
can be met by developing better constitutive modeling to bridge the original model and a
desirable classical structural model so that the loss of accuracy between these two model
representations of the same structure can be minimized. The constitutive modeling was not
part of the traditional paradigm of structural mechanics, as traditional structural mechanics



Materials 2024, 17, 446

30f23

theories do not clearly separate constitutive relations from kinematics and kinetics, while it
is a distinctive feature of the work of Hodges and his collaborators [2].

Many reviews with an extensive bibliography on modeling of composite structures
are available in the literature (Grigolyuk et al. [3] with 161 references, Leissa [4] with
352 references, Grigolyuk et al. [5] with 74 references, Kapania et al. [6] with 145 references,
Noor [7] with 203 references, Carrera [8] with 325 references, Carrera [9] with 138 references,
Khandan et al. [10] with 159 references, Liew et al. [11] with 247 references, Li [12] with
261 references, Carrera et al. [13] with 168 references). This paper will not repeat these
efforts. Instead we will first provide a brief introduction to the classical models, then we
will review three main methods used to derive the Kirchhoff-Love model for composite
laminated plates. Finally, we will point out the future challenges and research directions
related to modeling composite structures.

2. Introduction to Classical Structural Models

In this section, we introduce the kinemics, kinetics, and constitutive relations of the
classical structural models commonly used in engineering, including the Cauchy continuum
model, the Kirchhoff-Love plate/shell model, the Reissner-Mindlin plate/shell model,
the Euler-Bernoulli beam model, the Timoshenko beam model, and the Vlasov beam
model. Since this paper focuses on the methodology on structural modeling, the process of
reducing the original 3D problem into a 1D model for beams and 2D model for plates/shells,
only the final model form in terms of kinematics, equilibrium equations, and constitutive
relations is presented here, without details of how these equations are obtained. Even
if historically the models are derived very differently, for example, the Reissner model
and the Mindlin model, as long as the final form remains the same, we collectively call
their model the Reissner-Mindlin model. Furthermore, this paper is not interested in how
to solve these models for specific static or dynamic behavior. Instead, we only focus on
contrasting the main methods used to derive these models.

For the purpose of illustrating the modeling method, we restrict this introduction to
linear elastic behavior. We use x1, x2, x3 to denote the coordinate systems. In particular, for
beams, x is along the beam reference line, and x, and x3 describe the cross-sectional plane;
for plates/shells, x; and x; describe the reference surface, while x3 is along the transverse
normal.

2.1. Cauchy Continuum Model

The kinematics of the Cauchy continuum model contains three displacements w1, uy, u3
and six strains €11, €27, €33, €23, €13, €12- The infinitesimal strains are defined in terms of the
displacements as

g O 02 OU3
11— axl/ 22 = ale 33 — ax3 (1)
dupy  duy duy  dug duy  dup
depy= 2+ o2 Qg = o b+ 22 dep = o b4 22
€23 0x3 + x> £13 dx3 + dxq £12 dxy  dxg

The kinetic variables of the Cauchy continuum model are six stresses 011,022, 033,
023, 013, 012. If Cauchy stress tensor is used, these stresses are governed by the following
equations of equilibrium:

doyy | dopp | doy _
8x1 + 8x2 + aX3 +f170
80'12 80'22 80'23

= 2
ax1+8x2+8x3 +£=0 @)
%u+%x+&m

8x1 axz 8x3

+f3=0
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where f1, f», f3 are distributed body forces per unit volume in three directions. The constitu-
tive relations of the Cauchy continuum model for the linear elastic behavior are described
using the generalized Hooke’s law as

011 Cii Cip Gz Cip Ci5 Cig]| (€11

02 Co Cp C3 Cy Gz Co| | &2

o3| _ |Cis C3 C Cau GCss Cael| ) 33 3)
023 Ciy Coq Cay Cy Cy5 Cyp| | 2623

013 Cis Cos5 Cs5 Cg5 Cs5 Cse| | 2613

012 Cis C Cs6 Cy6 Cse Cesl \2¢12

The 6 x 6 symmetric matrix is the stiffness matrix, and its inverse is the compliance

matrix.
€1 S11 S12 S13 S14 S15 Si6]| (o
€22 S12 S» S Soa Sos S| |02
e33 | _ [S13 523 S33 Sz S35 Sz ) o33 @)
2¢23 S1a So4 S3u Sus Sus Sae| | 023
2¢e13 S15 S25 S35 Sas Ss5 Sse| | 013
2e1p S16 S26 S36 Sae Ss6 Seel \012

Material properties are usually measured in the material coordinate system, which
implies that we need to express constitutive relations in the material coordinate system
first. However, the kinematics and kinetics are usually formulated in the global coordinate
system. A proper transformation according to the tensorial transformation laws is needed
to transfer the constitutive relations into the global coordinate system.

For isotropic materials, the constitutive relations can be expressed in terms of Young'’s
modulus E and Poisson’s ratio v as

. E1-v)
C11—C22—C33—m
Ev
Clz—C13—C23—m
E
C44:C55:C66:m

and all other terms in the stiffness matrix of Equation (3) are zero.

Equations (1)-(3) form a system of 15 equations underpinning the Cauchy continuum
model to be solved along with appropriate boundary conditions for 15 unknowns (three
displacements, six strains, and six stresses, all of which are functions of three coordinates
X1, X2, x3 used to describe the 3D body). Kinematics and kinetics remain the same no
matter whether the structure is made of isotropic homogeneous materials such as metals or
anisotropic heterogeneous materials such as composites. This model has been implemented
in many FEA codes which have 3D solid elements.

2.2. Kirchhoff-Love Plate/Shell Model

Kirchhoff originally developed the classical plate model for flat panels based on a set
of ad hoc assumptions, including the transverse normal (a material line along the thickness
direction) being rigid in the thickness direction, remaining straight and perpendicular
to the reference surface, and the structure experiencing a plane stress state, during the
deformation. Love later extended the same set of assumptions to curved panels to develop
the classical shell model. Since both models are based on the same set of assumptions
and take the same functional form, we collectively call them the Kirchhoff-Love model.
Since the Kirchhoff-Love model is the first complete model developed in history, it is
also called the classical plate/shell model. Here, for simplicity, we use the classical plate
model for illustrative purposes. The kinematics of the Kirchhoff-Love plate model con-
tains three displacements 1, i, U3, three in-plane strains €11, €22, €12, and three curvatures
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K11, K22, %12. It is noted that most traditional formulations of the classical plate model
only include the bending behavior (one displacement 73 and three curvatures k11, k22, k12).
Here, for the connection to composite structures, we also include the in-plane behavior in
the formulation.

Specifically for a plate, the strain—-displacement relations are given as

1= aﬁl,Gzz _ aﬁzl 1 = dly d1iy
dxq dxo dxp,  dxqy
. azﬁg o azﬂ3 . azﬁ?, ®)
= ox3 k2= ox3 PK12 =  9x10x2

The kinetic variables of the Kirchhoff-Love model contain three in-plane forces
Ni1, N2, Nip and three moments My, May, M1p. These kinetic variables are governed
by the following three equations of equilibrium:

ONj1 | dNpp

v | om, P10
dN>; | dNp B
om T ax, P20 (6)
0°M 0°M ’M 0 0
11 22 12—1—&—&4—]03:0
0x12 0x52 0x10xp  0x;  0Xp

where p1, p2, p3 are equivalent forces in three directions and 4, g2 are equivalent moments
in two in-plane directions distributed over the reference surface. It is noted here that most
traditional formulations of the classical plate model only include the transverse pressure
p3 as the distributed force. In fact, distributed forces could exist in three directions and
distributed bending moment could exist in two directions. These loads can be rigorously
derived from the distributed body forces, tractions on the top and bottom surfaces, as
shown in Equation (3).

The constitutive relations of the Kirchhoff-Love model can be expressed using the
following six equations:

Ny A1 Az A Bin Bz Big| [ en
Nop A1p Ax Az By By By €22
Nip\ _ (A Az Aes Ber Bex Bes | | 2€12 %
M Bi1 Bx Bt D11 D1z Dig| | k11
Mp, Bio By Bex D12 D Dyl | k2
My, Bis Bas Bes Dig Dag Desl \2x12

This 6 x 6 symmetric matrix is the stiffness matrix and its inverse is the compliance
matrix for the classical plate model.

