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Abstract: Artificial intelligence (AI) is revolutionizing the textile industry by improving the prediction
of fabric properties and handfeel, which are essential for assessing textile quality and performance.
However, the practical application and translation of AI-predicted results into real-world textile
production remain unclear, posing challenges for widespread adoption. This paper systematically
reviews AI-driven techniques for predicting these characteristics by focusing on model mechanisms,
dataset diversity, and prediction accuracy. Among 899 papers initially identified, 39 were selected
for in-depth analysis through both bibliometric and content analysis. The review categorizes and
evaluates various AI approaches, including machine learning, deep learning, and hybrid models,
across different types of fabric. Despite significant advances, challenges remain, such as ensuring
model generalization and managing complex fabric behavior. Future research should focus on
developing more robust models, integrating sustainability, and refining feature extraction techniques.
This review highlights the critical gaps in the literature and provides practical insights to enhance
AI-driven prediction of fabric properties, thus guiding future textile innovations.
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1. Introduction

With the rapid technological advancements of the Fourth Industrial Revolution, the
application of artificial intelligence (AI) in the textile industry is becoming a forefront
area of research and practice. This development builds on a long history of innovation,
beginning with the mechanization introduced during the First Industrial Revolution and
further propelled by automation and digitalization trends over the past decades. AI has
introduced unprecedented innovations in textile design, manufacturing, and quality control,
particularly in predicting fabric properties and handfeel.

Fabric properties, such as strength, elasticity, breathability, and handfeel characteristics
like softness and roughness, are critical factors that determine the final performance of
textiles [1]. Traditionally, the measurement and evaluation of these properties relied heavily
on laboratory testing and expert judgment, which are not only time-consuming and costly
but also inherently subjective [2,3]. As a result, there has been a growing interest in
leveraging AI technology to automate the prediction of these properties, thus driving the
industry toward greater efficiency, consistency, and sustainability.

AI-based approaches, particularly machine learning and deep learning models, have
shown significant potential in predicting fabric properties and handfeel across multiple
dimensions. These models can effectively handle large-scale datasets, capture complex non-
linear relationships between fabric attributes, and provide reliable predictions that, in some
cases, surpass the accuracy of conventional methods [4,5]. For instance, AI techniques can
incorporate diverse factors such as environmental conditions and user-specific preferences,
which are typically overlooked in traditional testing methods. However, despite these
advantages, AI models still face several challenges, including limited generalizability due
to dataset constraints, high computational requirements, and lower interpretability [6,7].
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These limitations may hinder their broader adoption in real-world applications that require
transparent decision-making and explainability [5,7].

Compared to traditional methods, such as the Kawabata Evaluation System (KES)
and Fabric Assurance by Simple Testing (FAST), which rely on physical measurements,
AI models can handle complex, multidimensional data and provide real-time feedback,
making them highly suitable for the fast-paced textile industry [8,9]. While conventional
methods often struggle to address the nonlinear relationships between various fabric
properties, AI excels in identifying hidden patterns and offers real-time optimization, which
is critical for meeting consumer demands and accelerating product development [10].

Most existing studies focus on predicting a single property or handfeel characteristics,
with little attention given to a systematic literature review (SLR) of AI technologies that are
used to predict more than one fabric property and handfeel itself. Furthermore, as the indus-
try shifts toward more sustainable practices, there is a need to develop AI models that not
only optimize fabric performance but also account for environmental impact and resource
efficiency [7,11]. Moreover, AI-driven innovations can contribute to new business models
and profit streams by introducing advanced capabilities such as on-demand customization
and intelligent supply chain management. Therefore, a comprehensive review of AI-driven
techniques to predict fabric properties and handfeel is not only essential for mapping out
current research but also to provide critical insights into future research directions.

This study presents a systematic review of AI-driven techniques to predict fabric
properties and handfeel by focusing on the mechanisms of these models, the diversity and
scale of the datasets, and the accuracy and practical effectiveness of the predictions. We will
review successful cases in current research, analyze their applications and limitations, and
explore ways to enhance model accuracy in various application scenarios. Additionally,
this paper will discuss the potential applications of these technologies in environmental
sustainability and future textile developments.

Following this introduction, Section 2 will discuss the application mechanisms of AI
models in predicting fabric properties. Section 3 will review the current research, and focus
on the performance of different models and their real-world applications. Section 4 will
analyze the impact of dataset diversity and scale on the accuracy of model predictions.
Finally, Section 5 will outline future research challenges and directions to promote the
broader application of AI in the textile industry.

2. Materials and Methods

This study reviews the effectiveness of AI in predicting handfeel-related fabric proper-
ties, such as softness, stiffness, and drape. This method was chosen because it provides a
systematic approach that ensures objectivity, rigor, and transparency while offering insights
into theoretical knowledge and current trends and developments relevant to the research
question [12]. We followed the PRISMA 2020 guidelines (Registered on OSF Registries:
accessed 19 September 2024, https://doi.org/10.17605/OSF.IO/CYD9P) to ensure trans-
parency and rigor in the selection, analysis, and synthesis of studies. We conducted a
focused search on the Web of Science (WoS) database, and targeted studies with successful
predictions of fabric properties. The review identified research work with a high accuracy
(over 80%) in predicting attributes like tensile strength and elasticity by using datasets
with a few dozen to several hundred fabric samples. In addition to the database searches,
manual and reference list searches were conducted to identify additional papers. After the
selection process, the identified studies were further analyzed by using quantitative and
qualitative methods to help answer the primary research questions, as shown in Figure 1.

