
Citation: Song, J.; Jimenez, X.A.; To,

A.C.; Fu, Y. Microstructures and

Corrosion Properties of Wire Arc

Additive Manufactured Copper–

Nickel Alloys. Materials 2024, 17, 876.

https://doi.org/10.3390/

ma17040876

Academic Editor: Thomas Niendorf

Received: 6 January 2024

Revised: 4 February 2024

Accepted: 9 February 2024

Published: 14 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

materials

Article

Microstructures and Corrosion Properties of Wire Arc Additive
Manufactured Copper–Nickel Alloys
Jie Song 1,2, Xavier A. Jimenez 3, Albert C. To 3 and Yao Fu 1,2,*

1 Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA 24061, USA; jiesong@vt.edu
2 Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA 24061, USA
3 Department of Mechanical Engineering & Materials Science, University of Pittsburgh, Pittsburgh, PA 15261,

USA; xaj5@pitt.edu (X.A.J.); albertto@pitt.edu (A.C.T.)
* Correspondence: yaof@vt.edu

Abstract: The 70/30 copper–nickel alloy is used mainly in critical parts with more demanding
conditions in marine settings. There is a need for innovative methods that offer fast production and
cost-effectiveness in order to supplement current copper–nickel alloy manufacturing processes. In
this study, we employ wire arc additive manufacturing (WAAM) to fabricate the 70/30 copper–nickel
alloy. The as-built microstructure is characterized by columnar grains with prominent dendrites and
chemical segregation in the inter-dendritic area. The aspect ratio of the columnar grain increases with
increasing travel speed (TS) at the same wire feed speed (WFS). This is in contrast with the equiaxed
grain structure, with a more random orientation, of the conventional sample. The sample built with a
WFS of 8 m/min, TS of 1000 mm/min, and a track distance of 3.85 mm exhibits superior corrosion
properties in the 3.5 wt% NaCl solution when compared with the conventional sample, as evidenced
by a higher film resistance and breakdown potential, along with a lower passive current density of
the WAAM sample. The corrosion morphology reveals the critical roles played by the nickel element
that is unevenly distributed between the dendrite core and inter-dendritic area.

Keywords: 70/30 copper–nickel; wire arc additive manufacturing; dendritic feature; chemical
segregation; corrosion properties; sodium chloride solution

1. Introduction

Copper–nickel (Cu–Ni) alloys find widespread application in marine settings, includ-
ing heat exchangers, piping, and valves. Their resistance to corrosion and bio-fouling
makes them the preferred choice for highly corrosive environments [1–4], such as seawater,
particularly when exceptional thermal conductivity is essential [5,6]. The 70/30 Cu–Ni
alloy is mainly used in critical parts working under more demanding conditions. Cu–Ni
alloys primarily consist of α-phase-based single solid solutions due to the mutual solubility
of Cu and Ni [7]. Traditional manufacturing processes for Cu–Ni alloys involve casting
and forging, which are time-consuming and expensive, especially when fabricating parts
with intricate designs.

Consequently, there is a need for innovative methods that offer fast production and
cost-effectiveness. Therefore, there has been a notable surge in the exploration of additive
manufacturing (AM) methods, such as powder bed fusion, and direct energy deposition
(DED) [8–11]. One significant drawback associated with metal-powder-based AM tech-
niques is their relatively low deposition rate, typically ranging from 0.12 to 0.6 kg per hour.
In contrast, wire arc DED or wire arc additive manufacturing (WAAM), a high-deposition-
rate technique that utilizes modified welding equipment, stands out for its low capital
investment requirements and the ability to achieve deposition rates up to a hundred times
higher. Consequently, it has emerged as a subject of immediate interest within the scientific
and research community [12,13]. While several welding modes are suitable for WAAM,
the cold metal transfer (CMT) method is favored due to its ability to lower heat input
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and enhance arc stability through the physical retraction of the wire, facilitating droplet
detachment [14].