1

€11 Ay A A B Bz B Ny
€2 Ap A Az Bar B By N
2e1\ _ [A1e Az Aes Be1 Bex Bes Ni2 ()
K11 Bi1n B Ber D11 D1z Dis My
K22 Bio By Bgx Dia D Dy M>;
2K12 Bie Bas Bes Die Das Des My

We used the conventional notation, A, B, D matrices, well-known in the classical
lamination theory (CLT). One difference is noted here. B is known to be symmetric in
CLT due to the symmetry of the plane stress reduced stiffness matrix Q (i.e., By; = By,
Be1 = Bis,Bsx = Bos. However, it is not symmetric for a general anisotropic, het-
erogeneous flat panel to be modeled using the classical plate model. Thus, B used in
Equations (7) and (8) allows the possibility of being unsymmetric.
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If a homogeneous plate is made of a single isotropic material, and the origin of x3 is
chosen to be at the center of the thickness, the constitutive relations are

Nip £l 1 v 0 €11

Ny 1 — 2 v 1 0 €22

le 0 0 1%1/ 2612 (9)
My v K11

Mo, 1 -1 1 K22

M12 0 0 _V 2K12

Equations (5)—(7) form a system of 15 equations underpinning the Kirchhoff-Love
model to be solved along with appropriate boundary conditions for 15 unknowns (three
displacements, six strain variables, and six stress resultants, all of which are functions of
x1 and x; describing the two-dimensional (2D) reference surface). Kinematics and kinet-
ics remain the same no matter whether the structure is made of isotropic homogeneous
materials such as metals or anisotropic heterogeneous materials such as composites. The
only difference is that the plate/shell stiffness matrix in Equation (7) could be fully pop-
ulated if the plate/shell is made of composites. This model can be applied to model flat
panels with arbitrary heterogeneity (e.g., laminates, sandwich panels with honeycomb
cores, corrugated panels) as long as the thickness remains relatively small compared to the
in-plane dimensions. The Kirchhoff-Love model governed by these equations has been
implemented in many FEA codes which have plate/shell elements.

It is noted that although the Kirchhoff-Love model was originally developed based
on a set of a priori assumptions as aforementioned, such assumptions are not absolutely
needed to derive this model. In fact, one can use a more advanced modeling technique
such as the variational asymptotic method (VAM) [14] to be illustrated later. Thus, the
Kirchhoff-Love model presented here only refers to the model which has 15 field variables
of x1, xo governed by the 15 equations in Equations (5)—(7). In other words, the thickness
could be deformed, not necessarily perpendicular to the reference surface, and all six stress
components including both in-plane stresses and transverse stresses could exist.

2.3. Reissner—-Mindlin Plate/Shell Model

When the thickness of the panel is not very small compared to the in-plane dimensions,
or when the deformation cannot be fully captured using in-plane strains (€11, €22, €12) and
the curvatures (11, k22, k12), the Kirchhoff-Love model is inadequate and a refined model
is needed. A refined plate/shell model beyond the Kirchhoff-Love model is the Reissner—
Mindlin model, so named due to independent contributions of Reissner and Mindlin to its
development. The kinematics of the Reissner-Mindlin model contains five displacement
variables, including three displacements 1, 1, 13 and two rotations 61, 6;. This model
features three in-plane strains €11, €22, €12, three curvatures «11, K22, k12, and two transverse
shear strains €13, €23. For a plate, the strain-displacement relations are given as

Jdiy d1iy duy,  Jdup
= — = —=2 — = __“
€11 axlfezz 91y €12 = 91y + 1
00, _dbq _ 892 d6;
K11= Txl/’(zz = _E,ZMZ = 87(2 - E (10)

ou diiz
2e13= E)ch + 6,,2€y3 = ﬂ — 6
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The kinetic variables of the Reissner-Mindlin model contain in-plane forces N1, Nap, N1,
moments My, Mpy, Mjp, and transverse shear forces N3, Np3. They are governed by the
following five equations of equilibrium:

4 =0

a;\ﬁlJraaZ:Zerpz:O

381\;113+a£2;3+p3:0 (11)
a;\jiz—ka;\jiZ—ql—NB:O

a;\;il aé\jilJr%*Nm:O

The constitutive relations of the Reissner-Mindlin model can be expressed using the
following eight equations:

Nyq [A11 Az A Bin Bz Big Yii Y2 (en
N2 Ap Axm Az By B B Yor Y| | €x
Ni2 Ae Azs Ass Ber Bez Bes Yzi Yz | | 2e12
Min | _ |Bn Bai Bet Du Dz Die Ya Yao| ) xnn (12)
Mo Bio By Bex Dip Dy Dy Y51 Ysp K22
My Bis Bas Bes Die Dz Des Yo1 Y2 | | 2k12
Ni3 Yiu Yo Yz Y Ysi Y G Giof | 2e13
N3 LYo Yo Yz Y Yso Yeo G Gozl \2ep3

This 8 x 8 symmetric matrix is the stiffness matrix and its inverse is the compliance
matrix for the Reissner—-Mindlin model. Gjj (1 = 1,2;j = 1,2) denote the transverse shear
stiffness terms and Yj; (i = 1,...,6;j = 1,2) denote the coupling stiffness terms relating the
classical plate deformation modes and transverse shear deformation modes. It is noted that
A, B, D matrices could be different from those in Equation (7) due to possible nonzero Yj;
i=1...,6j=12).

Equations (10)—(12) form a system of 21 equations underpinning the Reissner-Mindlin
model to be solved along with appropriate boundary conditions for 21 unknowns (five
displacement variables, eight strain variables, and eight stress resultants, all of which are
functions of x1 and x, describing the 2D reference surface). Kinematics and kinetics remain
the same no matter whether the structure is made of isotropic homogeneous materials such
as metals or anisotropic heterogeneous materials such as composites. The only difference
is that the plate/shell stiffness matrix in Equation (12) could be fully populated if the
plate/shell is made of composites. Again, this model can be applied to model flat panels
with arbitrary heterogeneity (e.g., laminates, sandwich panels with honeycomb cores,
corrugated panels) as long as the thickness remains relatively small compared to the in-
plane dimensions. The Reissner-Mindlin model governed by these equations has been
implemented in many FEA codes which have plate/shell elements.

It is noted that the first-order shear deformation theory (FOSDT) is often used to
model transverse shear deformation of composite plates/shells. It is actually a special
application of the Reissner-Mindlin model to composite laminated plates/shells based on
the particular assumptions that the transverse normal remains straight and rigid but not
necessarily normal to the deformed reference surface.

It is noted that although the Reissner-Mindlin model was originally developed based
on a set of a priori assumptions, such assumptions are not absolutely needed to derive
this model if one can use a more advanced modeling technique such as VAM. Thus,
the Reissner-Mindlin model presented here only refers to the model which has 21 field
variables as functions of x1, x, and is governed by the 21 equations in Equations (10)—-(12).
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The deformation and stress state of the structure along the thickness direction are not
necessarily assumed a priori.

2.4. Euler—Bernoulli Beam Model

The kinematics of the Euler-Bernoulli beam model contains three displacements 1, i,
13, and one twist angle 6. This model also features four strain variables including the axial
strain €11, the twist rate x;1, and the curvatures x1y, k13 around x; and x3, respectively. It
is pointed out that the Euler-Bernoulli beam model is often formulated for bending only,
and although some included extension, almost no formulation has also included torsion.
In fact, torsion is also a fundamental deformation mode of a slender beam and the twist
rate is of a similar order of magnitude of the bending curvatures for regular beams. Thus,
we also include torsion into the Euler—Bernoulli beam model. Since the Euler—Bernoulli
model is the first complete model developed in history, it is also called the classical beam
model. The strain—displacement relations of the Euler-Bernoulli beam model are given as

dmy d6, d%7, d%u,

€1 =—,K11= —,KIp = ——5,K|3 = —— 13
1= g T gy 2 a2 13 a2 (13)
The kinetic variables of the Euler—Bernoulli beam model contain four stress resultants

F, My, M,M3, with F; denoting the axial force and M;, M, M3 the moments about the

three directions, governed by the following four equations of equilibrium:
dF,
qu + pP1 = 0
dM;
a0

d*M, dq (14)
+p3+—=0
dx? P3

dx1
d2M3 dL]3
a2 Py

=0

where p1, p2, p3 are equivalent forces and ¢4, 42, 43 are equivalent moments in three direc-
tions distributed along the reference line. It is noted here that most traditional formulations
of the classical beam model only include the transverse pressure p, and p3 as the distributed
force. In fact, distributed forces could exist in three directions and distributed bending
moment could also exist in three directions. These loads can be rigorously derived from the
distributed body forces, tractions on the lateral surfaces. The two underlined terms in the
last two equations of bending equilibrium are missing from almost all other formulations
of the Euler—Bernoulli beam model.

The constitutive relations of the Euler-Bernoulli beam model can be expressed using
the following four equations:

3 Cli Ch Cj3 Gl (en
M\ _ Ch G Gy Gy ) xu (15)
M, Cly G Ch Gy | *2
M Cly Gy Gy Chyl ks

This 4 x 4 symmetric matrix is the stiffness matrix and its inverse is the compliance
matrix for the Euler-Bernoulli beam model.

