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Abstract: The t-J model remains an indispensable construct in high-temperature superconductivity
research, bridging the gap between charge dynamics and spin interactions within antiferromagnetic
matrices. This study employs the multiple Davydov Ansatz method with thermo-field dynam-
ics to dissect the zero-temperature and finite-temperature behaviors. We uncover the nuanced
dependence of hole and spin deviation dynamics on the spin–spin coupling parameter J, reveal-
ing a thermally-activated landscape where hole mobilities and spin deviations exhibit a distinct
temperature-dependent relationship. This numerically accurate thermal perspective augments our
understanding of charge and spin dynamics in an antiferromagnet.

Keywords: variational method; coherent states; Davydov Ansatz; t-J model; hole dynamics; magnetic
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1. Introduction

The exploration of charge carriers in doped antiferromagnetic (AFM) layers remains
a cornerstone in the realm of quantum many-body physics, a pursuit invigorated by the
discovery of high-temperature superconductivity in cuprates [1–10]. This enigma extends
across various two-dimensional (2D) materials, including pnictides [11], organic layers [12],
and twisted bilayer graphene [13], where the interplay of hole motion and AFM order
emerges as a crucial piece in the puzzle of unconventional superconductivity [14,15]. Recent
experimental advances, particularly the use of ultracold atoms in optical lattices [16–20],
have rekindled interest in mobile charge carriers in quantum AFM magnets. These cutting-
edge experiments offer a near-ideal realization of the Hubbard model, enabling a closer
look into the interplay between charge carriers and magnetic order in doped antiferro-
magnets [21–24]. The emergence of new geometries, such as bilayers [25] and ladders [26]
within these optical lattices, provides further opportunities to enrich our understanding of
these complex systems.

The t-J model, which intuitively combines the Heisenberg AFM term with a hole-
hopping component, has become a paradigm in our quest to understand charge-spin
dynamics in strongly correlated systems. Interactions between charge carriers and mag-
netic excitations have been shown to significantly influence the transport properties of
many-body systems, as evidenced in phenomena such as the Kondo effect, colossal mag-
netoresistance, and heavy-fermion materials. The 2D Hubbard model epitomizes this
interaction, revealing a rich tapestry of dynamics even at the level of a single charge ex-
citation. The creation and dispersion of magnetic polarons within this model underscore
the nuanced nature of these interactions [27,28], where out-of-equilibrium characteristics
are pivotal in unraveling the mysteries of transport in strongly correlated materials. The
model’s predictions, particularly regarding the unusual positioning of quasiparticle band
minima and the development of hole pockets, have been verified in angle-resolved photoe-
mission spectroscopy (ARPES) studies [29–33], thereby cementing its role in the narrative
of cuprate superconductivity.
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Notably, at the crux of the t-J model lies the concept of magnetic polarons [27,28,34–36].
The self-consistent Born approximation (SCBA) [29] has been used to describe the equi-
librium [28,36–39] and nonequilibrium properties [40] of these polarons, affirming the t-J
model’s prowess in elucidating the dynamics within doped AF layers, including multilayer
systems [41–47]. The t-J model at finite temperatures has also been treated with SCBA [48]
and its variants [49,50]. Nonetheless, inter-site correlations are approximated via a mean-
field approach in the SCBA, which elides the nuanced dynamical intricacies manifest at
femtosecond time scales with an incomplete portrayal of magnon dynamics. However, the
quest to elucidate the microscale mechanisms underpinning high-temperature supercon-
ductivity [14,15,51], coupled with a discovery that a hole, even when interacting with the
spin environment, may sustain quantum coherence at infinitely high temperatures [17],
necessitates an expanded theoretical treatment that transcends the confines of mean-field
approximations.

In this work, we adopt the multiple Davydov Ansatz (mDA) formalism [52] with
the thermo-field dynamics (TFD) method [53–56] to formulate a computationally accurate
approach for elucidating the finite-temperature hole behavior and the spin deviation in
the t-J model. Namely, the TFD representation of quantum mechanics combined with the
thermal Bogoliubov transformation permits us to treat the finite-temperature dynamics
generated by the t-J Hamiltonian via the thermal time-dependent Schrödinger equation,
while the variational mDA approach allows us to obtain a numerically accurate solution to
this equation without resorting to additional approximations.