2.1. Eligibility Criteria

The use of AI in measuring and predicting fabric properties is extensive, which
complicates the identification of relevant studies on handfeel. To refine the literature search,
we focused on three key categories: (1) handfeel measurement and evaluation systems,
(2) fabric properties and predictive features, and (3) AI and machine learning models. These

https://doi.org/10.17605/OSF.IO/CYD9P


Materials 2024, 17, 5009 3 of 20

areas are integral to tactile perception research. The search was confined to publications
from 2014 to August 2024 to ensure the inclusion of the most recent findings.
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The initial search was conducted on the WoS database, which was chosen for its peer-
reviewed content and detailed categorization by research area, which is crucial for finding
articles on fabric handfeel. We restricted the search to journal articles and conference
proceedings related to Materials Science, Textiles, Computer Science, Software Engineering,
and Materials Science Composites, published in English. The keywords were divided into
two groups: one that targets AI tools and the other on fabric measurement and prediction
terms. The search string included “artificial intelligence”, “machine learning”, “neural
network”, and other related terms (Figure 2). As shown in Figure 3, the initial search
yielded 899 results from the WoS database that met the search criteria, followed by a
rigorous literature selection process. The identified studies were screened according to the
inclusion criteria in Table 1.

Table 1. Study selection criteria.

Inclusion Criterion Value

Papers related to the textile industry Include

Papers written in the English language Include

Title includes at least one searched keyword Include

Abstract includes at least one searched keyword from each topic Include

Abstract is relevant to the research question Include

Articles that lacked detailed descriptions of AI models, algorithms, or
datasets, or had insufficient full-text access for analysis Exclude

Studies focusing solely on textile processing rather than fabric
property prediction Exclude

studies that demonstrated high levels of selection bias, performance
bias, or reporting bias Exclude
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Data extraction followed a predefined form that captured key study characteristics,
including AI models, dataset size, and outcome measures such as prediction accuracy,
mean absolute error (MAE), and root mean square error (RMSE). In addition to these
primary outcomes, variables such as dataset diversity, preprocessing techniques, and
AI model details (algorithms, parameters, and training procedures) were also recorded.
Funding sources were noted to assess potential conflicts of interest, while publication
year and journal type were used to track research trends. When information was unclear,
assumptions were made based on the study context, and any missing data that could not
be inferred were noted as study limitations. Two reviewers independently extracted the
data, resolving discrepancies through consensus.

Papers that are not related to the categories were excluded, and only English-language
papers were retained, which resulted in the elimination of 514 items to provide 386 papers.
Title and abstract reviews that lacked sufficient detail on the used AI models eliminated
112 papers to further reduce the number of studies to 273 relevant papers. Due to 87 reports
not being retrievable, the number of papers was reduced to 186 for eligibility assessment. A
full-text assessment eliminated an additional 152 papers that did not directly contribute to
the research question but originated instead in unrelated disciplines like computer science
or other material sciences.

Concurrently, an unstructured search that used the same keywords was conducted in
different online repositories, Google Scholar, and citation searching to identify additional
potentially relevant papers. This approach contributed an additional 49 papers. Full-
text screening process was applied to papers collected from the other sources. After the
screening, 5 papers met the inclusion criteria. Ultimately, 5 papers from other sources were
included in the review, and, in the end, 39 studies were used for the analysis (Figure 3).

2.2. Analyzing the Literature

The selected literature sample, which included 39 studies, was analyzed using both
quantitative and qualitative methods. The quantitative analysis was conducted to gain
insights into the characteristics of the collected sample, focusing on publication trends,
citation patterns, and key research topics. This was accomplished using bibliometric tech-
niques, a mathematical analysis of bibliographic units, to systematically examine citation
patterns and trends in AI-driven prediction of fabric properties. By analyzing publication
data, keywords, and citations, this approach provided a comprehensive view of how AI
techniques have been applied in textile research over time and across different subfields.

A three-step research process was employed in this study. Two researchers conducted
the literature search and data collection independently based on predefined criteria. A
third researcher performed cross-validation to ensure consistency in inclusion/exclusion
decisions, keyword extraction, and data accuracy. The third researcher followed specific
quality control parameters, such as verifying the consistency of data extraction and resolv-
ing disagreements through consensus. This process was aligned with PRISMA guidelines
to maintain inter-rater reliability and reduce potential bias.

A qualitative analysis was carried out to further explore the findings from the quan-
titative data. This approach focused on reviewing AI-driven techniques for predicting
fabric properties, such as softness, stiffness, and drape, with particular attention to model
mechanisms, dataset diversity, and prediction accuracy. Through this dual approach, the
analysis identified key trends, challenges, and limitations, such as the generalizability of AI
models and the impact of data variability on model performance, thus providing a detailed
understanding of the current state of research in this domain.

3. Results and Analysis
3.1. Bibliometric Analysis
3.1.1. Publication Trends

This study focuses on literature from the ten-year period between 2014 and 2024.
Notably, there has been a significant increase in relevant publications from 2022 to 2024,
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with 17 papers (44%) being published during this time. Figure 4 presents an exponential
forecasting curve (R2 = 0.7784). This trend underscores the novelty of the research area,
and emphasizes the need for a comprehensive review. The analysis found that 36 of
the 39 papers are journal articles, predominantly published in 21 different journals. The
“Textile Research Journal” published five articles, which indicates that this journal prioritizes
prediction techniques for textile performance. Other journals, like ACM Transactions on
Graphics and Indian Journal of Fibre & Textile Research, also published multiple articles, which
reflects a broader interest in AI applications for predicting and evaluating fabric hand.
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3.1.2. Keyword Analysis

The keywords were analyzed by using the full counting method, which highlights
significant relationships within a dataset. The analysis identified 13 keywords with more
than 2 occurrences, to form a visual network that categorizes the research into four clusters
(Figure 5). The most frequent keywords are “fabric hand” and “objective evaluation”,
which show a strong focus on the quantitative assessment of fabric properties by using
AI tools. The clustering revealed three main research themes: “AI-driven evaluation and
prediction for handfeel characteristics”, which focuses on tactile comfort and objective eval-
uations; “AI-driven evaluation and prediction for predicting fabric mechanical properties”,
which emphasizes the mechanical properties and performance; and “AI-driven predictive
modeling for fabric drape”, which centers on fabric drape and simulation processes.
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Based on the keyword co-occurrence in the analyzed sample, two methods for the
network visualization were considered: (1) automatically extracting frequently used terms
from titles or abstracts, and (2) generating data maps by using directory metadata key-
words [14]. This study employs the second method to clearly identify the primary re-
search themes by using predefined keywords that align with the main topics. The bibli-
ographic metadata was gathered by using EndNote (version 21.0.0.19023) and analyzed
with VOSviewer.

