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Abstract: Magnetic–plasmonic nanoparticles (NPs) have attracted great interest in many fields be-
cause they can exhibit more physical and chemical properties than individual magnetic or plasmonic
NPs. In this work, we synthesized Au- or Ag-decorated Fe3O4 nanoparticles coated with PEI (Fe3O4-
PEI-M (M = Au or Ag) NPs) using a simple method. The influences of the plasmonic metal NPs’ (Au
or Ag) coating density on the magnetic and plasmonic properties of the Fe3O4-PEI-M (M = Au or Ag)
NPs were investigated, and the density of the plasmonic metal NPs coated on the Fe3O4 NPs surfaces
could be adjusted by controlling the polyethyleneimine (PEI) concentration. It showed that the
Fe3O4-PEI-M (M = Au or Ag) NPs exhibited both magnetic and plasmonic properties. When the PEI
concentration increased from 5 to 35 mg/mL, the coating density of the Au or Ag NPs on the Fe3O4

NPs surfaces increased, the corresponding magnetic intensity became weaker, and the plasmonic
intensity was stronger. At the same time, the plasmonic resonance peak of the Fe3O4-PEI-M (M = Au
or Ag) NPs was red shifted. Therefore, there was an optimal coverage of the plasmonic metal NPs on
the Fe3O4 NPs surfaces to balance the magnetic and plasmonic properties when the PEI concentration
was between 15 and 25 mg/mL. This result can guide the application of the Fe3O4-M (M = Au or Ag)
NPs in the biomedical field.

Keywords: Fe3O4-PEI-M (M = Au or Ag) nanoparticles; plasmonic; magnetic

1. Introduction

At present, magnetic nanoparticles (NPs) have attracted great interest in many fields,
such as bearing drugs [1,2], radionuclides [3,4], hyperthermia [5–7], active magnetic field
targeting [8–10], protein purification [11–13], biosensors [14,15], and catalysis [16–18]. Re-
searchers also further modify the surface of magnetic NPs with antibodies or proteins to
expand their applications [19–21]. As such, Sohn et al. combined iron oxide nanoparticles
with glucose transporter 1 antibody for vascular therapy [19]. Gawali et al. prepared
magnetic nanoparticles conjugated with bovine serum albumin protein for magnetother-
mal therapy [21]. Unfortunately, magnetic NPs can easily aggregate, and it is difficult for
them to couple with biomolecules due to the lack of functional groups, which limits the
applications of magnetic nanomaterials [22]. In order to overcome these shortcomings,
metal or metal oxide shells were coated on the surface of the magnetic nanomaterials to
decorate the nanoparticles [23]. Noble metals (Au, Ag) are considered to be the most ideal
coating material due to their unique optical properties, localized surface plasmon reso-
nance (LSPR), high stability, biocompatibility, and easy surface functionalization [24–27].
Magnetic–plasmonic NPs, consisting of plasmonic metal materials (Au or Ag) coated onto
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the surfaces of magnetic NPs, can exhibit more physical and chemical properties than indi-
vidual magnetic or plasmonic NPs, such as magnetic, plasmonic, biological, compatibility,
chemical stability, and physicochemical properties [28–31]. They are considered as effective
candidate materials for catalysts [32], sensors [33], antibacterial materials [34], cancer de-
tection [35], and medical applications [36]. Therefore, it is of great significance to combine
magnetic NPs with noble metal materials to generate nanoparticles that simultaneously
exhibit both excellent magnetic and plasmonic characteristics. This has been the focus of
many researchers in recent years. In 2020, Kou et al. prepared flower-shaped Fe3O4-Au NPs
and found that the magnetic properties gradually decreased by increasing the amount of
Au seeds [37]. Aarthi et al. synthesized Fe3O4/Ag NPs and studied the surface-enhanced
Raman scattering (SERS), and the photocatalytic and antibacterial activities of the nanopar-
ticles [38]. Oguzlar studied Fe3O4 and Fe3O4@Ag NPs to improve the oxygen sensitivity
of ruthenium dyes [39]. In 2021, Du et al. synthesized Fe3O4@Au core-shell NPs and
studied both the magnetic and optical properties derived from the Fe3O4 NPs and the Au
nano-shells [40]. Salimi et al. prepared Au-Fe3O4 NPs and studied the nano-morphology
and formation process of the Au-Fe3O4 NPs [41]. In 2022, Lv et al. prepared the Fe3O4@Au
NPs, which showed LSPR absorption in the near-infrared region [42]. Mikoliunaite et al.
prepared Fe3O4@Ag NPs and found that their plasmonic resonance could be varied from
470 to 800 nm by changing the volume of the Ag colloid solution [43]. In 2023, Ravichan-
dran et al. synthesized Fe3O4/Ag NPs and studied the dye removal rate of the Fe3O4/Ag
NPs in the presence of a reducing agent [44]. According to the above works, most of the
research on Fe3O4-M (M = Au or Ag) NPs was limited to a single particle type or physical
property, and studies on the relationships between the coverage of the plasmonic metal
NPs on the magnetic NPs surfaces and both the magnetic and plasmonic properties are
lacking. Therefore, it is important to systematically investigate the magnetic and plasmonic
characteristics of Fe3O4-M (M = Au or Ag) NPs.