In the subsequent sections, we embark on a detailed exploration of the t-J model,
delving into its multifaceted aspects and many implications thereof. Section 2 commences
with an introduction to the t-J model and the methodologies employed in our study. This is
followed by Section 3, which presents an extensive discussion of our results, dissecting the
finite-temperature dynamics of a single hole and its surrounding magnons. In Section 3.1,
we scrutinize the spatial spread and momentum distribution of the hole at zero temperature,
alongside the dynamics of spin deviations at various lattice sites under varying strengths
of the spin–spin exchange interaction. The impact of temperature on the hole dynamics
and spin-deviation evolution is discussed in Section 3.2. The paper ends in Section 4 with
our conclusions.

2. t-J Model and Methodologies

The t-J model encapsulates the intricate interplay of charge kinetics and magnon
clouds, where the hole is introduced by doping. Within the framework of a slave-fermion
representation, the system is characterized by a Hamiltonian that is rigorously defined in
prior studies [27,35,57].

Ĥ = ∑
q

ωq β̂†
q β̂q +

tz√
N

∑
kq

ĥ†
k−q ĥk[(uqγk−q + vqγk)β̂†

q + (uqγk + vqγk−q)β̂−q] (1)

where ĥ†
q (ĥq) creates (destroys) a hole, β̂†

q (β̂q) is the creation (annihilation) operator of

a magnon with crystal momentum q and energy ωq = JzS
√

1− α2γ2
q, t is the hopping

strength, and

uq =

√
JzS + ωq

2ωq
, vq = −sgn(γq)

√
JzS−ωq

2ωq
(2)

are the coupling coefficients. Herein, J denotes the AFM coupling constant corresponding
to nearest-neighbor spin interactions, with z and N representing the coordination number
and the total number of lattice sites, respectively. We adopt the spin quantum number
S = 1/2, set α = 1 for the Heisenberg limit indicating the isotropic spin–spin interactions,
and the structure factor γq = [cos(qx) + cos(qy)]/2 presumes a normalized lattice constant.
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For the above Hamiltonian (1), the finite-temperature mDA of multiplicity M can be
written as follows

|DM
2 (τ)⟩ =

N

∑
Q
|Q⟩

M

∑
k

AQk(τ)e
∑{q}( fk{q}(τ)β†

{q}−H.C.)|0⟩ (3)

Here, H.C. denotes the Hermitian conjugate, and |0⟩ encapsulates the vacuum state for
the magnons. |Q⟩ indicates a momentum index for the hole state in the first Brillouin zone,
N = 64, {q} = q⊕ q̃, q̃ is the “tilde" momentum-absorbing temperature effects in the
TFD–mDA method [53,54,58], and fk{q}(t) is the magnon displacement with momentum
q and tilde momentum q̃ in the kth coherent state. The initial parameters of momentum-
space AQk are obtained after Fourier transforms to ensure that the single hole occupies
the center in the site space. The initial elements of fk{q} are random numbers of the order
∼ 10−3 because small initial spin deviations are essential to jump start the hole motion.
The solution of AQk and fk{q} can be found in Appendix A. Then the total Hamiltonian
acting in the extended {q} Hilbert space assumes the form [59]

H = H −∑
q

ωq β̃†
q β̃q (4)

where β̃†
q and β̃q are the tilde creation and annihilation operators. Having performed

thermal Bogoliubov transformation specified by the operator

G = G† = −i ∑
q

θq(βq β̃q − β†
q β̃†

q) (5)

and following the prescriptions of [59,60], we obtain the final thermo-field dynamics t-J
Hamiltonian

Hθ = eiG He−iG

= ∑
q

ωq(β†
qβq − β̃†

q β̃q) +
tz√
N

∑
kq

h†
k−qhkcosh(θq)[(uqγk−q + vqγk)β†

q (6)

+(uqγk + vqγk−q)β−q] +
tz√
N

∑
kq

h†
k−qhksinh(θq)[(uqγk−q + vqγk)β̃q

+(uqγk + vqγk−q)β̃†
−q].