In strength of materials, we have learned the following formulas for beams made of a
single isotropic material:

Fy = EAey, My = GJK11, My = Elbxyp, M3 = Elzki3 (16)
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with EA denoting the extension stiffness, GJ the torsion stiffness, and EI; and El; the
bending stiffness about x, and x3, respectively. It is also noted here for a single isotropic
material, E is the Young’s modulus, G is the shear modulus, A is the cross-sectional area,
] is the torsion constant, and I, and I3 are the area moments of inertia about x, and x3,
respectively. If the beam is made of multiple materials (possibly anisotropic), extension
stiffness should not be interpreted as a single Young’s modulus times the cross-sectional
area (i.e., E x A). In these cases, extension stiffness may still be referred to as EA but it
should be calculated differently. Because each material has its own Young’s moduli along
different directions, it is unlikely to obtain the extension stiffness using Young’s modulus
of a real material multiplied by the area. The same comments apply to GJ, El;, and El3.
The constitutive relations in Equation (16) can be written in the following matrix form as

Fl EA 0 0 0 €11
M| |0 GJ] O 0] ]Jxn
Mz a 0 0 EIZ 0 K12 (17)
M, 0 0 0 EIf \x3

Equations (16) and (17) imply that the four fundamental deformation modes (extension,
torsion, and bending in two directions) are completely decoupled. This is true for isotropic,
homogeneous beams if the origin of the cross-sectional coordinates x;, x3 is chosen to
be at the tension center of the cross-section, and x; and x3 are chosen to align with the
principal bending directions of the beam. Otherwise, even if the beam is made of a single
isotropic material, the four fundamental deformation modes will be coupled and some of
the off-diagonal terms in the stiffness matrix in the right-hand side of Equation (17) will
be nonzero. Therefore, the formulas in Equation (16) should not be used blindly. Proper
offsets, including both positional and orientational offsets, must be used.

Equations (13)—(15) form a system of 12 equations underpinning the Euler-Bernoulli
model to be solved along with appropriate boundary conditions for 12 unknowns (four
displacement variables, four strain variables, and four stress resultants, all of which are
functions of x; describing the beam reference line). Kinematics and kinetics remain the
same no matter whether the structure is made of isotropic homogeneous materials such as
metals or anisotropic heterogeneous materials such as composites. The only difference is
that the beam stiffness matrix in Equation (15) could be fully populated if the beam is made
of composites. These equations have been implemented in many FEA codes which have
beam elements. Simple beam problems, particularly those with a uniform cross-section,
can be solved analytically using the Euler-Bernoulli model.

It is noted that although the Euler-Bernoulli model was originally developed based
on a set of a priori assumptions, including the cross-section being rigid in its own plane, re-
maining planar and perpendicular to the reference line, and the uniaxial stress assumption,
such assumptions are not absolutely needed to derive this model if one can use a more
advanced modeling technique such as VAM. Thus, the Euler-Bernoulli model presented
here only refers to the model which has 12 field variables of x; governed by the 12 equations
in Equations (13)—-(15). In other words, the cross-section could be deformed, not necessarily
perpendicular to the reference line, and all six stress components could exist. Actually, a
beam-like structure which is modeled using the classical beam model may not even have
clearly defined cross-sections, such as aircraft wings. As long as the structure is slender, a
classical beam model can be used for the analysis. Furthermore, a slender structure can
be analyzed using this model or any other model without specifically assuming that the
cross-section should deform in a certain fashion or assuming that the structure should
experience a certain type of stress state. Thus, calling a structure an Euler beam can cause
unnecessary confusion and should be avoided.

2.5. Timoshenko Beam Model

When the cross-section of the beam is not very small compared to the length, or
when the deformation cannot be fully captured using extension, twist, and two bending
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curvatures, the Euler-Bernoulli model is inadequate and a refined model is needed. A
refined beam model beyond the Euler-Bernoulli model is the Timoshenko model. The
kinematics of the Timoshenko beam model contains three displacements 71, u>, i3 and three
rotations 61, 6, 65. The Timoshenko beam model features the axial strain €71, the transverse
shear strains €1y, €13, the twist rate x11, and the curvatures x5, x13. The strain—displacement
relations are given as

_ . .
€11 = . ;261 = =03 + “ ,2€13 = 0y + °

d dX1 dx1 (18)
o do,  dos
=4 M2 T gy B T 4

The kinetic variables of the Timoshenko beam model contain six stress resultants Fy, F,
Fs, My, My, M3 with F; denoting the axial force, F, and F; the transverse shear forces, and
M1, My, M3 the moments about three directions, governed by the following six equations
of equilibrium:

dF;
chl + pP1 = 0
dF,
chl + P2 = 0
dF.
o tp=0

" (19)
dMy o
dxl n=
dM; B
dy —F+ g2 = 0
dM;
—— + F =0
dxl th +5]3

The constitutive relations of the Timoshenko beam model can be expressed using the
following six equations:

I3 Cly Ch Cly Oy Cis Cl (en
E Ci’z ng C33 C§’4 Cé’s Cgé 2eqp
Fs | _ Cli Gy Ciy G G il ) 2en3 (20)
My Cyy Gy C§4 Ciy CZS CZG K11
Ma Cls Chs Cjs Cis Cis Cil | xu2
Ms Cls Cds Cls Cis Czs Cosl 73

This 6 x 6 symmetric matrix is the stiffness matrix and its inverse is the compliance
matrix of the Timoshenko model. It is noted that Cf’j, i=1,23,4,j =1,2,3,4in this stiffness
matrix could be different from those corresponding terms in Equation (15) due to possible
couplings between the transverse shear modes and classical beam deformation modes.

From traditional structural mechanics, we know the following formulas for beams
made of a single isotropic material:

Fy = EAe1, b, = kaGA(2¢e12), F3 = k3GA(2€13)

(21)
My = GJxy1, Mo = Elyk1p, M3 = Elzxq3

with k and k3 the shear correction factors along x, and x3, respectively, modifying the
transverse shear stiffness GA due to the oversimplified constant strain assumption over
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the cross-section made in the traditional structural mechanics. These constitutive relations
can be written in the following matrix form as

Fl EA 0 0 0 0 0 €11
Fz 0 szA 0 0 0 0 2€12
F3 _ 0 0 k3 GA 0 0 0 2613 (22)
Ml 0 0 0 G] 0 0 K11
Mz 0 0 0 0 EIZ 0 K12
M3 0 0 0 0 0 EI3 K13

Equations (21) and (22) imply that the six fundamental deformation modes (extension,
shear in two directions, torsion, and bending in two directions) are completely decoupled.

The diagonal stiffness matrix in Equation (22) is possible under four conditions: (i) the
origin of the cross-sectional coordinates x7, x3 is at the tension center of the cross-section,
(ii) xp, x3 align with the principal bending directions of the beam, (iii) the origin of x, x3
is at the shear center, and (iv) x, x3 align with the principal shear directions of the beam.
Compared to the Euler-Bernoulli beam model, the diagonal stiffness matrix in Equation
(17) only requires conditions (i) and (ii). All four conditions can be satisfied simultaneously
only for idealized cross-sections, where the shear center is the same as the tension center
and the principal shear directions the same as the principal bending directions. In other
words, for most beams, even if the beam is made of a single isotropic material, a diagonal
stiffness matrix for the Timoshenko model is not possible and some of the six fundamental
deformation modes are coupled. Proper offsets, including both positional and orientational
offsets, must be used before we can use the formulas in Equation (21).

Equations (18)—(20) form a system of 18 equations underpinning the Timoshenko
beam model to be solved along with appropriate boundary conditions for 18 unknowns
(six displacement variables, six strain variables, and six stress resultants, all of which are
functions of x; describing the beam reference line). Kinematics and kinetics remain the
same no matter whether the structure is made of isotropic homogeneous materials such as
metals or anisotropic heterogeneous materials such as composites. The only difference is
that the beam stiffness matrix in Equation (20) could be fully populated if the beam is made
of composites. These equations have been implemented in many FEA codes which have
beam elements. Simple beam problems, particularly those with a uniform cross-section,
can be solved analytically using the Timoshenko model.

It is noted that FOSDT is also used to model transverse shear deformation of composite
beams. It is actually a special application of the Timoshenko beam model to composite
laminated beams based on the particular assumptions that the cross-section remains straight
and rigid but not necessarily normal to the deformed reference line.