In this work, we prepared the Au- or Ag-decorated Fe3O4 nanoparticles coated with
PEI (Fe3O4-PEI-M (M = Au or Ag) NPs) using a simple method. Fe3O4 NPs were syn-
thesized through a co-precipitation method, and plasmonic metal (Au or Ag) NPs were
prepared using a chemical reduction method. Fe3O4 NPs and plasmonic metal NPs were
mixed at room temperature to form Fe3O4-PEI-M (M = Au or Ag) NPs. In this process,
positively charged PEI was assembled onto negatively charged Fe3O4 through electrostatic
self-assembly. Then, negatively charged plasmonic metal NPs were electrostatically bound
to the positively charged PEI-coated Fe3O4 NPs, resulting in a formation of Fe3O4-PEI-M
(M = Au or Ag) NPs (Scheme 1). The density of the plasmonic metal NPs coated on the
Fe3O4 NPs was adjusted by controlling the concentration of polyethyleneimine (PEI), and
the effects of the plasmonic metal NPs’ density on the magnetic and plasmonic properties of
the Fe3O4-PEI-M (M=Au or Ag) NPs were studied. The relationships between the coating
density of the plasmonic metal NPs and both the magnetic and plasmonic properties were
established. This work can provide guidance for the application of Fe3O4-M (M = Au or
Ag) NPs in the biomedical field.
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2. Materials and Methods
2.1. Materials

Ferric chloride hexahydrate (FeCl3·6H2O), ferrous chloride tetrahydrate (FeCl2·4H2O),
and ammonium hydroxide (28–30% NH3) were obtained from Merck (Shanghai, China).
Polyethyleneimine (PEI, branched, Mw ≈ 10,000 g/mol), sodium hydroxide (NaOH),
chloroauric acid (HAuCl4), silver nitrate (AgNO3), sodium borohydride (NaBH4), and
sodium citrate (C6H5Na3O7·2H2O) were obtained from Aladdin (Shanghai, China). All
chemicals were used as received with no further purification.

2.2. Synthesis of Fe3O4 Nanoparticles

Fe3O4 nanoparticles were synthesized through a co-precipitation method [45]. A total
of 4.25 g of FeCl3·6H2O and 2 g of FeCl3·6H2O were added to 200 mL of ultrapure water.
In an oxygen-free environment, the mixture was heated to 70 ◦C with stirring at 800 rpm
and maintained at this temperature for 1 h. A total of 10 mL of ammonia solution (25% wt)
was added into the mixture. A black precipitate was produced, indicating the formation of
Fe3O4 NPs. The resulting solution was stirred for another 15 min. The nanoparticles were
purified by means of magnetic separation five times and then redispersed in 200 mL of
ultrapure water for further use.