The influence of temperature is imprinted into Hθ through the temperature-dependent
mixing angles

θq = arctanh(e−βTωq/2) (7)

which renormalize hole–magnon coupling coefficients and βT = 1/KBT.
For our simulation, we employ an 8× 8 lattice grid, yielding a site count of N = 64,

with each site maintaining four nearest neighbors (z = 4). The lattice’s geometric configu-
ration is defined in an x–y coordinate system with its origin at the center, where the lattice
positions are demarcated by the vector d. The hole’s temporal evolution in the site space
is described by the density matrix ρh(d, τ), which adheres to the normalization condition
∑d ρh(d, τ) = 1. Simultaneously, the momentum–space distribution of the hole is given
by nh(q, τ) at q = (qx, qy), where ∑q nh(q, τ) = 1. Our computations are conducted with
an mDA multiplicity of M = 40 to ensure the accuracy and convergence of our results.
d = |d| and the hole is initially positioned at the lattice center (d = 0), from which distances
d = 0, 1,

√
2, 2 are assigned, respectively, to the initial hole site (IHS), nearest neighbors

(NNs), next-nearest neighbors (NNNs), and second-nearest neighbors (SNNs).
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The hole population nh(q, τ) in the momentum space can be written as

nh(q, τ) = ⟨DM
2 (τ)|eiGh†

qhqe−iG|DM
2 (τ)⟩

=
M

∑
p,u

A∗qp AquR( f ∗p , fu) (8)

The hole population ρh(d, τ) can be expressed as

ρh(d, τ) = ⟨DM
2 (τ)|eiGh†

dhde−iG|DM
2 (τ)⟩

= ⟨DM
2 (τ)| 1

N ∑
q1q2

e−i(q1−q2)dh†
q1

hq2 |DM
2 (τ)⟩ (9)

=
1
N ∑

q1q2

e−i(q1−q2)d
M

∑
p,u

A∗q1 p Aq2uR( f ∗p , fu)

where the Debye–Waller factor R( f ∗p , fu) is written as

R( f ∗p , fu) = exp[∑
l

f ∗pl(τ) ful(τ) + ∑
l

f̃ ∗pl(τ) f̃ul(τ)] (10)

The spin deviations ∆S(d, τ) [61], monotonically related to the magnon popula-
tion [62], represent the departure from a perfectly ordered AFM state due to the presence
of a hole that disrupts the local spin alignment. A higher level of spin deviations from the
ordered state indicates an increase in the magnon population. ∆S(d, τ) at each site can be
defined as ∆S(d, τ) = ⟨DM

2 (τ)|eiGb†
dbde−iG|DM

2 (τ)⟩, whose derivation can be found in the
Appendix. The average spin deviation is ∆S̄(τ) = ∑d ∆S(d, τ)/N.

3. Results and Discussion
3.1. Nonequilibrium Quantum Dynamics of a Single Hole
3.1.1. Spatial Spread of a Single Hole

In Figure 1a–f the hole density is plotted to represent its spatial spread, where the hole
diffuses along the four NNs within a short time, in agreement with laboratory observa-
tion [19]. The simulated picture of hole motion is consistent with the measured probability
density of the hole [17] under infinitely strong on-site repulsion, proving the hopping term
in t-J model plays a dominant role at a short time. Prior to the temporal marker τ = 2/t, the
hole exhibits a pronounced expansion towards its NNs. In contrast, at subsequent intervals
τ = 3/t and τ = 4/t, there is a discernible contraction in the spatial extent of the hole
distribution, indicative of a reduction in hole population at both NNs and NNNs. Notably,
at τ = 6/t, a resurgence in the hole’s spatial distribution appears, extending once more
towards the NNs. This dynamical fluctuation in hole population is consistent with the
interplay of interfering string excitations [40]. As the hole hops from one site to another, it
leaves behind a “string” of disturbed spin states, i.e., a trail of misaligned spins. Since the
hole can follow multiple paths in the lattice, the string of disturbed spins can have different
configurations based on the path taken by the hole. All these different paths and string
configurations can coexist in a superposition state. When the hole retraces its steps or takes
a different path that crosses or interacts with its previous trail, the string states can interfere
with each other.
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Figure 1. Evolution of single-hole dynamics in an AFM lattice. Panels (a–f) depict the evolution
of hole density, ρh(d, τ), over various times under the condition J = 0.233t. τ ∗ t is used as a
dimensionless parameter characterizing the time evolution of the system.