It is noted that although the Timoshenko beam model was originally developed based
on a set of a priori assumptions, commonly called the Timoshenko assumptions, including
the cross-section being rigid in its own plane, remaining in-plane during deformation,
and experiencing special stress states, these assumptions are not absolutely needed to
derive this model if one can use a more advanced modeling technique such as VAM. Thus,
the Timoshenko beam model presented here only refers to the model which has 18 field
functions of x; governed by the 18 equations in Equations (18)-(20). A beam-like structure
can be analyzed using this model without specifically assuming that the cross-section
should deform in a certain fashion or that the structure should experience a certain stress
state. Thus, calling a structure a Timoshenko beam can cause unnecessary confusion and
should be avoided.

2.6. Vlasov Beam Model

For thin-walled beams with open sections, the so-called constrained warping or
nonuniform warping becomes significant. We need to refine the Euler-Bernoulli beam
model into the Vlasov beam model, including the derivative of the twist rate as one of
its strain variables. The displacement variables remain the same as the Euler-Bernoulli
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beam model, and the strain variables are €11, k11, k12, K13, and Kil with prime denotes the
derivative with respect to x; with the following strain—-displacement relations:

di de, d%iis d%u, , 4%

€11 = 7dx1’K11 = 7dx1’K12 = _Tx% /K13 = Tx% K11 = 7dx%

(23)

The kinetic variables of the Vlasov beam model contain five stress resultants F;, M,
My, M3, M,, with M, denoting the bi-moment conjugate to Kil. These five stress resultants
are governed by the following four equations of equilibrium:

dF, _
chl + pP1 = 0
dM;  d*M,,
_ =0
dx; dx? o
dx? P3 dx;
d*M; dgs

a2 P a7

The constitutive relations of the Vlasov beam model can be expressed using the
following five equations:

F Cijl C?z C?3 Cij4 C?5 €11
M,y Clljz ng C§3 C§4 szjs K11
My p=|Cj5 Gy Ch Cyy Cis| k2 (25)
M cy, Gy C§4 Ciy CZs K13
Mo Cls Cis Cis Cis Cisl Ly

This 5 x 5 symmetric matrix is the stiffness matrix and its inverse is the compliance
matrix for the Vlasov model. It is noted that Cll-’]-,i =1,2,3,4;,j = 1,2,3,4 in this stiffness
matrix could be different from those corresponding terms in Equation (15) due to possible
coupling between x/; and the classical beam deformation modes.

Equations (23)—(25) form a system of 14 equations to be solved along with appropriate
boundary conditions for 14 unknowns (four displacement variables, five strain variables,
and five stress resultants, all of which are functions of x; describing the beam reference
line). Kinematics and kinetics remain the same no matter whether the structure is made of
isotropic homogeneous materials such as metals or anisotropic heterogeneous materials
such as composites. The only difference is that the beam stiffness matrix in Equation (25)
could be fully populated if the beam is made of composites. These equations have been
implemented in some FEA codes which have beam elements. Simple beam problems,
particularly those with a uniform cross-section, can be solved analytically using the Vlasov
model.

3. Common Methods for Deriving the Kirchhoff-Love Model for Composite
Laminated Plates

Except the Cauchy continuum model, the other five models in Section 2 are also called
structural models for beams, plates, and shells. These structural models are often derived
from the Cauchy continuum model using three different methods, including the axiomatic
method, the variational asymptotic method [14], and the formal asymptotic method [15].
Instead of commenting on what has been done using different methods, as is normal in
other review papers, this paper will focus on illustrating the differences of these three
methods to derive the Kirchhoff-Love model for composite laminated plates. This model is
used for illustration because almost every student in mechanics of composite structures
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understands this model and it is the most extensively used model in the composites
industry.

3.1. Kirchhoff-Love Model Derived Using the Axiomatic Method

The axiomatic method is the most used method to model composite plates/beams/shells
because it is relatively straightforward and intuitive. This method starts with some a
priori assumptions for the displacement fields and/or the stress fields containing known
functions of the thickness coordinate (for plates/shells) or the cross-sectional coordinates
(for beams) and unknown functions of the large dimension(s). These assumed expressions
are then usually substituted into a variational statement of the original 3D model (usually
the Cauchy continuum model) to carry out the integration through the small dimensions
to reduce the original 3D formulation into a one-dimensional (1D) formulation in terms
of the beam axis for beams, and 2D formulation for plates/shells. This is essentially the
application of the Kantorovich method [16] to composite structures. When this method is
used to construct the Kirchhoff-Love model for composite laminates, it is also called CLT

To derive CLT for a composite laminate, the axiomatic method first introduces the
so-called Kirchhoff-Love assumptions to express the displacement field as

uy(x1,x2,x3) = Uy (x1,X2) — X3z
uy(x1,X2,x3) = Up(x1,X2) — X313 (26)

uz(x1,x2,x3) = uz(x1,x2)

With these expressions, the transverse normal line is assumed to be infinitely rigid
along its own direction and remain straight and normal to the reference surface during
deformation, which means additional constraints should be introduced to force the plate to
behave in this fashion. In other words, with these assumptions, the structure is artificially
made stiffer. Here, a comma denotes derivatives with respect to the in-plane coordinates,
ie, fa = %. Here and throughout the rest of this chapter, Greek indices «, §, .. .denote
1 or 2 and Latin indices denote 1, 2, or 3. Summation convention is applied to repeated
indices.

Substituting the displacement assumptions in Equation (26) into the 3D strain defini-
tions in Equation (1) using Equation (5), we obtain

e11(x1, X2, X3)= ﬁl 1 — X3Uz11 = €11 + X3K11

(
(
(
(

€13(X1,X2,X3)=

E€22(X1

27
2812 ( )

, X2, X3)= Upp — X31320 = €20 + X3k
, X2, X3)= U1 + Upq — 2X313 17 = 2€12 + X3K12

€23(x1, X2, x3) = €33(X1,X2,x3) =0

X1

Because the transverse shear and normal strains (e13, €23, €33) vanish, the Kirchhoff-
Love assumptions actually force a plane strain state to the composite laminates.

Next, the axiomatic method further adopts the plane stress assumption by assuming
that only in-plane stresses (071, 012, 022) exist in each layer and transverse shear and normal
stresses (013, 023, 033) vanish. This assumption agrees well with the exact solution if the
thickness of the laminate is much smaller than the in-plane dimensions. Then, the 3D
constitutive relations in Equation (3) are reduced to be

Qu Q2 Qs
oe= Q12 Qo Qe = Qe (28)
Qe Q26 Qes
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with Q as the plane stress reduced stiffness matrix and

011 €11
O = (022 p,€ = €2
012 2e1p

Next, the axiomatic method proceeds using either the Newtonian method or the
variational method to derive the equilibrium equations. The more common approach
is to use the variational method because it is more systematic and directly applicable to
higher-order models.

The principle of virtual work of the plate structure can be stated as

/5 SU,pdS = 6W (29)

with Upp as the 2D strain energy density defined over the reference surface, denoted using
S and J as the variation symbol in calculus of variations. The 2D strain energy density is
the integration of the 3D strain energy density over the thickness such that

thp = 2 {{ofe.)) (30)

Double angle brackets indicate integration through the thickness, i.e., ((f)) = [, fdxs.
The virtual work 6W due to applied loads can be expressed as

SW = /S(<(fi5ui>> + Bidus (xl,xz,—z> + Tou; <x1,x2,g>) dS—i—/(}((ai(Sui»dQ (31)

Here, f; denotes the body force per unit volume, f; the traction on the bottom surface,
T; the traction on the top surface, «; the traction on the lateral surface, and () the boundary
curve. Substituting the 3D displacement field expressed in Equation (26) into Equation (31),
we have

SW = /S (pidTl; + Gu0Py)dS + /Q (P61 + Qu6Dy )dO) (32)

with

pi= (L)) + Bt s = o (B2 =) — ((xafo)) 2 = 5 (1 — Ba) + (3o}
Pi= {{ad), @1 = —{{xsm), @2 = ((xa1))

and ®; = u3p and ®, = —13; due to the axiomatic assumption that the transverse normal
remains normal to the deformed reference surface. Here, we actually provided a systematic
way to obtain the distributed forces p;(x1, x2) and moments g, (x1, x3) along the reference
surface, and the distributed forces P; and moments Q, along the boundary curve in terms
of the body forces and surface tractions applied on the original 3D structure.

Substituting the 3D stress field expressed in Equation (28) into Equation (30), we have

= 3{{efe)) = () o

The in-plane strains &, can be expressed in terms of the plate strains and curvatures as

(33)

€ = € + X3K
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with e = |e17 € 2€12]| and x = |Kq1 Ky 2k1p]. Substituting the above expressions into
Equation (34), we have

o= () (%) (G- {0 A e
with A = ((Q)), B = ((x3Q)), D = ((x3Q)). It is noted that B is symmetric because Q is

symmetric for composite laminates.
Carrying out the partial derivatives of Upp in Equation (35), we obtain

=BTe+Dx=M (36)

Moo _ 4 +Bx =N, Ip
de oK

which is the same as the constitutive relations in Equation (7).