2.3. Synthesis of Au Nanoparticles

Au nanoparticles were synthesized through NaBH4 reduction of chloroauric acid [29].
Firstly, 0.5 mL of 0.01 M HAuCl4 was mixed with 0.5 mL of a 0.01 M trisodium citrate
solution. Then, the mixture was added into 18 mL of ultrapure water and stirred at
1200 rpm. A total of 0.5 mL of an ice 0.04 M NaBH4 solution was quickly added with
vigorous stirring at room temperature. When the solution turned pink, indicating the
formation of Au NPs, the solution was allowed to stand for 2 h. The particles were collected
by centrifugation at 14,000 rpm for 10 min. The Au nanoparticles were stored in the fridge
until further use.

2.4. Synthesis of Ag Nanoparticles

Ag nanoparticles were prepared through the NaBH4 reduction of silver nitrate [46].
Briefly, 10 mL of a 1 mM AgNO3 solution was mixed with 0.8 mL of 40 mM sodium citrate
solution used as stabilizer. A total of 0.2 mL of an ice 0.06 M NaBH4 solution was added into
the mixture, and the mixture was stirred at 1200 rpm for 15 min. After the solution turned
dark yellow, indicating the formation of Ag NPs, the Ag nanoparticles were collected by
means of centrifugation at 14,000 rpm for 10 min. The Ag nanoparticles were stored in the
fridge until further use.

2.5. Synthesis of Fe3O4-PEI-M (M = Au or Ag) NPs

Firstly, 2 mL of the Fe3O4 NPs suspension (1 mg/mL) was mixed with 20 mL of the
PEI solution. After 60 min of ultrasonic treatment, the mixture was left to stand for half an
hour [47]. Subsequently, magnetic separation was employed for washing the nanoparticles.
The PEI-coated Fe3O4 NPs were finally redispersed in 2 mL of ultrapure water. Then, the
0.5 mL PEI-coated Fe3O4 NPs solution was mixed with 4.5 mL of the plasmonic metal (Au
or Ag) NPs solution. The mixture was continuously stirred at 2000 rpm for 45 min. Finally,
the Au- or Ag-decorated Fe3O4 nanoparticles coated with PEI were collected by magnetic
separation and washed with ultrapure water three times. By varying the concentrations
of the PEI solution, the adhesion density of the plasmonic metal NPs on the Fe3O4 NPs
surfaces could be changed.

2.6. Electric Field Simulation

To investigate the plasmonic properties of nanoparticles, the electric field distributions
of the nanoparticles were simulated using the finite element method with the commercial
software COMSOL 5.5. The excitation beam was a plane wave polarized along the x-axis
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with the plasmonic resonance wavelength of the nanoparticle, and the permittivities of Au
and Ag were taken from the experimental data of Johnson and Christy [48]. The mesh size
was set to 2 nm.

2.7. Characterization

The morphology and structure of the nanoparticles were observed by scanning electron
microscopy (SEM, JSM-7000F, JEOL, Tokyo, Japan) and transmission electron microscopy
(TEM, JEM-2100, JEOL, Tokyo, Japan). Hydrodynamic diameter and zeta-potential mea-
surements were carried out using dynamic light scattering (DLS, Delsa, Palmdale, CA,
USA). The crystalline structure of the nanoparticles was analyzed by X-ray powder diffrac-
tion (XRD, D8 ADVANCE, Bruker, Bremen, Germany). UV–visible absorption spectra
were obtained using a UV–vis spectrophotometer (Cary 5000, Agilent, Santa Clara, CA,
USA). Magnetization measurements of the nanoparticles were performed using a vibrating
sample magnetometer (MPMS-squid VSM-094, Quantum Design, San Diego, CA, USA).