3.1.2. Population Dynamics Comparison with SCBA Method and Experimental Data

The mDA scheme, recognized for its efficacy in variational many-body quantum
mechanics, employs Gaussian state representations and has been adeptly applied to a
diverse spectrum of quantum phenomena. These range from the investigation of Landau–
Zener transitions [63] and the dynamics of cavity polaritons [64], to the mechanisms
underlying excitonic energy transfer in photosynthetic complexes [65], as well as to the
interrogation of ultrafast spectroscopic processes at conical intersections [66].

Calculated from the hole density, the root-mean-square (rms) distance drms(τ) =
[∑d d2ρh(d, τ)]1/2 is compared with measurements [23] in Figure 2 for J/t = 0.233 and
J/t = 0.459. Nielsen et al. [40] first found the period of τ < 1/t to be quantum walk,
indicating the initial ballistic motion of the itinerant hole. The initial velocity v = ∂τdrms
from the mDA method is 1.7t, in agreement with measurements [23]. For τ > 1/t, the hole
velocity decreases significantly thanks to magnon dressing of the hole. This leads to the
coherent oscillations of the hole population as shown in Figure 3 [39,67].
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Figure 3. Hole population calculated by the mDA is compared with that by SCBA method [40], and
the measured data [23]. Panels (a–d) display the hole population in the IHS, NN, NNN, and SNN
areas, respectively.

In Figure 3, ρh(d, τ) computed by the mDA is compared with that computed by the
SCBA method [40] and the measured data [23]. Overall, the agreement between our mDA
results and measurements is especially good for d = 0 and d = 1, as shown in Figure 3a,b,
respectively. Yet, there exist substantial differences: at odds with measurements and mDA
predictions, SCBA underestimates amplitudes of the first population recurrence and does
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not reproduce the difference of their amplitudes for the two values of the spin coupling J in
Figure 3b. This deviation can be attributed to the crude treatment of inter-site correlations in
mean-field-based SCBA. We thus conclude that the nonperturbative mDA methodology is
superior to SCBA in predicting the short-time magnon population dynamics. Comparisons
with measurements at larger distances, however, are impeded by diminishing signal–to–
noise ratios, while the finite-size effect in our mDA computation seems to accentuate the
revival of oscillations of the NNN and SNN populations.

3.1.3. Site-Dependent Hole Dynamics Across Diverse Spin–Spin Interaction Regimes

The hole dynamics in Figure 4a–c reveal competition between NNs and NNNs with
the nuanced influence of the spin–spin exchange interaction. In scenarios characterized
by a subdued spin–spin exchange interaction, as shown in Figure 4a, the hole exhibits a
propensity to disperse predominantly through NNs, maintaining a consistently higher
population at NNs (compared to NNNs) for the majority of the observed time frame.
However, with an intensification of J, the hole’s population at NNNs not only rivals that
at NNs, as depicted in Figure 4b, but frequently surpasses it over extended periods in
Figure 4c. This is due to strong spin–spin interactions maintaining the AFM order. The hole
wave function spreads out to various lattice sites. Over time, the probability distribution of
the hole position evolves to favor sites where the spin disruption is minimized. This can
lead to a higher probability of finding the hole at NNNs, where the paths it has taken result
in a lower overall energy cost.
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Figure 4. Comparative analysis of hole populations at NNs and NNNs. Panels (a–c) display the
variations in hole populations for a range of J values, while panel (d) provides a focused view of the
hole population at the IHS for varying J/t ratios.
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Figure 4d delineates the implications of varying J values on hole dynamics specifically
at the IHS. A heightened J value imposes constraints on the hole’s mobility in the initial
stages, attributable to the effect of spin–spin interactions upholding a rigid AFM milieu.
Conversely, in a lattice where the spin–spin coupling J is diminished, the hole is more
inclined to traverse greater distances from its original location. Intriguingly, a lower J value
concurrently signifies a more intricate dressing of the hole by spin waves, culminating in its
final polaron state. For minuscule J values, this intricate dressing mechanism overpowers
the reduced energy penalty associated with ∼ J in the initial phase, effectively anchoring
the hole near its initial position and compelling a return. Consequently, in the small J
regime, a marked decrease in hole population is found at the IHS before τ = 1/t, followed
by a distinct resurgence.