3.2. Content Analysis
3.2.1. Measurement and Evaluation Systems

• Objective and Subjective Evaluations of Fabric Properties

The evaluation of fabric properties and handfeel is critical in textile research, which
encompasses both subjective and objective methods. The Kawabata Evaluation System
(KES) is a key tool for measuring mechanical properties related to fabric handfeel, including
bending, shear, tensile, and compression stiffness, along with surface smoothness and
friction [15]. Other systems like Fabric Assurance by Simple Testing (FAST) [16] and the
Fabric Touch Tester [17] provide objective evaluations as well. The Fabric Touch Tester, for
instance, assesses compression, surface friction, thermal, and bending properties to offer a
comprehensive index of fabric handle characteristics [18].

Recent research has increasingly integrated subjective and objective methods to com-
bine sensory analysis with physical measurements. The authors in [19] highlighted individ-
ual differences in tactile perception by analyzing finger sliding over fabrics, using KES to
measure physical properties and proposing skin vibration as an alternative measure for
fabric handfeel. Additionally, innovative methods like the three-dimensional (3D) drape
model, which uses a principal component analysis (PCA), have been explored for the
objective assessment of fabric handfeel [20].

• Innovative Methods for Drape Measurement

Recent research has introduced advanced methods to improve the accuracy and
applicability of fabric drape measurements. One method uses a reciprocating device to
simulate fabric movement to identify key factors like node number, amplitude, and the
position of the first node, which are crucial for assessing dynamic drape [21]. Another
approach combines multidirectional stiffness and drape measurement into a single method
by introducing parameters like projection area and length, which correlate well with
bending performance and drape, thus offering a more comprehensive evaluation than
traditional methods [22].

A learning-based method that uses a drape tester adopts a model-in-the-loop strat-
egy, which uses regression-based neural networks to estimate the simulation parameters,
thus enhancing fabric simulation accuracy [23]. Additionally, 3D-printed human models
enable more realistic static and dynamic drape evaluations, which can capture 3D fabric
behavior [24]. Methods that use Kinect sensors provide non-contact 3D drape measure-
ments, thus correlating well with traditional and subjective evaluations [25]. The Textechno
Drapetest device uses a digital image analysis system and laser triangulation sensor in
Christ et al. [26] to measure the drape effects, thus offering insights into controlling fabric
behavior during 3D shaping [26]. Lastly, Kim [27] used a method that involves a depth
camera with an elevating device to compare traditional drape testing with 3D scanning,
thus adding valuable insights into the drape phenomena of fabric through 3D analysis.

3.2.2. Fabric Properties and Predictive Features

In AI-driven techniques to predict fabric properties and handfeel, key attributes like
mechanical and sensory properties are vital for accurate modeling and predicting tactile
comfort and overall handfeel.

Texture, weave parameters, tactile comfort, surface friction, and functional surface
treatments are key factors in AI-driven predictions. Seçkin et al. [7] used machine learning



Materials 2024, 17, 5009 8 of 20

algorithms like XGBoost and random forest (RF) to analyze texture and weave parameters
from microscopic images, and created a dataset with 458 inputs and 4 outputs, which
led to accurate predictions of fabric properties and consistent product quality. Tadesse
et al. [28,29] and Ahirwar and Behera [24] focused on mechanical properties and handfeel
attributes, and utilized tools like KES-FB, PCA, artificial neural networks (ANNs), and
adaptive network-based fuzzy inference systems (ANFISs) to predict tactile comfort, thus
highlighting the importance of both subjective and objective assessments. Surface friction,
crucial for comfort, was modeled by Ezazshahabi et al. [30], who used a genetic algorithm to
effectively predict tactile characteristics based on structural parameters, which streamlines
design processes. Additionally, Tuigong and Xin [31] showed that mechanical and surface
properties can be used to predict fabric hand stiffness, thus further highlighting the role of
these characteristics in fabric property evaluation. Functional surface treatments, including
finishes and coatings, significantly impact fabric handfeel, as shown by Tadesse et al. [28],
who used fuzzy logic and neural networks to predict hand values to optimize production
for consumer preferences [28]. Thermal physiological properties, vital for comfort, were in-
tegrated into handfeel models by Xue et al. [32], thus enhancing the prediction of consumer
preferences [32]. Finally, Das and Shanmugaraja [33] predicted weave patterns, which are
essential for tactile and aesthetic quality by using ANNs to improve accuracy and efficiency
in fabric production.

3.2.3. AI and Machine Learning Models

In AI-driven predictions of fabric properties and handfeel, a number of different AI
and machine learning models are used to enhance accuracy and efficiency in the textile
industry. Automated machine learning (AutoML) technologies simplify model selection
and optimization, as seen in Metin and Bilgin [5], who evaluated seven open-source tools.
EvalML, an AutoML library, excels in determining the mean absolute error (MAE), while
AutoGluon has the best performance in calculating the mean absolute percentage error
(MAPE), root mean square error (RMSE), and R-squared, thus highlighting the need to
balance accuracy with computational efficiency in predicting fabric quality [5].