3. Results and Discussion
3.1. Study on the Plasmonic Metal Nanoparticles
3.1.1. Au Nanoparticles

To prepare suitable Au nanoparticles for coating Fe3O4 NPs’ surfaces, we investi-
gated the influence of the reducing agent (NaBH4) concentrations on the Au nanoparticles.
Figure 1 shows the SEM images of the Au NPs synthesized with NaBH4 concentrations
ranging from 4 to 0.04 M. We found that the synthesized Au nanoparticles formed ag-
glomerates with an average diameter of about 12 nm when the NaBH4 concentration was
4 M (Figure 1a). With a decrease in the NaBH4 concentration from 4 to 0.04 M, the Au
NPs became more diffuse, and the particle size became more uniform. When the NaBH4
concentration was 0.04 M, the average diameter of the Au NPs was about 10 nm, as shown
in Figure 1f, and there was excellent dispersion, which was beneficial for attachment
on the Fe3O4 NPs’ surfaces. Figure 1 shows that the particles size increased and more
easily agglomerated with the increase in NaBH4 concentration. This is attributed to the
over-reduction of HAuCl4 in the case of excessive amounts of reducing agent [49,50].
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Figure 1. SEM images of the Au NPs prepared with (a) 4 M, (b) 2 M, (c) 1 M, (d) 0.4 M, (e) 0.08 M,
and (f) 0.04 M NaBH4 solution.

3.1.2. Ag Nanoparticles

In addition, we also investigated the Ag NPs, which were prepared using trisodium
citrate as a stabilizer and NaBH4 to reduce AgNO3. Figure 2 shows the SEM images of the
Ag NPs prepared with different NaBH4 concentrations. We found that the synthesized
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Ag nanoparticles formed agglomerates with an average diameter of about 25 nm when
the NaBH4 concentration was 8.5 M (Figure 2a). With a decrease in the NaBH4 concen-
tration from 8.5 to 0.06 M, the Ag NPs became more diffuse, and the size became more
uniform [51]. This was due to more Ag atoms being produced with the increase in NaBH4
concentration [49]. When the concentration of NaBH4 was 0.06 M, the average diameter of
the Au NPs was about 10 nm, as shown in Figure 2f, and there was excellent dispersion,
which is desirable for the further preparation of Ag-decorated Fe3O4 NPs.
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3.2. Study on the Properties of the Fe3O4-PEI-Au Nanoparticles
3.2.1. Fe3O4-PEI-Au Nanoparticles

In order to explore the magnetic and plasmonic properties of the Au-decorated Fe3O4
nanoparticles, we synthesized the Fe3O4-PEI-Au NPs with different densities of Au NPs on
the Fe3O4 NPs surfaces. Figure 3 shows the SEM image of the Fe3O4 NPs, and the average
size was about 80 nm in diameter.
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The coating density of Au NPs on the Fe3O4 NPs surfaces was controlled by changing
the PEI concentration. PEI is used as a bonding material. It is a water-soluble cationic
polymer which contains amino and imino groups in each polymer chain. When the
polymer PEI is dispersed in aqueous solution, each polymer chain is positively charged due
to the amino and imino groups [52]. When the Fe3O4 NPs are immersed in a PEI solution,
positively charged PEI is assembled onto the negatively charged Fe3O4 through electrostatic
self-assembly, leading to the formation of a stable polyelectrolyte layer. Subsequently, the
negatively charged Au NPs are easily electrostatically bound to the positively charged
PEI-coated Fe3O4 NPs, resulting in a formation of the Fe3O4-PEI-Au NPs [53]. Figure 4
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shows the SEM and TEM images of the Au-decorated Fe3O4 NPs treated with different
concentrations of PEI solutions. It shows that 10 nm diameter Au NPs were attached
to the surfaces of 80 nm diameter Fe3O4 NPs. DLS measurements depicted that the
hydrodynamic diameter of the Fe3O4-PEI-Au NPs is about 131 nm (shown in Figure 5),
and the zeta potential is around +18.4 mV. When the Fe3O4 NPs were treated with a
5 mg/mL PEI solution, a small amount of Au NP was coated on the Fe3O4 NPs’ surfaces,
as shown in Figure 4a,e. With an increase in the PEI concentration from 5 to 35 mg/mL, the
coating density of the Au NPs gradually increased, and thus the coverage of the Au NPs
on the Fe3O4 NPs surfaces increased. This is attributed to a greater amount of NH2 groups
provided by PEI that can adsorb more Au NPs with an increase in the PEI concentration.