3.1.4. Momentum–Space Profile of a Solitary Hole

Figure 5 presents the evolution of the hole population in the momentum space, delin-
eating the contrast between a regime of small spin–spin interactions (J/t = 0.10), shown
in panels (a–d), and one characterized by substantial J (J/t = 1.8), as illustrated in panels
(e–h). At τ = 0, the momentum distribution spans uniformly across the entire first Brillouin
zone, reflecting the initial localization of the hole at a singular lattice site in the site space.
Figure 6 presents the momentum–space distribution of a hole at ky = ±π/2 under two
different spin–spin interaction strengths, J. In Figure 6a,b (corresponding to ky = ±π/2),
the population oscillation indicates entangled string excitations [40].
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Figure 5. Momentum−space distribution of the hole density in the first Brillouin zone. Contour plots
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illustrates the scenario for a smaller J/t ratio of 0.10 at time τ = 1/t, 2/t, 4/t and 8/t, respectively;
while the right column (e–h) explores the dynamics under a larger J/t ratio of 1.8 at those times.
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Figure 6. Temporal and momentum−space analysis of the hole density at ky = ±π/2. Panel (a)
focuses on the hole density nh(q, τ) at moments when ky = ±π/2 for a smaller J/t ratio of 0.10,
whereas panel (b) corresponds to a larger J/t ratio of 1.80.

For small J, the spin–spin interaction is weaker, leading to a more delocalized hole
pattern. The AFM background is less disrupted by the hole’s motion, allowing the hole
to propagate more freely across the lattice. This freedom is manifested in the momentum
distribution with maximum hole population located around (0,0) and (±π,±π) as shown in
Figure 5a–d, corresponding to the free-particle-like dispersion of holes in a less constrained
spin background [27].

From a low J to a large J, a notable shift in the hole population is found at τ = 4/t, 8/t
and 12/t, particularly at momentum positions q0 = (±π/2,±π/2), as evidenced in
Figures 5g,h and 6b. This redistribution crescendos to the emergence of four quasiparticle
hole “pockets” that correspond to the minimal energy points on the hole (viewed as a
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spinless fermion) Fermi surface [48,68,69]. For strong spin–spin coupling, the system is
close to the Heisenberg limit, where the hole motion is strongly influenced by the spin
background, leading to the formation of a magnetic polaron. The corresponding dispersion
of the quasiparticle has the energy minima at q0 as revealed by the variational methods [57]
and SCBA finite-size calculations [27,28,35,36], with the highest hole density found at q0.
The four peaks of nh(q, τ) are also included in the one-hole ground state Ansatz of Chen
and coworkers [69] and their calculated quasiparticle spectral weight.

The temperature effects on the momentum distribution of the hole are exhibited
in Figure 7, which compares the cases of T = 0 (a) and T = 1.25J (b) for J/t = 1.80 at
τ = 8/t. A significant change is that four pockets at (±π/2,±π/2) are washed out at a high
temperature, where the hole population of four pockets decreases dramatically. This effect
is similar to the findings of Plakida et al. [48], which is attributed to the temperature shift of
the quasiparticle (QP) peak position in the QP spectrum. At high temperatures all QP peaks
appear above the chemical potential, leading to positive QP peak positions [48]. Hence, the
Fermi factor renders a substantial reduction in the occupancy weight (relative to the low-
temperature value of the QP spectral weight), resulting in the vanishing quasihole pockets.
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Figure 7. Comparison between T = 0 (a) and T = 1.25J (b) for J/t = 1.80 at τ = 8/t.