Machine learning algorithms like XGBoost and RF have proven effective in predicting
texture and weave parameters. In Seçkin et al. [7], XGBoost achieved a 0.987 accuracy in
texture classification, and RF had the lowest MAE in specific mass prediction, which shows
the potential of these algorithms in enhancing the accuracy of production processes and
ensuring a consistent fabric handfeel.

Deep learning models, including convolutional neural networks (CNNs) and hybrid
YOLOv4-R-CNN models, are used to detect fabric detects, and are crucial for maintaining
high fabric quality [34,35]. These models also predict material parameters like stiffness
and damping, which are essential for accurate fabric simulations in virtual environments.
Mao et al. [36] used deep learning models such as Transformer, to obtain a 99.01% accuracy
in predicting key material parameters, thereby improving the realism and efficiency of
fabric simulations.

ANNs are extensively employed to predict various fabric properties, including thermal
characteristics, air permeability, and tensile strength. Jhanji et al. [37] highlighted the
effectiveness of ANNs in modeling complex and nonlinear relationships, while Erenler
and Oğulata [34] achieved a high correlation (R = 0.99366) in predicting air permeability
based on factors like weft count and weave pattern. Kothari and Bhattacharjee [38] applied
ANNs to predict thermal properties and capture the intricate relationships between fabric
structure and thermal behavior more robustly than traditional methods. Ahirwar and
Behera [24] showed a strong correlation (0.82) between ANN predictions and subjective
assessments of fabric handfeel, while Elkateb [4] validated the utility of ANNs in predicting
mechanical properties like tensile strength and bending stiffness, which underscores their
potential to enhance customer satisfaction through accurate predictions of handfeel [4,39].
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4. Applications

The themes identified through the application of AI include (1) predictive modeling
for simulation, (2) optimization of fabric properties, and (3) evaluation and classification
driven by AI, which are analyzed in depth in this section (Figure 6). Within each theme, the
following aspects are reviewed:

1. The application of AI algorithms for specific fabric properties;
2. How AI has overcome challenges in the prediction of fabric properties, particularly

with complex datasets;
3. Modifications made to AI algorithms to accommodate specific application domains.
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4.1. Prediction of Fabric Handfeel Characteristics

AI techniques such as extreme learning machines, genetic algorithms, fuzzy logic,
ANFISs, and deep learning have been used in studies to predict various fabric properties
with high accuracy. These methods analyze features derived from tactile sensors, visual
attributes, and mechanical measurements to predict the tactile qualities of fabrics. The
datasets used in these studies vary widely, ranging from a few dozen textile samples to tens
of thousands of images, thus reflecting the scalability and adaptability of AI techniques in
this field (Table 2).
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Table 2. Summary of key studies of AI techniques for predicting fabric handfeel characteristics.

Fabric Properties Predictive Features AI & Techniques Dataset Size Accuracy Rate Reference

Texture recognition
(roughness,

smoothness)

Spatiotemporal spike
patterns derived

from tactile sensors

Extreme learning
machine

10 graded textures
with 50 data samples

92% classification
accuracy Rasouli et al. [40]

Tactile properties
(softness,

smoothness,
fullness, flexibility,
delicacy, lightness,

resiliency)

Relations between
tactile properties and
total preference for

men’s suits

Genetic algorithm,
fuzzy comprehensive

evaluation

50 textile fabrics with
various tactile

properties

Close to genetic
algorithm solution:
95% (accuracy in

weight distribution)

Xue et al. [41]

Tactile properties
(softness,

smoothness,
flexibility, etc.)

Visual features
(drape, fit at

abdomen and hip,
wave size, etc.)

ANFISs

18 textile samples
used for training;

3 additional samples
for testing

Predictive errors for
tactile properties do
not exceed 1 on an

11-point scale

Xue et al. [42]

Tactile properties Visual features Deep learning,
ResNet-50

11,328 images
(training), 2832
images (testing)

99.3% accuracy in
woven fabric types;

error level below 10%
in yarn quality

evaluation

Gültekin et al. [43]

Mechanical
properties (tensile,
shearing, bending,

compression, surface
friction)

Total hand value and
tactile comfort scores

predicted by using
low-stress

mechanical
properties

Artificial neural
networks, ANFISs

486 measurements:
15 mechanical
properties * 6

samples * 3 replicas *
2 directions

ANN RMSE: 0.014;
ANFIS RMSE: 0.0122,

with significantly
lower errors than

standard deviations
(ANN: 0.644, ANFIS:

0.85)

Tadesse et al. [29]

Tactile comfort
(warm–cool,

itchy–silky, etc.)

Hand value and total
hand value predicted

from sensory
attributes

Fuzzy logic model,
ANN

9 functional fabrics,
various finishing

parameters

FLM RMSE: 0.21;
ANN RMSE: 0.13;
FLM RMPE < 10%;
ANN RMPE: 2.24%

Tadesse et al. [28]

In the application of AI for predicting fabric handfeel characteristics, various tech-
niques have been employed for different fabric properties. For instance, Rasouli et al. [40]
used extreme learning machines to classify textures such as roughness and smoothness,
and obtained a 92% rate of accuracy with a dataset of 10 graded textures. Xue et al. [41,42]
applied genetic algorithms and ANFISs to predict tactile properties like softness and flex-
ibility, with their models obtaining close to a 95% accuracy in weight distribution and
minimal predictive errors on an 11-point scale, respectively. Gültekin et al. [43] utilized
deep learning techniques, specifically ResNet-50, to predict the tactile properties based on
visual features, and obtained a 99.3% accuracy rate in woven types of fabric and an error
level of less than 10% in yarn quality evaluation. Finally, Tadesse et al. [28,29] combined
ANNs with fuzzy logic models to predict tactile comfort scores and mechanical properties,
with their models showing low error rates and high prediction accuracy.