Substituting Equations (32) and (35) into Equation (29), following the usual procedure
of calculus of variations, one can derive the equilibrium equations in Equation (6) as the
Euler-Lagrange equations and corresponding boundary conditions. Equation (29) can also
be used directly to formulate numerical solutions of the Kirchhoff-Love plate model.

The axiomatic method can be easily extended to develop other plate/shell models.
One just needs to adjust the assumptions (different thickness functions, and unknown
functions) for the displacements and/or the stresses, and decide whether these assump-
tions are applied to the entire structure or each individual layer. One can refer to many
aforementioned review articles and the references listed in those articles to obtain a more
comprehensive appreciation of the axiomatic method [3-13]. The following observations
can be made regarding this method:

This method must start with assumptions for the displacements and/or the stresses.
These assumptions could be contradictory to each other. For example, CLT based on
this method actually assumes both plane strain and plane stress, which cannot co-exist
in general.

e  This method does not provide a rational way to determine the loss of accuracy. For
example, Kirchhoff assumptions make CLT stiffer than the original 3D model, while
the plane stress assumptions make it softer. The combined effects of both are unknown
in comparison to the original 3D model. The next refinement, FOSDT, corresponding
to the Reissner-Mindlin model, derived by this method could actually be less accurate
than CLT for some cases.

e  This method has difficulty in directly satisfying the traction conditions on the top
and bottom surfaces, and the continuity conditions for transverse shear and normal
stresses on the interface between different layers. A mixed formulation using both
displacements and stresses as variables is needed.

e  Other than CLT and FOSDT, other models are different from what has been commonly
implemented in commercial finite element packages, preventing their practical use in
dealing with realistic structures using commercial finite element packages with readily
available elements corresponding to the common engineering models presented in
this paper.

3.2. Kirchhoff-Love Model Derived Using the Variational Asymptotic Method

As shown in the previous subsection, the 2D model corresponding to CLT is the
Kirchhoff-Love plate model. Although CLT and the Kirchhoff-Love model were originally
developed based on a set of ad hoc assumptions as aforementioned, such assumptions are
not absolutely needed. In fact, one can use a more advanced modeling technique such as
VAM to derive the Kirchhoff-Love model without these assumptions.
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Considering laminates made of homogeneous layers, the linear elastic behavior is
governed by the Cauchy continuum model. To construct a plate model, we need to first
express the 3D displacements in terms of 2D plate displacements as:

up(x1,x0,x3) = U1 (x1,X2) — X3Uz1 + Wi (X1, X2, X3)
up(x1,x2,x3) = Up(x1,X2) — X313 + Wa (X1, X2, X3) (37)
us (xll X2, x3) = ﬁ3('7(1/ x2) + w3 (xll X2, x3)

Here, u;(x1,x2,x3) are 3D displacements, while 7;(x1, xp) are plate displacements
which are functions of x1, x, only. We also introduce 3D unknown fluctuating functions
(also commonly called warping functions in structural mechanics) w; (x1, X2, x3) to describe
the information of 3D displacements which cannot be described by the simpler Kirchhoff-
Love kinematics. Note that the displacement expressions in Equation (37) are not based
on the Kirchhoff assumptions we have previously discussed. It can be considered as a
change of variables to express the 3D displacements in terms of the displacement variables
of the Kirchhoff-Love model and fluctuating functions. The Kirchhoff assumptions are
equivalent to assuming no fluctuation (i.e., w; = 0). Since we consider that the Cauchy
continuum model is our true model, we construct the Kirchhoff-Love plate model as an
approximation to the true model. To this end, we need to define the plate displacements in
terms of 3D displacements. A natural choice is:

hiz(x1,x2) = ((u3)), Mg (x1,x2) = ((Ua(x1,%2,%3))) + ({X3)) U3, (38)

which implies the following constraints on the fluctuating functions:

{(wi)) =0 (39)

Note that if the origin of the thickness coordinate is at the middle of the plate thick-
ness, Equation (38) actually defines the plate displacements to be the average of the 3D
displacements.

Then, the 3D strain field can be obtained as

€11= €11 + X3K11 + W11

2e1p= 2€12 + 2x3K17 + Wi+ wa
€20= €22 + X3Kp2 + Wo2

2e13= w13+ w3

2ep3= W3 + W32

€33= W33
The 3D strain field can also be written in the following matrix form:

€e = €+ X3K + Lyw| o €1 = W' + €aW3, (40)

with w) = |wy wy] T w= lwy wy ws] T e = |2¢e13 2¢ep3 €33] T and

10 00 1 0
11: 0 1 ,12: 1 0 ,€1 = 0 , 62 = 1 (41)
00 01 0 0

The linear elastic problem of the composite laminate is governed by the variational
statement in Equation (29) with the potential energy due to applied loads given in
Equation (31) and double the 2D strain energy density expressed in the following form as

- {({F16 <)



Materials 2024, 17, 446

17 of 23

In view of Equation (31), the work done by applied loads in the original 3D structure
can be obtained as

W :/S Pi§ﬁi + 6]15ﬁ3,2 — q25ﬁ3,1d5 + /Q P;ou; + Qléﬁglz — Qz(sﬁg,,ldﬂ

h h
+ /S (((ﬂ&w,>> + Tjéwi <X1, X2, 2) + ﬁiéwi (xl, X2, —2> ) ds + /Q<<1xl(5wl>>d0
(43)
Substituting Equations (42) and (43) into Equation (29), dropping smaller terms ac-
cording to VAM, we have

0= Js (S<<(e + x35) Ce (€ + x3%) + wTCrw’ +2(e + xgx)TCEtw’>>dS

_ _ - _ - /. (44)
— fS pi(su,’ + q15u3,2 — q25u3,1d5 — fQ Péu; + Q15u3,2 — Q25u3,1dﬂ

Minimizing this energy with respect to the fluctuating function w; along with the
constraints in Equation (39), we reach the following Euler-Lagrange equations:

!
( (€ + x3x) Cor + w'CT ) —A (45)

where A contains three Lagrange multipliers enforcing the constraints in Equation (39). The
boundary conditions on the top and bottom surfaces are

(€ + x3K)TCgt +w'Cr=0 (46)

We can conclude that the above equation should be satisfied at every point through
the thickness and solve for w’ as

w' = —(e+ x36) CaC; 7! (47)

w; can be solved by simply integrating through the thickness along with the interlaminar
displacement continuity.
Substituting the solved fluctuating functions into Equation (44), we have

2Uy = <<(€+X3K)TQ(€+X3K)>> = {E}T[;T g] {i} (48)

Replacing the strain energy term in Equation (44) with that in Equation (48), we
will obtain a 2D variational statement exactly the same as that obtained in the previous
subsection, which leads to the same equilibrium equations and boundary conditions.

This strain energy along with the work done by applied loads can be used to solve the
2D plate problem to obtain %;, €, x. The 3D displacements can be obtained after we have
solved for w;.

up(x1,x2,x3) = 1 (x1,x2) — x3l3,1 + w1 (x1, X2, X3)
up(x1, X2, x3) = Ua(x1,X2) — X3lz2 + W (x1, X2, X3) (49)
uz(x1,x2,x3) = u3(x1,x2) + w3(x1, 2, x3)

It is clear that the transverse normal does not remain rigid and normal according to
the Kirchhoff-Love assumptions in CLT. Instead, the transverse normal can be deformed
according to w;.

The 3D strains can be obtained after neglecting the higher-order terms w; , which are
not contributing to the strain energy captured by the Kirchhoff-Love plate model:

€ =€+ x3k, 6 = —(e+ x3;<)TC€tCt_1 (50)

Clearly, the strain field is not in-plane as is traditionally assumed using the Kirchhoff
assumptions in CLT. Instead, transverse shear and normal strains could both exist.
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The 3D stresses can be obtained by directly using the above strain field along with
Hooke’s law of the original 3D elasticity theory as

ve = Q(e + x3K) (51)

and transverse shear and normal stresses vanish. It can be observed that the Kirchhoff-Love
model derived using VAM exhibits a plane stress state. However, this is not assumed a
priori as in the axiomatic method but derived by using VAM instead.

Comparing to the CLT derived using the axiomatic method, we observe that VAM does
not require a priori assumptions such as the Kirchhoff-Love assumptions and plane stress
assumption. The displacement field, strain field, and stress field are completely compatible
with each other. The CLT derived by VAM features layerwise quadratic distributions of
the 3D displacements, layerwise linear distributions for the transverse shear, and normal
strains. As shown in [17-19], VAM can be used to derive the Reissner-Mindlin model with
the following features:

o  The transverse displacement is a piecewise quadratic function of x3, and the in-plane
displacements are piecewise cubic functions of x3.

e  Thein-plane stresses and strains are piecewise cubic functions of x3, and the transverse
shear stresses and strains are piecewise quadratic functions of x3, and the transverse
normal stress and strain are piecewise cubic functions of x3.

e The 3D displacements and stresses satisfy both the displacement and traction continu-
ity on the interfaces.