Materials 2024, 17, x FOR PEER REVIEW 6 of 15 
 

 

The coating density of Au NPs on the Fe3O4 NPs surfaces was controlled by changing 
the PEI concentration. PEI is used as a bonding material. It is a water-soluble cationic 
polymer which contains amino and imino groups in each polymer chain. When the 
polymer PEI is dispersed in aqueous solution, each polymer chain is positively charged 
due to the amino and imino groups [52]. When the Fe3O4 NPs are immersed in a PEI 
solution, positively charged PEI is assembled onto the negatively charged Fe3O4 through 
electrostatic self-assembly, leading to the formation of a stable polyelectrolyte layer. 
Subsequently, the negatively charged Au NPs are easily electrostatically bound to the 
positively charged PEI-coated Fe3O4 NPs, resulting in a formation of the Fe3O4-PEI-Au 
NPs [53]. Figure 4 shows the SEM and TEM images of the Au-decorated Fe3O4 NPs treated 
with different concentrations of PEI solutions. It shows that 10 nm diameter Au NPs were 
attached to the surfaces of 80 nm diameter Fe3O4 NPs. DLS measurements depicted that 
the hydrodynamic diameter of the Fe3O4-PEI-Au NPs is about 131 nm (shown in Figure 
5), and the zeta potential is around +18.4 mV. When the Fe3O4 NPs were treated with a 5 
mg/mL PEI solution, a small amount of Au NP was coated on the Fe3O4 NPs’ surfaces, as 
shown in Figure 4a,e. With an increase in the PEI concentration from 5 to 35 mg/mL, the 
coating density of the Au NPs gradually increased, and thus the coverage of the Au NPs 
on the Fe3O4 NPs surfaces increased. This is attributed to a greater amount of NH2 groups 
provided by PEI that can adsorb more Au NPs with an increase in the PEI concentration. 

 
Figure 4. SEM images of the Fe3O4-PEI-Au NPs treated with (a) 5, (b) 15, (c) 25, and (d) 35 mg/mL 
PEI solution. The corresponding TEM images of the Fe3O4-PEI-Au NPs treated with (e) 5, (f) 15, (g) 
25, and (h) 35 mg/mL PEI solution. 

 
Figure 5. Hydrodynamic diameter distribution of Fe3O4-PEI-Au NPs (PEI: 35 mg/mL). 
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(g) 25, and (h) 35 mg/mL PEI solution.
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3.2.2. X-ray Diffraction (XRD) Analysis

An X-ray diffractometer was used to characterize the crystal structures of the Fe3O4
and Fe3O4-PEI-Au NPs. As shown in Figure 6a, the XRD spectrum of Fe3O4 showed six
diffraction peaks at 2θ values of 30.43◦, 35.78◦, 43.44◦, 53.79◦, 57.34◦, and 62.89◦, corre-
sponding to the diffraction peaks located at (220), (311), (400), (422), (511), and (440). All
these diffraction peaks correspond to the face-centered cubic structure of Fe3O4. Compared
to that of Fe3O4, the XRD spectrum of the Fe3O4-PEI-Au NPs exhibited additional peaks at
38.62◦, 44.67◦, 64.61◦, and 77.62◦, which match well with the (111), (200), (220), and (311)
faces of Au. This result is consistent with that reported in the literature [54]. Therefore, the
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X-ray diffraction spectra further confirmed that Au NPs were successfully loaded onto the
Fe3O4 NPs surfaces. In addition, in Figure 6b, it is implied that with an increase in the PEI
concentration, the characteristic peak intensities of the Au NPs gradually increased, while
the characteristic peak intensities of the Fe3O4 NPs gradually decreased. This is because of
the increase in the density of Au NPs coated on the Fe3O4 NPs surfaces. No peaks of other
impurities were detected in the XRD spectra, indicating a high purity of the materials.
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3.2.3. Analysis of Magnetic and Plasmonic Properties