4.2. Prediction of Fabric Mechanical Properties

Fabric mechanical properties such as shear strength, elasticity, bending stiffness, and
tensile strength are essential for determining the durability, functionality, and application
suitability of textiles. Traditional methods of determining these properties often involve
complex physical tests, which can be time-consuming, costly, and sometimes less adaptable
to varying conditions. AI techniques are a promising alternative, and allow more efficient,
accurate, and scalable predictions of the mechanical behaviors of fabric (Table 3). This
approach not only enhances the accuracy of material assessments but also facilitates the
development of new textile materials with tailored mechanical characteristics.
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Table 3. Summary of key studies of AI techniques for predicting mechanical properties of fabric.

Fabric Properties Predictive
Features AI & Techniques Dataset Size Rate of Accuracy Reference

Fabric Shear and
Deformation

Shear force,
deformation

patterns, normal
stress, von Mises

stress

Finite element
analysis,

Bernoulli–Euler
beam theory,

Coulomb’s friction
model

Multiple shear
angles simulated;
detailed yarn and

fabric unit cells
analyzed

Good agreement
between finite

element analysis
and theoretical

predictions,
accuracy rate not
explicitly stated

but shown in
comparisons

Basit and Luo [44]

Fabric Strength Bursting Strength,
Tensile Strength

Neural network,
regression models 20 fabric samples

R2 = 0.765
(regression model),
fuzzy logic close to

real values

Kilic [45]

Elastic Properties

Warp and weft
elasticity, Bias

distortion, Pilling
prediction from

fabric design
features

Automated
machine learning,

multi-target
regression using

deep artificial
neural network

8650 fabric
examples

NMAE: 4% for
weft elasticity, 11%

for pilling, 87%
accuracy for textile

composition

Ribeiro et al. [46]

Air permeability,
Porosity

Fiber distribution,
areal weight,

texture features

Artificial neural
networks 192 image frames

High regression
(R = 0.99 for air
permeability)

Gültekin et al. [43]

In-Plane Shear
Properties

Shear force,
deformation under
bias-extension test

Finite element
analysis, analytical

methods

Various textile
composite

reinforcements and
prepregs

Agreement
between

experimental and
simulated shear

behavior

Boisse et al. [47]

Bending Stiffness
Multi-view depth
images of draped
fabric specimens

Deep neural
networks,

Simulation-in-the-
loop

618 real-world
fabrics; 2.3 M

synthetic depth
images

Improved
simulation fidelity;
exact accuracy rate

not stated but
significant

improvement over
traditional
methods

Feng et al. [23]

3D Textile
Architecture

Yarn paths, weave
initial architecture

Convolutional
neural networks,
long short-term

memory

4000 weaving
architectures

Stiffness properties
prediction

error < 10%
Koptelov et al. [48]

Yarn-Level Fabric
Mechanics

Stiffness,
Nonlinearity,

Anisotropy of
knitted fabrics

Yarn-level
simulation,

thin-shell model,
parameter fitting

33 different knitted
fabrics

Avg. error:
17.59% ± 8.33%
for stretch force,

16.84% ± 8.11% for
compression

Sperl et al. [49]

Mechanical
Properties of

Woven
Composites

Fiber angles, resin
material

parameters, and
effective modulus

Convolutional
neural networks,

finite element
analysis

3000 woven fiber
composites

Average error < 5%
compared to FEM

results
Hsu et al. [50]

Textile Polymer
Composite
Materials

Tensile strength,
compressive

strength, bending
strength,

elongation at break

Multi-objective
optimization,

neural networks,
support vector

machines

420 samples with
11 physical

characteristics

Optimized ANN
accuracy: 90.2%;
SVM accuracy:

89.9%

Malashin et al. [51]
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The AI-driven prediction of the mechanical properties of fabrics has been used across
various types of fabric with notable success. Basit and Luo [44] used a finite element
analysis (FEA) along with the Bernoulli–Euler beam theory and Coulomb’s friction model to
accurately predict shear force and deformation patterns. Kilic [45] applied neural networks
and regression models to predict fabric strength by focusing on bursting and tensile strength,
and obtained an R2 of 0.765 and close-to-real values with fuzzy logic, thus demonstrating
the potential of AI in predicting strength. Ribeiro et al. [46] used automated machine
learning and deep neural networks to predict warp and weft elasticities, and obtained a
normalized mean absolute error (NMAE) of 4% and 87% accuracy for textile composition,
thus underscoring the accuracy of AI in predicting elasticity. Gültekin et al. [43] effectively
modeled air permeability and porosity by using ANNs, and they obtained a high regression
value (R = 0.99).

In terms of bending and stiffness properties, Feng et al. [23] utilized deep neural
networks and in-the-loop simulation, and significantly improved simulation fidelity in
predicting bending stiffness, while Koptelov et al. [48] achieved less than 10% error in pre-
dicting 3D textile architecture with the use of CNNs and LSTM networks, thus highlighting
the capability of AI in handling complex structural properties.

For comprehensive mechanical properties, Kilic et al. [43] showed that there is a strong
agreement between experimental and simulated in-plane shear properties by using FEA
and analytical methods. Sperl et al. [49] predicted the stiffness, nonlinearity, and anisotropy
in knitted fabrics with yarn-level simulation and thin-shell models. They reported an
average error of 17.59% for the stretch force and 16.84% for compression. Hsu et al. [50]
combined CNNs with FEA to predict woven composite properties with less than 5% error,
while Malashin et al. [51] obtained an accuracy of 90.2% with neural networks and 89.9%
with support vector machines in predicting tensile strength, compressive and bending
strength, and elongation in textile polymer composites. These studies collectively show the
efficacy and versatility of AI in predicting the different mechanical properties of fabric with
a high degree of accuracy.