3.2. Analysis of Hole Dynamics and Spin Deviations at Finite Temperatures
3.2.1. Zero-Temperature Spin Deviations

Figure 8 illustrates the dynamics of spin deviations for NNs and NNNs, reflecting a
competitive behavior found in the distribution of hole populations at these respective sites.
For large J, as illustrated in Figure 8a–c, there is an enhanced oscillatory behavior in spin
deviations at both NNs, NNNs, and SNNs. These oscillations, marked by their periodicity
of τ = 1.3/t in Figure 8c, are indicative of heightened magnon energies elicited by the
hole’s motion. For J/t = 1.80, there is a consequential suppression of magnon generation
at NNs, ultimately resulting in their spin deviations subsiding to levels below those of
NNNs, as captured in Figure 8c. Conversely, under a regime of diminished J, where hole
mobility is comparatively higher, there is a notable reduction in hole occupancy at the
IHS, as demonstrated in Figure 4d. This increased mobility precipitates a marked spin
deviation at the IHS, as explicitly presented in Figure 8d. The dynamics encapsulated in
these observations are pivotal for understanding the underlying spin–charge interactions
and their manifestations in the t-J model.
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Figure 8. Dynamics of spin deviation over time. Panels (a–c) explore the spin deviation dynamics at
different interaction strengths, while panel (d) specifically examines the spin deviations at the IHS
across a spectrum of J/t ratios.

3.2.2. Finite-Temperature Hole Population Dynamics

Figure 9 provides a detailed temporal evolution of hole densities ρh(d, τ) across a
range of temperatures, where J/t = 0.2 is a typical value for high-Tc cuprate superconduc-
tors [15]. From a broad perspective, hole densities are characterized by significant temporal
fluctuations, which persist from absolute zero temperature—aligning with tensor-network
predictions [70]—to higher temperatures. Notably, as the temperature is escalated, both
the amplitude and periods of these oscillations in the IHS (a) and NNs (b) regions expand,
reflecting temperature-dependent enhancements in hole–hole interactions mediated by an
increased ensemble of thermally excited magnon states that dictate the interaction strength.
This effect can be modeled in the paradigm of an effective Rabi model, where the intensi-
fied interaction strength leads to a greater Rabi oscillation frequency, which governs the
dynamics of hole population. Conversely, for the NNNs (c) and SNNs (d) regions, the hole
population displays less discernible patterns in their thermal evolution of amplitudes and
frequencies due to the complex interplay of multi-range scattering processes that result
in quantum dephasing. Specifically, the IHS hole densities in Figure 9a showcase marked
recurrences whose magnitude (and inversely, duration) scales with temperature. The dy-
namics of NNs hole populations (b) follow a similar behavior as the IHS hole densities,
whereas the NNNs (c) and SNNs (d) hole densities demonstrate an irreversible quenching
with increased temperature.

3.2.3. Finite-Temperature Spin Deviation Evolutions

The behavior of spin deviations at J/t = 0.2, as depicted in Figure 10a–c, exhibits two
salient characteristics. Initially, ∆S(d, τ) displays an escalation as a function of temperature,
indicative of the thermally induced activation of magnon states. Subsequently, with the
exception of ∆S(0, τ), the spin deviations swiftly converge to equilibrium distributions,
a phenomenon that is particularly pronounced at elevated temperatures. The mean spin
deviation ∆S̄(τ) increases monotonically with T in Figure 10d. This trend is indicative of
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thermally induced frustration in spin alignment, which agrees with the observed reduction
in saturation magnetization at higher thermal states [71,72].
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Figure 9. Temperature-dependent hole population at various sites for J/t = 0.2. Panels (a–d) display
ρh(d, τ) in the IHS, NN, NNN, and SNN areas, respectively.
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Figure 10. Temperature-dependent spin deviations in the IHS, NN, and NNN areas for J/t = 0.2.
Panels (a–c) display the variations in spin deviations for a range of T values, while panel (d) provides
∆S̄(τ) for varying T/J ratios.
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4. Conclusions

In this work, we employ the mDA–TFD method to simulate the evolution of hole
populations (both in site and momentum space) and spin deviations at finite temperatures.
It is found that at zero temperature, the hole population in site space can be significantly
affected by the spin–spin interaction, where a large J dictates the localization of hole
populations. In addition, the spin–spin interaction determines the peak positions of the
hole population in the momentum space as well as the spin deviation. Furthermore, the
thermal field has substantial impacts on the hole population dynamics. High temperatures
enhance temporal oscillations in ρh(d, τ) in the IHS and NN areas, because of temperature-
dependent enhancements in hole–hole interactions mediated by an increased ensemble
of thermally excited magnon states, but quench those in the NNN and SNN areas. This
is an indication of the complex multi-range scattering dynamic and quantum dephasing.
More magnons can be excited at a higher temperature, revealing intriguing possibilities for
thermally manipulating magnon excitations.