The 3D stresses satisfy traction conditions on the top and bottom surfaces.

The 3D stresses satisfy the first two equations of the 3D equilibrium asymptotically
up to the second order and the third equation in the sense of minimal energy loss in a
Reissner-Mindlin model.

The accuracy of the Reissner-Mindlin model derived using VAM is almost the same as
fourth-order zigzag theories or lower-order layerwise theories for regular laminates. Such
a theory can easily satisfy many of the needs mentioned in [13] for refined theories beyond
the Kirchhoff-Love model and the Reissner-Mindlin model if such models were derived
using the axiomatic method.

VAM was originally invented by Berdichevsky [20] and applied and popularized by
Hodges to composite structures [18,21-56]. Another unique feature of the work by Hodges
and his co-workers is that those structure models they developed are geometrically exact,
which is far beyond the von Karman-type nonlinearity commonly used in those models
developed using the axiomatic method.

Like the two other methods, VAM also has some drawbacks. First, it relies on asymp-
totical analysis of functionals, which is less intuitive than the axiomatic method and FAM.
Second, the second-order asymptotically correct energy is not in the form of a Reissner—
Mindlin model; some transformation, which might lose accuracy, needs to be employed.
Lastly, it is becoming much harder to derive higher-order models. Fortunately, higher-order
models are not frequently used in practical structural design and analysis.

3.3. Kirchhoff-Love Model Derived Using the Formal Asymptotic Method

The formal asymptotic method (FAM) is another method commonly used to derive
models for composite structures [15,57-61]. The basic idea is to expand all the field vari-
ables asymptotically and solve the governing different equations or the corresponding
variational statement asymptotically according to different orders. The asymptotic ex-
pansion is performed in terms of the small parameter ({), which is used to describe the
smallness of a certain structural dimension such as the thickness with respect to the in-plane
dimensions for composite laminated plates. In particular, we scale the thickness coordinate
for a composite laminated plate so that
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_ % of _109f

P T T

FAM starts with the assumption that the displacement field can be expanded into an
asymptotic series such that

(52)

ui=u® + Ll () + 2u? (xy) + 0(8) (53)

Here, FAM assumes u&o) =0, uéo) = Uéo) (x1,x2). It is noted that the superscripts here

indicate the asymptotic order of the corresponding quantities, not powers.
Substituting Equation (53) into Equation (1) and considering Equation (52), we obtain

e =ey) +¢el) +0(2) (54)
with 0 0
©_ .0 _1[ © b oug (0) _ dug
fap= 0rfas = 5 <v3r“ "o >’€33 ~ oy %)
@) 2)
w_loa o). _ 1 @ ou (1) _ duy
€4p= 3 (uw +”,s,a>'€a3 =5 (”&a + 35 €y = ™ (56)

FAM continues to assume that there is no need to expand the elasticity tensor Cjjy; into
an asymptotic series, which implies that we can obtain the following;:

o= o) + o +0(¢?) (57)

with o 0 ) .
Ui(j )= Cz’jkﬁﬁz)r‘fé ) = Ciuely

Substituting the asymptotic expansion into Equation (30), we can obtain the asymptotic
expansion of the 2D strain energy density up to the second order as

Unp = UL + C2USy + UL + O(§4> °8)
0= 2<(g<0>) e<0>> (59)
11 T T
Uép): 2<( (1)) ¢ 4 (0(0)> e(1)> (60)
T T T
U%): ;< (0(1)) Coan (U(o)> @ 4 (0(2)) 8(0)> (61)

Here, ((-)) = ¢ [ -dys = {().
To expand the virtual work asymptotically, FAM assumes the following asymptotic
orders for body forces and tractions:

2 2 3
far~vag~C fa~vaz~Bu~Ta~C B3~~~
The virtual work can be written as

oW = [5(((fuors + f005" ) ) + Baduil (=4) + (s + m)o0s” + mowg (4)) ds+

f0<<“a5u£¢1) + 0635vgo)>>d0 + O(€4)
(62)
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0) _

The first-order variational statement is U, = 0, which can be used to conclude

¢ =0,060 =0 (63)
One can obtain ufl) as
utgtl) = Ulgél) (xl/ x2) - y3vg)02/ ugl) = Ugl) (x1/ x2) (64)

which is the same as those in Equation (26) given by the Kirchhoff-Love assumptions after
some simple changes of variables.

Based on the first-order solution in Equation (64), we can write out the second-order
solution as

ud) = o) (11, %) — yaoll) + wa(x1, %2, y5),u? = 07

x1,%2) + ws(x1,%2,¥3)  (65)
Substituting Equation (65) into Equation (56), we obtain the first-order strains as

w_Low, oy 0 (1) _ 1w« qy_ dws
Szxﬁ* 2 (vzx,ﬁ +vﬁ,o¢> y3v3/aﬁr €3 = 7 ay3 ,€33 = ay3

(66)

In view of Equation (63), we can conclude

T
uly = o,ul = ;<(a<1)) g<l>>

If we let

and .

o = B okl s =
then the second order of the virtual work in Equation (62) is exactly the same as
Equation (32), and the variation in the total potential energy of the second order is exactly
the same as that derived by VAM in Equation (44). This further implies that the warp-
ing functions solved from FAM are exactly the same as those solved by VAM given in
Equation (47). The corresponding macroscopic plate model, CLT, remains the same. Since,

(1) (0)

at this stage, we have only solved v, ’, 03, the 3D displacements, strains, and stresses can
be computed in the same way if we do not include the higher-order 2D functions v,&z), vél)
to be solved later in the macroscopic 2D plate model of the next asymptotic expansion. To
reproduce the expressions exactly the same, we need to set { = 1, and y3 becomes x3.

Although both VAM and FAM provide the same Kirchhoff-Love model, we can
observe that FAM requires more careful set up of the asymptotic order and lengthier
derivation. Also, it introduces more 2D functions to construct the Kirchhoff-Love model
and there are no relations of the 2D functions for different orders. In fact, each asymptotic
expansion corresponds to a macroscopic plate model with five new 2D functions which
can be solved recursively, as shown in Ref. [15]. These models are not compatible with
those plate/shell elements in off-the-shelf commercial FEA codes such as Abaqus, Ansys,
or Nastran.

4. Future Directions for Modeling of Composite Structures

The author believes that it is unnecessary to go beyond the classical structural models
as long as the models are constructed without a priori assumptions. These structural
models constructed by VAM are sufficient for most engineering practices as long as the
basic requirements are satisfied, such as the plate/shell being thin and the beam being
slender. To obtain better predictions than these models usually requires more sophisticated
models with not much computational savings in comparison to the original 3D model,
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particularly in view of the fact that we need to develop special-purpose finite element codes
for those sophisticated models. The model setup time and loss of versatility in modeling
realistic structures quickly outweigh the insignificant computing speed-up by those models
which are more sophisticated than the classical models introduced in this paper.

As far as the future directions are concerned, the global structural analysis using the
classical structural models is already implemented in many commercial finite element
packages. Not much research to be carried out there; instead, we need to convince those
codes to open up to accept fully populated stiffness matrices, or tangent stiffness matrix for
nonlinear behavior.

Since VAM does not rely on a priori assumptions, which are usually heavily dependent
on the particular structure, such as laminates, these approach can be easily extended to
other types of structures.

Many linear problems have been worked out by Hodges and his co-workers and the
advantages of such models are clearly shown [18,21-56]. It is time to explore using VAM
to solve nonlinear static or dynamic problems such as local buckling, damage and failure
analysis, simulation of manufacturing processes, multiscale design, dynamic properties for
anisotropic heterogeneous materials and structures, and transport properties needed for
composites manufacturing. All these directions are actively pursued by the author and his
co-workers.

5. Conclusions

Modeling of composite structures is reviewed in terms of the modeling methods,
including the axiomatic methods VAM, and FAM. Their differences were highlighted
through deriving CLT. The advantages of VAM was compared with respect to the axiomatic
method and VAM. VAM was invented by Berdichevsky and was applied and popularized
by Hodges and his co-workers. Because of his work, a special area of research, constitutive
modeling of structures, is established and should be more vigorously pursued. Classical
structural models constructed by VAM are better than most high-order equivalent single-
layer models, zigzag models, or layerwise models developed using the axiomatic methods.
The practical advantages of classical structural models already present in commercial
finite element packages cannot be emphasized enough because those are the tools used by
engineers everyday. Several promising directions for future research are pointed out.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Yu, W. A Review of Modeling of Composite Structures. Available online: https:/ /arc.aiaa.org/doi/10.2514/6.2023-0764 (accessed
on 13 January 2024).