4.3. Prediction of Fabric Drape

The prediction of fabric drape is a vital aspect of textile engineering, as drape charac-
teristics significantly influence the aesthetic and functional qualities of garments and other
textile products. Traditionally, fabric drape has been assessed through physical testing
methods, which, while effective, can be labor-intensive and limited in scope. The integra-
tion of AI to predict fabric drape has provided new possibilities for more accurate, efficient,
and scalable assessments. AI techniques such as fuzzy logic, finite element method (FEM),
and CNNs have been employed to predict various drape-related properties, which range
from drape coefficients and flexural rigidity to garment fit and tactile sensation, see in
Table 4.

Table 4. Summary of key studies of AI techniques for predicting fabric drape.

Fabric Properties Predictive
Features

AI and
Techniques Dataset Size Accuracy Rate Reference

Fabric Drape
Drape coefficient,
flexural rigidity,

tensile elongation

Fuzzy logic, image
analysis 20 fabric samples

Fuzzy logic
method provides

results close to
those with

Cusick’s method
(accuracy

within 1%)

Kilic [45]

Drape Behavior of
3D Woven Fabrics

Shear force, tensile,
and bending

behavior of 3D
woven fabrics

FEM, shell
elements,

hyperplastic model

Various textile
composite

reinforcements

Validation against
experimental

results with good
agreement

Hübner et al. [52]
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Table 4. Cont.

Fabric Properties Predictive
Features

AI and
Techniques Dataset Size Accuracy Rate Reference

Fabric Drape
Behavior

Drape coefficient,
node number,
drape distance

ratio, fold depth
index

Fuzzy logic 63 woven fabrics

High correlation:
DC (0.943), NN

(0.936), DDR
(0.969), FDI (0.946)

Hamdi et al. [53]

Garment Fit and
Drape

Characteristics

Fit score
evaluation based

on body
dimensions and

drape simulation

ANN, drape
simulation

15–17 sizes for
training, multiple

body models

Not explicitly
stated, but

improved fit scores
compared to
traditional
methods

Oh and Kim [54]

Fabric Drape and
Mechanical
Properties

Drape coefficient,
stretch stiffness,

bending stiffness

CNN with
ResNet-18 and
self-attention
mechanisms

8 fabric samples
(5 knit, 3 woven)

NMAE for
AI-based drape:

3–51%; for
PT-based drape:

2–11%

Youn et al. [6]

Drapability and
Tactile Sensation

(Softness)

Drape coefficient,
softness

Fuzzy C-means
clustering, ANN 777 fabric samples ANN prediction

accuracy: 83.5% Lee et al. [20]

The AI applications for predicting fabric drape have shown significant advancements
across various studies, with each focusing on different aspects of drape and using different
techniques. Kilic [45] employed fuzzy logic combined with image analysis to predict fabric
drape coefficients, and obtained an accuracy within 1% of that with the traditional Cusick’s
method. This approach shows the potential of AI to closely replicate established physical
testing methods. Hamdi et al. [53] also used fuzzy logic to predict drape behavior in woven
fabrics, and obtained high correlations across multiple metrics such as drape coefficient
and folds depth index, thus further reinforcing the reliability of AI in accurately modeling
drape characteristics.

Hübner et al. [52] focused on the drape behavior of 3D woven fabrics by using FEM
and a hyperelastic model, and validated their simulations with the experimental results.
They highlighted the effectiveness of AI models in simulating complex drape behaviors,
which is crucial for advanced textile engineering. In the realm of garment fit and drape
characteristics, Oh and Kim [54] applied ANNs in combination with drape simulation,
which leads to improved fit scores compared to traditional methods, although specific
accuracy rates were not detailed.

Youn et al. [6] expanded the scope by using CNNs with ResNet-18 and self-attention
mechanisms to predict both the drape and mechanical properties of fabrics. Their work
achieved normalized MAEs that range from 3% to 51%, thus showing the versatility
of AI in handling multiple fabric characteristics simultaneously. Finally, Lee et al. [20]
integrated fuzzy C-means clustering with ANNs to predict drapability and tactile sensation,
particularly softness, with an accuracy of 83.5% across 777 fabric samples. This study
underscores the effectiveness of AI in evaluating not only the drape but also the tactile
qualities of fabrics.

5. Challenges and Future Directions
5.1. Challenges and Limitations

Based on the results of the literature review presented in this study, three specific sets
of challenges (which correspond to the identified application domains) are summarized:
dataset limitations, complex modeling requirements, and hardware constraints.

Dataset Limitations
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The generalizability and predictive power of AI models largely depend on the quality
and diversity of training datasets. Current datasets used for fabric property prediction
tend to focus on specific fabric types or limited mechanical properties, resulting in a lack of
representation across the diverse range of textile materials. This absence of comprehensive
datasets increases the risk of bias, model overfitting, and reduced performance when the
model is applied to unseen data. Additionally, for subjective attributes such as handfeel, the
absence of standardized measurement methods further complicates the dataset construction.
As a result, these limitations restrict the models’ applicability and diminish the predictive
accuracy for more complex fabric properties.

To address these challenges, the development of standardized and high-quality bench-
mark datasets encompassing a broader range of fabric properties is necessary. Methods
such as synthetic data generation through Generative Adversarial Networks (GANs) or
physics-based simulations can be considered to augment existing datasets, thereby enhanc-
ing data diversity and improving model robustness. Moreover, the integration of subjective
sensory evaluations with objective physical measurements would provide a more holistic
and comprehensive dataset, enabling AI models to better capture the multifaceted nature
of fabric properties.