Firstly, the magnetic properties of the Fe3O4-PEI-Au NPs with different coverages of
the Au NPs on the Fe3O4 NPs surfaces were studied. Figure 7a exhibits the hysteresis loops
of the Fe3O4-PEI-Au NPs with different Au NP densities, controlled by using different PEI
concentrations (the magnetic field scanning range was 20,000 g at 300 K). All the curves for
the Fe3O4 and Fe3O4-PEI-Au NPs have similar shapes. The saturation magnetization of
the Fe3O4 NPs was 60 emu/g, which is same as that of Fe3O4 NPs in a previous study [55].
After treatment with the PEI solution, the saturation magnetization of the Fe3O4-PEI NPs
decreased to 57 emu/g. This value is a little smaller than the one previously reported for
PEI-coated Fe3O4 NPs [56]. This may be due to the agglomeration of particles and the
interaction between them [55]. Furthermore, for the Fe3O4-PEI-Au NPs, when the PEI
concentration increased from 5 to 35 mg/mL, the Au NP coating density increased, and
the saturation magnetization of the Fe3O4-PEI-Au NPs decreased from 55 to 16 emu/g, as
shown in Table 1. The reduction in saturation magnetization of the Fe3O4 NPs due to the
introduction of plasmonic metal NPs could be demonstrated in reference [54]. Therefore,
with the increase in the density of the Au NPs on the Fe3O4 NPs surfaces, the shielding
effect of the Au NPs on the Fe3O4 NPs increases.

Table 1. Absorption peak wavelength and saturation magnetization of the Fe3O4, Au, Fe3O4-PEI-Au
nanoparticles treated with different PEI concentrations.

Fe3O4 Au Fe3O4-PEI-Au
PEI: 5 mg/mL

Fe3O4-PEI-Au
PEI: 15 mg/mL

Fe3O4-PEI-Au
PEI: 25 mg/mL

Fe3O4-PEI-Au
PEI: 35 mg/mL

Absorption peak (nm) / 519 526 535 552 578
Saturation

magnetization (emu/g) 60 / 55 46 31 16
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Fe3O4−PEI−Au (FPAu) NPs treated with 5~35 mg/mL PEI solution.

Due to Fe3O4-PEI-Au NPs with different Au NP densities exhibiting different magnetic
and plasmonic properties, we also investigated the plasmonic properties of the Fe3O4-PEI-
Au NPs. Figure 7b shows the absorption spectra of the Fe3O4-PEI-Au NPs with different
Au NP densities. The Fe3O4 NPs had no absorption peak in the visible region, which
is consistent with the result from a previous study [57]. The absorption peak of the Au
NPs was located at 519 nm. When the PEI concentration increased from 5 to 35 mg/mL,
the Au NP coating density increased and the absorption peak of the Fe3O4-PEI-Au NPs
red shifted from 526 to 578 nm (shown in Table 1) because of the decrease in the gap
distance between the Au NPs. To further investigate the influence of the Au NP coating
density on the enhanced electric field of the nanoparticles, three-dimensional models of the
Fe3O4 nanoparticle decorated with different Au NP densities were built. Many researchers
calculated electric field characteristics by quantum method [58], or classical method [59,60].
Here, the electric field distributions were simulated using the finite element method with
the commercial software COMSOL 5.5. Figure 8 shows the electric field distributions of
Au-decorated Fe3O4 NPs with Au NP coating densities ranging from sparse to dense. It
was observed that with an increase in the Au NP coating density, the electric field became
stronger, and the plasmonic coupling between the adjacent nanoparticles became stronger,
indicating that the plasmonic properties were enhanced.
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and (c) dense.
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3.3. Study on the Properties of the Fe3O4-PEI-Ag Nanoparticles
3.3.1. Fe3O4-PEI-Ag Nanoparticles