2. Hodges, D.H. Nonlinear Composite Beam Theory; ALIAA: Washington, DC, USA, 2006.

3. Grigolyuk, E.; Kogan, F.A. State of the Art of the Theory of Multilayer Shells. Prikl. Mekhanika 1972, 8, 3—17. [CrossRef]

4.  Leissa, A.W. A Review of Laminated Composite Plate Buckling. Appl. Mech. Rev. 1987, 40, 575-591. [CrossRef]

5. Grigolyuk, E.; Kulikov, G.M. General Direction of Development of the Theory of Multilayered Shells. Mekhanika Kompoz. Mater.
1988, 24, 287-298. [CrossRef]

6. Kapania, R.K; Raciti, S. Recent Advances in Analysis of Laminated Beams and Plates. AIAA . 1989, 27, 923-946. [CrossRef]

7. Noor, A.K,; Burton, W.S. Assessment of Shear Deformation Theories for Multilayered Composite Plates. Appl. Mech. Rev. 1989, 41,
1-13. [CrossRef]

8.  Carrera, E. Theories and Finite Elements for Multilayered, Anisotropic, Composite Plates and Shells. Arch. Comput. Methods Eng.
2002, 9, 87-140. [CrossRef]

9.  Carrera, E. Historical Review of Zig-Zag Theories for Multilayered Plates and Shells. Appl. Mech. Rev. 2003, 56, 287-308.

[CrossRef]


https://arc.aiaa.org/doi/10.2514/6.2023-0764
https://doi.org/10.1007/BF00892606
https://doi.org/10.1115/1.3149534
https://doi.org/10.1007/BF00608158
https://doi.org/10.2514/3.10202
https://doi.org/10.1115/1.3152418
https://doi.org/10.1007/BF02736649
https://doi.org/10.1115/1.1557614

Materials 2024, 17, 446 22 of 23

10.
11.
12.
13.
14.
15.

16.
17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Khandan, R.; Noroozi, S.; Sewell, P; Vinney, J. The Development of Laminated Composite Plate Theories: A Review. |. Mater. Sci.
2012, 47,5901-5910. [CrossRef]

Liew, KM.,; Pan, Z.Z.; Zhang, L.W. An Overview of Layerwise Theories for Composite Laminates and Structures: Development,
Numerical Implementation and Application. Compos. Struct. 2019, 216, 240-259. [CrossRef]

Li, D. Layerwise Theories of Laminated Composite Structures and Their Applications: A Review. Arch. Comput. Methods Eng.
2021, 28, 577-600. [CrossRef]

Carrera, E.; Elishakoff, I.; Petrolo, M. Who Needs Refined Structural Theories? Compos. Struct. 2021, 264, 113671. [CrossRef]
Berdichevsky, V.L. Variational Principles of Continuum Mechanics; Springer: Berlin/Heidelberg, Germany, 2009; Volume 1-2.

Kim, J.S. An Asymptotic Analysis of Anisotropic Heterogeneous Plates with Considerations of End Effects. J. Mech. Mater. Struct.
2009, 4, 1535-1553. [CrossRef]

Kantorovich, L.V.; Krylov, V.I. Approximate Methods of Higher Analysis, 3rd ed.; Interscience: New York, NY, USA, 1958.

Yu, W. Mathematical Construction of a Reissner-Mindlin Plate Theory for Composite Laminates. Int. J. Solids Struct. 2005, 42,
6680-6699. [CrossRef]

Yu, W.; Kim, ].S.; Hodges, D.H.; Cho, M. A Critical Evaluation of Two Reissner-Mindlin Type Models for Composite Laminated
Plates. Aerosp. Sci. Technol. 2008, 12, 408-417. [CrossRef]

Demasi, L.; Yu, W. Assess the Accuracy of the Variational Asymptotic Plate and Shell Analysis (VAPAS) Using the Generalized
Unified Formulation (GUF). Mech. Adv. Mater. Struct. 2013, 20, 227-241. [CrossRef]

Berdichevsky, V.L. Variational-asymptotic Method of Constructing a Theory of Shells. . Appl. Math. Mech. 1979, 43, 664-687.
[CrossRef]

Danielson, D.A.; Hodges, D.H. Nonlinear Beam Kinematics by Decomposition of the Rotation Tensor. J. Appl. Mech. 1987, 54,
258-262. [CrossRef]

Danielson, D.A.; Hodges, D.H. A Beam Theory for Large Global Rotation, Moderate Local Rotation, and Small Strain. J. Appl.
Mech. 1988, 55, 179-184. [CrossRef]

Hodges, D.H. A Review of Composite Rotor Blade Modeling. AIAA J. 1990, 28, 561-565. [CrossRef]

Hodges, D.H. A Mixed Variational Formulation based on Exact Intrinsic Equations for Dynamics of Moving Beams. Int. J. Solids
Struct. 1990, 26, 1253-1273. [CrossRef]

Rehfield, L.W.; Atilgan, A.R.; Hodges, D.H. Nonclassical Behavior of Thin-Walled Composite Beams with Closed Cross Sections.
J. Am. Helicopter Soc. 1990, 35, 42-50. [CrossRef]

Atilgan, A R.; Hodges, D.H. A Unified Nonlinear Analysis for Nonhomogeneous, Anisotropic Beams with Closed Cross Sections.
AIAA ]. 1991, 29, 1990-1999. [CrossRef]

Atilgan, A.R.; Hodges, D.H.; Fulton, M.V. Nonlinear Deformation of Composite Beams: Unification of Cross-Sectional and
Elastica Analyses. Appl. Mech. Rev. 1991, 44 Pt 2, S9-S15. [CrossRef]

Hodges, D.H.; Atilgan, A.R. Asymptotical Modeling of Initially Curved and Twisted Composite Rotor Blades. In Proceedings of
the American Helicopter Society International Specialists Meeting on Rotorcraft Basic Research, Atlanta, GA, USA, 25-27 March
1991; pp. 47.1-47.14.

Hodges, D.H.; Atilgan, A.R.; Cesnik, C.E.S.; Fulton, M.V. On a Simplified Strain Energy Function for Geometrically Nonlinear
Behaviour of Anisotropic Beams. Compos. Eng. 1992, 2, 513-526. [CrossRef]

Atilgan, A.R.; Hodges, D.H. On the Strain Energy of Laminated Composite Plates. Int. ]. Solids Struct. 1992, 29, 2527-2543.
[CrossRef]

Hodges, D.H.; Atilgan, A.R.; Danielson, D.A. A Geometrically Nonlinear Theory of Elastic Plates. J. Appl. Mech. 1993, 60, 109-116.
[CrossRef]

Hodges, D.H.; Lee, BW.; Atilgan, A.R. Application of the Variational-Asymptotical Method to Laminated Composite Plates. In
Proceedings of the 33rd Structures, Structural Dynamics and Materials Conference, Dallas, TX, USA, 13-15 April 1992; ATAA:
Reston, VA, USA, 1992; pp. 514-524.

Cesnik, C.E.S.; Hodges, D.H. Variational-Asymptotical Analysis of Inititally Curved and Twisted Composite Beams. Appl. Mech.
Rev. 1993, 46 Pt 2, 5211-5220. [CrossRef]

Cesnik, C.E.S.; Hodges, D.H. Variational-asymptotical Analysis of Initially Twisted and Curved Composite Beams. Int. |. Eng.
Anal. Des. 1994, 1, 177-187.