Complex Modeling Requirements

The inherent complexity and nonlinearity of fabric properties, such as drape, stiffness,
and handfeel, present significant challenges for AI models. Simplified assumptions or linear
approximations employed in traditional modeling approaches often fail to capture the true
underlying dynamics of fabric behaviors, leading to suboptimal predictions. Complex
modeling is further challenged by the multifactorial nature of fabric properties, where
various parameters such as material composition, weave structure, and environmental
factors interact in nonlinear ways. This complexity necessitates the use of advanced
modeling techniques capable of representing such intricate relationships.

Addressing these challenges requires the implementation of multi-scale modeling
approaches, which can capture interactions at both the microstructural and macroscopic
levels of textile properties. Additionally, hybrid models that combine machine learning
with physics-based simulations can leverage the strengths of both approaches, providing
more accurate and explainable predictions. Techniques such as transfer learning and meta-
learning can also be adopted to improve the adaptability of models to new fabric types and
properties, reducing dependency on extensive retraining and large datasets.

Hardware and Computational Constraints

The computational demands of AI models, particularly deep learning architectures,
pose significant challenges in the context of fabric property prediction. High-dimensional
data, complex model structures, and large-scale datasets necessitate substantial memory
and processing power, often requiring the use of specialized hardware such as Graph-
ics Processing Units (GPUs) or cloud-based computing resources. This dependency on
advanced hardware can limit the accessibility of AI-driven methods to researchers and
industry practitioners, particularly those with restricted computational resources.

To mitigate these hardware constraints, model optimization techniques such as prun-
ing, quantization, and knowledge distillation should be considered to reduce the compu-
tational load without sacrificing model performance. Moreover, distributed computing
frameworks and edge computing can facilitate more efficient training and inference by
distributing computational tasks across multiple devices. Cloud-based platforms may also
serve as a viable solution by providing scalable and on-demand computational resources,
thereby enabling the deployment and testing of sophisticated models even in environments
with limited local hardware capacity.

Study Limitations

Application of the SLR method in this research allowed the generalizability and
consistency of research findings, following the goal to systematize and comprehend the
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scope of application of AI in the prediction of fabric properties and handfeel. To provide
transparency, clarity, integration, focus, equality, accessibility, and coverage of the study,
the authors strictly followed the PRISMA statement [13,55].

Despite these strengths, a few limitations should be noted. First, the study’s inclu-
sion criteria focused on peer-reviewed databases and citation searches, which may have
inadvertently excluded some relevant studies from other sources, potentially affecting the
scope of the review. Second, the analysis was limited to English-language studies, which
could introduce linguistic and retrieval biases. Third, no formal risk-of-bias assessment
tool was applied, which might have influenced the study selection and interpretation.
Nonetheless, independent reviews and consensus were conducted to minimize potential
biases. Despite these constraints, the findings offer a robust basis for future research in
AI-driven prediction of fabric properties.

5.2. Future Research Directions

Future research needs to address some of the identified challenges in this study by
advancing AI and fabric handfeel. They can do so by using measuring and predicting tech-
nologies and their integration. Several promising directions are outlined below, focusing on
improving model robustness, overcoming current limitations, and integrating cutting-edge
AI techniques to propel innovation in textile science.

• Multidimensional Strategies for Optimizing Accuracy of AI Models

Future investigations should focus on enhancing the accuracy and generalizability
of AI models by expanding the diversity and scale of training datasets. To overcome the
limitations of existing datasets, which often lack adequate representation of various fabric
properties, researchers can explore the use of synthetic data generation through Generative
Adversarial Networks (GANs) or physics-based simulations. These techniques can create
synthetic samples that emulate complex fabric behaviors, thereby increasing data diversity
and mitigating the risk of overfitting.

Furthermore, transfer learning and meta-learning techniques can be employed to
enable models to leverage knowledge from related tasks, reducing the need for extensive
retraining when adapting to new fabric types or properties. This approach enhances the
model’s ability to generalize across different textile applications. Additionally, the inte-
gration of hybrid modeling strategies, which combine linear regression, neural networks,
and fuzzy logic, can further refine model robustness by capturing nonlinear relationships
between fabric properties.

• Advanced Dynamic Simulation Techniques and Their Application in Innovative Cloth-
ing Design

Advancements in dynamic drape testing should emphasize the development of real-
time simulation techniques to evaluate textile draping under various dynamic conditions,
such as movement, stretch, and environmental changes. Future research could incorporate
dynamic sensors and high-frame-rate imaging to capture deformation and movement data
with high precision, which, when combined with deep learning models, can significantly
enhance the realism and predictive accuracy of simulations.

Moreover, Reinforcement Learning (RL) can be explored to dynamically adjust sim-
ulation parameters based on real-time feedback, optimizing the model’s performance in
various scenarios. This capability would allow researchers to simulate a wider range of
fabric behaviors, providing deeper insights into how fabrics interact with different gar-
ment designs and movements, thereby supporting the development of innovative clothing
solutions with enhanced ergonomic and aesthetic properties.

• Predicting Mechanical Properties of Fabrics Using Advanced Computational Models

The accurate prediction of mechanical properties such as tensile strength, bending
stiffness, and shear force remains a complex challenge due to the intricate dependencies
between different fabric attributes. Future research should explore the integration of
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neural networks with finite element analysis (FEA) or physics-based models to capture the
fundamental mechanical interactions within fabrics. This hybrid approach would allow
the development of models that can more accurately predict mechanical properties under
various conditions.

To further improve the performance of these models, genetic algorithm-optimized
neural networks (GA-ANNs) can be employed to fine-tune model parameters, ensur-
ing robustness and reducing the risk of overfitting. Additionally, emerging AI tech-
niques such as Transformer-based architectures can be explored for their capability to
model complex interdependencies within fabric properties, enabling more accurate and
comprehensive predictions.