According to Figure 7b, the plasmonic resonance peak of the Fe3O4-PEI-Au NPs is
located at about 526 nm. However, when a shorter wavelength of plasmonic resonance is
needed, Fe3O4-PEI-Ag NPs are more suitable; thus, we also need to study their magnetic
and plasmonic properties. Here, we synthesized Fe3O4-PEI-Ag NPs using the same meth-
ods that were utilized to prepare the Fe3O4-PEI-Au NPs. Similarly, positively charged PEI
binds to negatively charged Fe3O4 by electrostatic self-assembly, and negatively charged
Ag nanoparticles combine with positively charged PEI-coated Fe3O4 nanoparticles to form
Fe3O4-PEI-Ag NPs. Figure 9 shows SEM and TEM images of the Ag-decorated Fe3O4
NPs treated with PEI concentrations ranging from 5 to 35 mg/mL. It was observed that
10 nm diameter Ag NPs were attached to the surface of 80 nm diameter Fe3O4 NPs. DLS
measurements show that the hydrodynamic diameter of the Fe3O4-PEI-Ag NPs is about
137 nm (as shown in Figure 10) and the zeta potential is around +19.1 mV. When the Fe3O4
NPs were treated with a 5 mg/mL PEI solution, a small amount of Ag NP was coated on
the Fe3O4 NP surfaces, as shown in Figure 9a,e. When the concentration of PEI increased
from 5 to 35 mg/mL, the coverage of the Ag NPs on the Fe3O4 NPs surfaces increased
gradually. This is because of the greater amount of NH2 groups provided by the PEI
leading to an increased number of Ag NPs attached on the Fe3O4 surface with the increase
in PEI concentration.
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(g) 25, and (h) 35 mg/mL PEI solution.
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3.3.2. X-ray Diffraction Analysis

The crystalline structures of the Fe3O4 and Fe3O4-PEI-Ag NPs were characterized
using an X-ray diffractometer. As shown in Figure 11a, the positions and relative inten-
sities of all diffraction peaks are in good agreement with the standard Fe3O4 and Ag NP
diffraction peaks. Compared to the Fe3O4 NPs, there were four more main peaks in the
Fe3O4-PEI-Ag NP spectrum, which can be clearly observed at 2θ values of 38.42◦, 44.63◦,
64.53◦, and 77.38◦, corresponding to the reflection of the (111), (200), (220), and (311) crystal
planes of Ag [61]. Therefore, the X-ray diffraction spectra further confirmed that Ag NPs
were successfully loaded on the Fe3O4 NPs surfaces. In addition, Figure 11b shows that,
with an increase in the PEI concentration, the characteristic peak intensities of the Ag NPs
gradually increased, while that of the Fe3O4 NPs gradually decreased. This is because of
the increase in the density of Ag NPs coated on the Fe3O4 NPs surfaces. No peaks of other
impurities were detected in the XRD spectra, indicating high purity of the materials.
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NPs treated with 5~35 mg/mL PEI solution.