Cesnik, C.E.S.; Hodges, D.H. Stiffness Constants for Composite Beams Including Large Initial Twist and Curvature Effects. Appl.
Mech. Rev. 1995, 48 Pt 2, S61-567. [CrossRef]

Cesnik, C.E.S,; Sutyrin, V.G.; Hodges, D.H. Refined Theory of Twisted and Curved Composite Beams: The Role of Short-
Wavelength Extrapolation. Int. ]. Solids Struct. 1996, 33, 1387-1408. [CrossRef]

Sutyrin, V.G.; Hodges, D.H. On Asymptotically Correct Linear Laminated Plate Theory. Int. ]. Solids Struct. 1996, 33, 3649-3671.
[CrossRef]

Cesnik, C.E.S.; Hodges, D.H.; Sutyrin, V.G. Cross-Sectional Analysis of Composite Beams Including Large Initial Twist and
Curvature Effects. AIAA J. 1996, 34, 1913-1920. [CrossRef]

Cesnik, C.E.S.; Hodges, D.H. VABS: A New Concept for Composite Rotor Blade Cross-Sectional Modeling. J. Am. Helicopter Soc.
1997, 42, 27-38. [CrossRef]


https://doi.org/10.1007/s10853-012-6329-y
https://doi.org/10.1016/j.compstruct.2019.02.074
https://doi.org/10.1007/s11831-019-09392-2
https://doi.org/10.1016/j.compstruct.2021.113671
https://doi.org/10.2140/jomms.2009.4.1535
https://doi.org/10.1016/j.ijsolstr.2005.02.049
https://doi.org/10.1016/j.ast.2007.09.005
https://doi.org/10.1080/15376494.2011.584150
https://doi.org/10.1016/0021-8928(79)90157-6
https://doi.org/10.1115/1.3173004
https://doi.org/10.1115/1.3173625
https://doi.org/10.2514/3.10430
https://doi.org/10.1016/0020-7683(90)90060-9
https://doi.org/10.4050/JAHS.35.42
https://doi.org/10.2514/3.10829
https://doi.org/10.1115/1.3121379
https://doi.org/10.1016/0961-9526(92)90040-D
https://doi.org/10.1016/0020-7683(92)90007-G
https://doi.org/10.1115/1.2900732
https://doi.org/10.1115/1.3122638
https://doi.org/10.1115/1.3005084
https://doi.org/10.1016/0020-7683(95)00109-3
https://doi.org/10.1016/0020-7683(95)00208-1
https://doi.org/10.2514/3.13325
https://doi.org/10.4050/JAHS.42.27

Materials 2024, 17, 446 23 of 23

40.

41.

42.

43.

44.

45.

46.

47.
48.

49.
50.

51.

52.

53.
54.

55.

56.

57.

58.

59.

60.

61.

Volovoi, V.V.; Hodges, D.H.; Berdichevsky, V.L.; Sutyrin, V.G. Dynamic Dispersion Curves for Non-Homogeneous, Anisotropic
Beams with Cross-Sections of Arbitrary Geometry. J. Sound Vib. 1998, 215, 1101-1120. [CrossRef]

Hodges, D.H.; Harursampath, D.; Volovoi, V.V.; Cesnik, C.E.S. Non-classical Effects in Non-linear Analysis of Pretwisted
Anisotropic Strips. Int. . Non-Linear Mech. 1999, 34, 259-277. [CrossRef]

Volovoi, V.V.; Hodges, D.H.; Berdichevsky, V.L.; Sutyrin, V. Asymptotic Theory for Static Behavior of Elastic Anisotropic I-beams.
Int. . Solids Struct. 1999, 36, 1017-1043. [CrossRef]

Popescu, B.; Hodges, D.H. Asymptotic Treatment of the Trapeze Effect in Finite Element Cross-Sectional Analysis of Composite
Beams. Int. |. Non-Linear Mech. 1999, 34, 709-721. [CrossRef]

Harursampath, D.; Hodges, D.H. Asymptotic Analysis of the Non-Linear Behavior of Long Anisotropic Tubes. Int. J. Non-Linear
Mech. 1999, 34, 1003-1018. [CrossRef]

Popescu, B.; Hodges, D.H. On Asymptotically Correct Timoshenko-like Anisotropic Beam Theory. Int. J. Solids Struct. 2000, 37,
535-558. [CrossRef]

Popescu, B.; Hodges, D.H.; Cesnik, C.E.S. Obliqueness Effects in Asymptotic Cross-Sectional Analysis of Composite Beams.
Comput. Struct. 2000, 76, 533-543. [CrossRef]

Volovoi, V.V.; Hodges, D.H. Theory of Anisotropic Thin-walled Beams. . Appl. Mech. 2000, 67, 453-459. [CrossRef]

Volovoi, V.V.; Hodges, D.H.; Cesnik, C.E.S.; Popescu, B. Assessment of Beam Modeling Methods for Rotor Blade Applications.
Math. Comput. Model. 2001, 33, 1099-1112. [CrossRef]

Volovoi, V.V.; Hodges, D.H. Single-and Multi-Celled Composite Thin-Walled Beams. AIAA ]. 2002, 40, 960-965. [CrossRef]

Yu, W.; Hodges, D.H.; Volovoi, V.V. Asymptotic Construction of Reissner-like Models for Composite Plates with Accurate Strain
Recovery. Int. ]. Solids Struct. 2002, 39, 5185-5203. [CrossRef]

Yu, W.; Hodges, D.H.; Volovoi, V.V. Asymptotic Generalization of Reissner-Mindlin Theory: Accurate Three-dimensional Recovery
for Composite Shells. Comput. Methods Appl. Mech. Eng. 2002, 191, 5087-5109. [CrossRef]

Yu, W,; Hodges, D.H.; Volovoi, V.V. Asymptotically Accurate 3-D Recovery from Reissner-like Composite Plate Finite Elements.
Comput. Struct. 2003, 81, 439—454. [CrossRef]

Hodges, D.H. Contact Stress from Asymptotic Reissner-Mindlin Plate Theory. AIAA |. 2003, 41, 329-331. [CrossRef]

Yu, W.; Hodges, D.H. Elasticity Solutions versus Asymptotic Sectional Analysis of Homogeneous, Isotropic, Prismatic Beams. J.
Appl. Mech. 2004, 71, 15-23. [CrossRef]

Yu, W.; Hodges, D.H. An Asymptotic Approach for Thermoelastic Analysis of Laminated Composite Plates. |. Eng. Mech. 2004,
130, 531-540. [CrossRef]

Yu, W.; Hodges, D.H.; Volovoi, V.V.; Fuchs, E.D. The Vlasov Theory of the Variational Asymptotic Beam Sectional Analysis.
Thin-Walled Struct. 2005, 43, 1493-1511. [CrossRef]

Buannic, N.; Cartraud, P. Higher-order Asymptotic Model for a Heterogeneous Beam, Including Corrections Due to End Effects.
In Proceedings of the 41st Structures, Structural Dynamics and Materials Conference, Atlanta, GA, USA, 3-6 April 2000; AIAA:
Reston, VA, USA, 2000.

Buannic, N.; Cartraud, P. Higher-order Effective Modeling of Periodic Heterogeneous Beam, I: Asymptotic Expansion Method.
Int. . Solids Struct. 2001, 38, 7139-7161. [CrossRef]

Manevitch, L.I; Andrianov, I.V.; Oshmyan, V.G. Mechanics of Periodically Heterogeneous Structures; Springer: Berlin/Heidelberg,
Germany, 2002.

Kim, J.S.; Cho, M.; Smith, E.C. An Asymptotic Analysis of Composite Beams with Kinematically Corrected End Effects. Int. ].
Solids Struct. 2008, 45, 1954-1977. [CrossRef]

Lee, J.; Kim, J.S.; Cho, M. An Asymptotic Method-based Composite Plate Model Considering Imperfect Interfaces. Int. J. Solids
Struct. 2020, 190, 258-270. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://doi.org/10.1006/jsvi.1998.1682
https://doi.org/10.1016/S0020-7462(98)00023-7
https://doi.org/10.1016/S0020-7683(97)00341-7
https://doi.org/10.1016/S0020-7462(98)00049-3
https://doi.org/10.1016/S0020-7462(98)00070-5
https://doi.org/10.1016/S0020-7683(99)00020-7
https://doi.org/10.1016/S0045-7949(99)00120-0
https://doi.org/10.1115/1.1312806
https://doi.org/10.1016/S0895-7177(00)00302-2
https://doi.org/10.2514/2.1733
https://doi.org/10.1016/S0020-7683(02)00410-9
https://doi.org/10.1016/S0045-7825(02)00440-1
https://doi.org/10.1016/S0045-7949(03)00011-7
https://doi.org/10.2514/2.1953
https://doi.org/10.1115/1.1640367
https://doi.org/10.1061/(ASCE)0733-9399(2004)130:5(531)
https://doi.org/10.1016/j.tws.2005.02.003
https://doi.org/10.1016/S0020-7683(00)00422-4
https://doi.org/10.1016/j.ijsolstr.2007.11.005
https://doi.org/10.1016/j.ijsolstr.2019.11.012

	Introduction 
	Introduction to Classical Structural Models 
	Cauchy Continuum Model 
	Kirchhoff–Love Plate/Shell Model 
	Reissner–Mindlin Plate/Shell Model 
	Euler–Bernoulli Beam Model 
	Timoshenko Beam Model 
	Vlasov Beam Model 

	Common Methods for Deriving the Kirchhoff–Love Model for Composite Laminated Plates 
	Kirchhoff–Love Model Derived Using the Axiomatic Method 
	Kirchhoff–Love Model Derived Using the Variational Asymptotic Method 
	Kirchhoff–Love Model Derived Using the Formal Asymptotic Method 

	Future Directions for Modeling of Composite Structures 
	Conclusions 
	References