Our mDA–TFD method serves as a robust tool for analyzing the quantum dynamics
of impurities in lattice structures. The mDA–TFD methodology developed here can be
readily extended to the boson–holon model including an additional hole–phonon coupling
Hamiltonian [73]. It can be applied to the simulation of steady-state angular-resolved pho-
toemission spectra [74,75] and femtosecond terahertz pump–probe signals. This framework
also has the potential to extend its application to an analysis of magnon polaritons [76],
AFM bilayers [77], and nonequilibrium dynamics of multiple holes [78] in strongly interact-
ing lattice models. One direct application of our method is that the calculated population
can be compared to the measured density-resolved dynamics of a single hole from a 2D
Hubbard insulator, shedding light on the interference phenomenon. Additionally, the rms
distance is easy to calculate, contributing to the explanation of long-time hole delocalization
in the experiment [23]. Furthermore, the spin dynamics, such as spin correlations, can be
calculated by mDA methodology as well, which is expected to help understand the reversal
and recovery of AFM correlations observed recently in cold-atom experiments [22,23].
Looking forward, the mDA–TFD can be utilized to investigate the dynamics of spin-lattice
polaron (SLP) formation [79] with a single hole, uncovering more details of the relaxation
mechanism, which includes the relaxation of kinetic energy for SLP by emitting local spin
and phonon excitations in the first stage and energy transfer between phonon and spin de-
grees of freedom in the second stage. Such analyses could illuminate the interplay between
holes, phonons, and magnons, potentially shedding light on fascinating phenomena such
as stripe phases, and d-wave superconductivity [14–20].
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Abbreviations
The following abbreviations are used in this manuscript:

AFM Antiferromagnetic
2D Two-dimensional
ARPES Angle-resolved photoemission spectroscopy
SCBA Self-consistent Born approximation
mDA Multiple Davydov Ansatz
TFD Thermo-field dynamics
NNs Nearest neighbors
NNNs Next-nearest neighbors
SNNs Second-nearest neighbors
SLP Spin-lattice polaron

Appendix A. Derivation of Hole–Magnon Dynamics in the t-J Model

The time-dependent variational parameters, AQk(τ) and fkq(τ) are determined via
the variational principle [52]

d
dτ

∂L
∂ξ̇∗j
− ∂L

∂ξ∗j
= 0, (A1)

where the Lagrangian L is given by

L =
i
2

[
⟨DM

2 (τ)|
−→
∂

∂τ
|DM

2 (τ)⟩ − ⟨DM
2 (τ)|

←−
∂

∂τ
|DM

2 (τ)⟩
]
− ⟨DM

2 (τ)|Hθ |DM
2 (τ)⟩. (A2)

The Hamiltonian in the multi-D2 Ansatz is defined as

LHθ
= ⟨DM

2 (τ)|Hθ |DM
2 (τ)⟩ = ∑

Q

M

∑
p

M

∑
u

A∗Qp AQu ∑
q

ωq( f ∗pq fuq − f̃ ∗pq f̃uq)R( f ∗p , fu)

+
tz√
N

∑
kq

M

∑
p

M

∑
u

A∗(k−q)p A(k)u[cosh(θq)(uqγk−q + vqγk) f ∗pq

+sinh(θq)(uqγk−q + vqγk) f̃uq]R( f ∗p , fu) (A3)

+
tz√
N

∑
kq

M

∑
p

M

∑
u

A∗(k+q)p A(k)u[cosh(θq)(uqγk + vqγk+q) fuq

+sinh(θq)(uqγk + vqγk+q) f̃ ∗pq]R( f ∗p , fu)

Thus the equations of motion for AQu assume the form

i ∑
Q

M

∑
u
[ȦQu + AQu ∑

l
f ∗pl ḟul + AQu ∑

l
f̃ ∗pl

˜̇ful ]R( f ∗p , fu)