• Enhancing Visual–Tactile Correlation Models in Textile Science

Accurately correlating visual and tactile perceptions remains a challenging task in
fabric property prediction. Future research should focus on developing visual–tactile
correlation models using advanced AI architectures such as Transformers and attention
mechanisms. These models can capture long-range dependencies and complex interac-
tions between visual attributes (e.g., texture, drape) and tactile properties (e.g., softness,
elasticity), thereby improving the accuracy of tactile perception predictions.

In addition, future research can explore the use of neural-symbolic integration to
combine deep learning with symbolic reasoning. This approach could enable models to
incorporate domain knowledge about fabric mechanics and tactile perceptions, thereby
enhancing model interpretability and providing more meaningful predictions for practical
applications such as virtual fitting and online textile commerce.

• Advanced Pore Structure Analysis in Nonwoven Fabrics

Future research should aim to enhance the precision of pore structure analysis in
nonwoven fabrics by integrating high-resolution imaging techniques (e.g., computed
tomography and electron microscopy) with AI-driven optimization. This integration
would allow for a more detailed assessment of pore configurations and their influence on
properties such as thermal permeability and wear comfort.

Moreover, employing Generative Adversarial Networks (GANs) or deep neural net-
works for modeling and optimizing pore structures could provide new insights into fabric
design, enabling the development of nonwoven textiles with tailored attributes that meet
specific application requirements. This would significantly contribute to the advancement
of next-generation textiles with enhanced functionality and sustainability.

6. Conclusions

This systematic review identifies and categorizes the most effective AI models and
techniques for predicting various fabric properties, such as mechanical characteristics and
tactile perception. AI techniques, including extreme learning machines, genetic algorithms,
fuzzy logic, adaptive neuro-fuzzy inference systems (ANFISs), and deep learning, have
demonstrated high accuracy and adaptability across different fabric types, making them
suitable for real-world applications.

For tactile qualities like softness, smoothness, and flexibility, methods such as fuzzy
logic and ANFISs have shown outstanding performance, achieving up to 95% accuracy.
Deep learning models like ResNet-50 have demonstrated even greater precision, reaching
99.3% accuracy in classifying woven fabric textures. These results highlight their robustness
in managing complex visual and tactile data.

For mechanical properties, including tensile strength, elasticity, and bending stiffness,
AI models like artificial neural networks (ANNs), convolutional neural networks (CNNs),
and finite element analysis (FEA)-based hybrid models have shown exceptional predictive
capabilities. For example, ANN models have yielded low root mean square errors (RMSE)
in predicting tensile strength, while CNNs have effectively predicted bending stiffness with
error margins below 10%.
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In the context of fabric drape, AI techniques such as fuzzy logic and CNNs with
self-attention mechanisms have demonstrated high correlation coefficients and strong
prediction accuracy. These models can simulate fabric movement and drape behavior with
error rates as low as 1%, making them highly effective in replicating results from traditional
physical testing methods.

Overall, this review confirms that hybrid models combining machine learning with
physics-based simulations and advanced deep learning architectures are among the most
promising approaches for future research. These models are well-suited for handling com-
plex, multidimensional datasets and scalable prediction scenarios. Further developments
in data generation techniques, such as Generative Adversarial Networks (GANs), and
advanced architectures like Transformers will enhance the robustness and generalization
capabilities of these models.

Practical applications of AI models, such as using fuzzy logic for predicting fabric
saturation levels, have already demonstrated real-world benefits by achieving a mean
absolute error of only 1.97%, reducing weaving issues and material waste. AI-powered dig-
italization for 3D garment prototyping has streamlined design processes, reduced reliance
on physical measurements, and significantly improved cost efficiency and productivity.
Additionally, neural networks have effectively predicted the degradation of mechanical
properties in aramid fabrics, enhancing durability and safety in protective clothing. An
Intelligent Decision Support System (IDSS) utilizing large-scale data has also achieved
high accuracy in predicting elasticity and pilling, reducing the time and cost of fabric
prototyping and optimizing textile design.

These successful applications illustrate AI’s transformative potential in advancing
sustainable textile practices and optimizing fabric property prediction. However, chal-
lenges such as limited data generalizability and high computational requirements persist.
Future research should focus on overcoming these challenges through advanced methods
like synthetic data generation and hybrid modeling, which will further enhance model
robustness and adaptability, ultimately paving the way for more sustainable, efficient, and
innovative textile manufacturing processes.

This review was not registered in any formal database or review registry.
A formal review protocol was not prepared for this systematic review. The study

followed PRISMA guidelines but did not have a pre-established protocol.
Since the review was not registered and no protocol was prepared, no amendments

were made to any registration or protocol during the study.

Author Contributions: Conceptualization, Y.-F.T., M.-Y.K., and K.-L.Y.; methodology, Y.-F.T.; software,
Y.-F.T.; formal analysis, M.-Y.K.; investigation, Y.-F.T., M.-Y.K., and K.-L.Y.; data curation, Y.-F.T.;
writing—original draft preparation, Y.-F.T. and M.-Y.K.; writing—review and editing, Y.-F.T., M.-Y.K.,
and K.-L.Y.; visualization, Y.-F.T.; and supervision, K.-L.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations

Fabric Drape Drape coefficient, flexural rigidity, tensile elongation
AI Artificial Intelligence
ANN Artificial Neural Network
ANFIS Adaptive Neuro-Fuzzy Inference System
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CNN Convolutional Neural Network
FEM Finite Element Method
GAN Generative Adversarial Network
IDSS Intelligent Decision Support System
KES Kawabata Evaluation System
MAE Mean Absolute Error
NMAE Normalized Mean Absolute Error
RMSE Root Mean Square Error
SLR Systematic Literature Review
RL Reinforcement Learning
STR Single-Target Regression
RF Random Forest
PCA Principal Component Analysis
GA Genetic Algorithm
FAST Fabric Assurance by Simple Testing
R-CNN Region-based Convolutional Neural Network
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