3.3.3. Analysis of Magnetic and Plasmonic Properties

Figure 12a illustrates the hysteresis loops of the Ag-decorated Fe3O4 NPs treated with
different PEI concentrations. It can be observed that the curves of the Fe3O4 and Fe3O4-
PEI-Ag NPs exhibit similar trends. The saturation magnetization of the Fe3O4 NPs was
60 emu/g. When the PEI concentration increased from 5 to 35 mg/mL, the Ag NP coating
density increased, and the saturation magnetization of the Fe3O4-PEI-Ag NPs decreased
from 56 to 22 emu/g, as shown in Table 2. Therefore, with an increase in the Ag NP density,
the shielding effect of the Ag NPs coated on the Fe3O4 NPs increases.

Table 2. Absorption peak and saturation magnetization of Fe3O4, Ag, and Fe3O4-PEI-Ag nanoparti-
cles treated with different PEI concentrations.

Fe3O4 Ag Fe3O4-PEI-Ag
PEI: 5 mg/mL

Fe3O4-PEI-Ag
PEI: 15 mg/mL

Fe3O4-PEI-Ag
PEI: 25 mg/mL

Fe3O4-PEI-Ag
PEI: 35 mg/mL

Absorption peak (nm) / 406 417 425 442 472
Saturation

magnetization (emu/g) 60 / 56 49 36 22
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Figure 12b shows the absorption spectra of the Ag and Fe3O4-PEI-Ag NPs. It shows
that 10 nm Ag NPs had a plasmonic absorption peak of 406 nm. When the PEI concentration
increased from 5 to 35 mg/mL, the absorption peak of the Fe3O4-PEI-Ag NPs red shifted
from 417 to 472 nm with the increase in the Ag NP coating density (Table 2). This is due
to the decrease in the gap distance between the Ag NPs. To further study the effect of
Ag NP coating density on the enhanced electric field of the nanoparticles, the electric
field distributions were simulated using the finite element method. Figure 13 illustrates
the electric field distributions of Ag-decorated Fe3O4 NPs with varying Ag NP coating
densities ranging from sparse to dense. It was found that, as the coating density increased,
the electric field became stronger. Therefore, according to the analysis of the magnetic
and plasmonic properties of Au- or Ag-decorated Fe3O4 NPs treated with different PEI
concentrations, as shown in Figure 7, Figure 8, Figure 12, and Figure 13, it is implied that
when the PEI concentration is low, such as 5 mg/mL, the coverage of plasmonic metal NPs
on the surface of Fe3O4 NPs is minimal. This results in a weak shielding effect of plasmonic
metal NPs, leading to a strong magnetic field intensity but a weak plasmonic intensity
in Fe3O4-PEI-M (M = Au or Ag) NPs. Conversely, when the PEI concentration is high
(such as 35 mg/mL), the coverage of the plasmonic metal NPs is too large, the shielding
effect of the plasmonic metal NPs is strong, the magnetic intensity becomes weak, and the
plasmonic intensity becomes strong. Therefore, when the PEI concentration is between 15
and 25 mg/mL, there is an optimal coverage of the plasmonic metal NPs on the Fe3O4 NP
surfaces to balance the magnetic and plasmonic properties.
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4. Conclusions

In conclusion, we synthesized Fe3O4-PEI-M (M = Au or Ag) NPs using a simple
method. The density of the plasmonic metal NPs coated on the Fe3O4 NPs surfaces was
adjusted by controlling the PEI concentration. We investigated the effects of the Au or
Ag NP coating density on the magnetic and plasmonic properties of the Fe3O4-PEI-M
(M = Au or Ag) NPs. We found that, for the Fe3O4-PEI-M (M = Au or Ag) NPs, with an
increase in the plasmonic metal NP density, the saturation magnetization decreased, the
plasmonic intensity increased, and the plasmonic absorption peak was red shifted. When
the concentration of PEI was between 15 and 25 mg/mL, Fe3O4-PEI-M (M = Au or Ag) NPs
exhibited both excellent magnetic and plasmonic properties. The relationships among the
coating density of the plasmonic metal NPs and both magnetic and plasmonic properties
were established. This work can provide guidance for the application of Fe3O4-M (M = Au
or Ag) NPs in the biomedical field.
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