=
M

∑
u

AQu ∑
q

ωq( f ∗pq fuq − f̃ ∗pq f̃uq)R( f ∗p , fu)

+
tz√
N

∑
kq,k−q=Q

M

∑
u

A(k)u[cosh(θq)(uqγQ + vqγk) f ∗pq + sinh(θq)(uqγQ + vqγk) f̃uq]R( f ∗p , fu) (A4)

+
tz√
N

∑
kq,k+q=Q

M

∑
u

A(k)u[cosh(θq)(uqγk + vqγQ) fuq + sinh(θq)(uqγk + vqγQ) f̃ ∗pq]R( f ∗p , fu)

Similarly, the equations of motion for ful and f̃ul are given by the formulas
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i ∑
Q

M

∑
u

A∗Qp AQu ḟul R( f ∗p , fu) + i ∑
Q

M

∑
u
[A∗Qp ȦQu + A∗Qp AQu(∑

l
f ∗pl ḟul + ∑

l
f̃ ∗pl

˜̇ful)]R( f ∗p , fu) ful

= ∑
Q

M

∑
u

A∗Qp AQu ∑
q

ωq( f ∗pq fuq − f̃ ∗pq f̃uq)R( f ∗p , fu) ful + ∑
m

M

∑
u

A∗Qp AQuωl fulR( f ∗p , fu)

+
tz√
N

∑
kq

M

∑
u

A∗(k−q)p A(k)u[cosh(θq)(uqγk−q + vqγk) f ∗pq + sinh(θq)(uqγk−q + vqγk) f̃uq]R( f ∗p , fu) ful (A5)

+
tz√
N

∑
kq

M

∑
u

A∗(k−q)p A(k)u[cosh(θq)(uqγk + vqγk+q) fuq + sinh(θq)(uqγk + vqγk+q) f̃ ∗pq]R( f ∗p , fu) ful

+
tz√
N

∑
k

M

∑
u

A∗(k−l)p A(k)u[cosh(θl)(ulγk−l + vlγk)R( f ∗p , fu)

and

i ∑
Q

M

∑
u

A∗Qp AQu
˜̇ful R( f ∗p , fu) + i ∑

Q

M

∑
u
[A∗Qp ȦQu + A∗Qp AQu(∑

l
f ∗pl ḟul + ∑

l
f̃ ∗pl

˜̇ful)]R( f ∗p , fu) f̃ul

= ∑
Q

M

∑
u

A∗Qp AQu ∑
q

ωq( f ∗pq fuq − f̃ ∗pq f̃uq)R( f ∗p , fu) f̃ul −∑
Q

M

∑
u

A∗Qp AQuωl f̃ulR( f ∗p , fu)

+
tz√
N

∑
kq

M

∑
u

A∗(k−q)p A(k)u[cosh(θq)(uqγk−q + vqγk) f ∗pq + sinh(θq)(uqγk−q + vqγk) f̃uq]R( f ∗p , fu) f̃ul (A6)

+
tz√
N

∑
kq

M

∑
u

A∗(k+q)p A(k)u[cosh(θq)(uqγk + vqγk+q) fuq + sinh(θq)(uqγk + vqγk+q) f̃ ∗pq]R( f ∗p , fu) f̃ul

+
tz√
N

∑
k

M

∑
u

A∗(k+l)p A(k)u[sinh(θl)(ulγk + vlγk+l)R( f ∗p , fu)

∆S(d, τ) at each site can be evaluated as
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∆S(d, τ) = ⟨DM
2 (τ)|eiGb†

dbde−iG|DM
2 (τ)⟩

= ⟨DM
2 (τ)| 1

N ∑
q1q2

e−i(q1−q2)deiG(uq1 β†
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+ vq1 β−q1)(uq2 βq2 + vq2 β†
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=
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Here b†
d (bd) is the creation (annihilation) operator of the spin deviation at side d,

which can be obtained from the magnon operators in the momentum space as follows [35]:

bd = N−1/2 ∑
q

eiqdbq (A8)

bq = uqβq + vqβ†
−q (A9)
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