However, the existing body of literature on additive manufacturing, in particular
WAAM, using Cu–Ni raw materials is very limited [15,16]. In this study, 70/30 Cu–Ni
alloys are printed by WAAM using the CMT method. The microstructures and defects
of the as-built sample have been characterized as a variation of printing conditions. The
corrosion properties have been investigated employing electrochemical approaches in
sodium chloride solution.

2. Materials and Methods
2.1. Process Parameter Development

The machine used in this study is the Arc605 machine, manufactured by Gefertec
(Berlin, Germany), a 5-axis CNC machine utilizing a Fronius TPS 400i power source from
Wels, Austria. A 1.2 mm diameter 70/30 Cu–Ni (TECHALLOY® 413) wire from Lincoln
Electric (Cleveland, OH, USA) was employed for printing on a 70/30 Cu–Ni plate (C71500)
supplied by Marmetal Industries (Hatboro, PA, USA). The plate is in wrought state and has
also been investigated for its microstructures and corrosion properties and compared with
its WAAM counterparts. The chemical concentration of the wire and the plate are provided
in Table 1. A CMT power source from Fronius was utilized, and the shielding gas used was
a mixture of 75% Ar and 25% He from Linde, flowing at a rate of 15 L per minute. The
wire feed speed (WFS) was kept as 8 m/min, and the torch speed (TS) varied between 500
and 1000 mm/min. The interpass temperature in the WAAM process is the temperature at
which the next deposition layer operates. Maintaining the interpass temperature within
a suitable range is crucial when influencing microstructures and mechanical properties.
There have been studies on a variety of different alloys related to the effect of interpass
temperature in WAAM on grain size, phase constitution, and mechanical properties [17–21].
In our work, a pyrometer Metis M318 was used to keep the interpass temperature of the
walls below 200 ◦C.

Table 1. Chemical concentration of the 70/30 Cu–Ni wire and plate in wt%.

Cu Ni Mn Pb Fe Zn P Ti Si

Plate 68.046 30.46 0.73 0.009 0.56 0.149 0.001 - -

Wire 67.5 30 0.7 0.003 0.55 - 0.006 0.25 0.1

Initially, a single-bead wall, 100 mm in length, was printed for 3 layers in order to
screen the processing parameters (i.e., WFS and TS) in the medium-to-high production
domain and in turn to ensure a high-quality build free of waviness and with other types of
defects kept to a minimum by scanning electron microscopy (Figure 1a). Subsequently, the
block was printed using a meander deposition path (Figure 1b) based on the parameters
that produced successful single bead walls, as listed in Table 2, with variations in the track
distance. The determination of track distance is as follows. The single-bead wall at different
TS has a different width (Figure 1a). At TS = 500, 800, and 1000 mm/min, the single-track
widths were estimated as 7.5 mm, 6 mm, and 5.5 mm, respectively. Then, the track distance
was chosen as approximately 40% and 70% of the single-track width, thus resulting in
different choices at different TSs, as shown in Table 2. The choice of track distance leads to
different overlaps between adjacent scanning tracks, and allowed us to understand how
this affects the resultant microstructures and corrosion performance.
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Figure 1. (a) SEM image (based on secondary electron diffraction) of (upper panel) cross-section of 

the single-bead 3-layer build and (lower panel) magnified SEM image of selected area in the upper panel 
Figure 1. (a) SEM image (based on secondary electron diffraction) of (upper panel) cross-section of
the single-bead 3-layer build and (lower panel) magnified SEM image of selected area in the upper
panel (indicated by the white square); the three columns correspond to the TSs equal to 500, 800, and
1000 mm/min. (b) Schematic of the deposition strategy.
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Table 2. WAAM parameters used to print 70/30 Cu–Ni single tracks.

Specimen WFS TS Track Distance Interpass Temp (◦C)

1

8 m/min

500 mm/min
3 mm

150~200

2 5.25 mm
3

800 mm/min
2.4 mm

4 4.2 mm
5

1000 mm/min
2.2 mm

6 3.85 mm

2.2. Microstructural Characterization, Corrosion and Mechanical Tests

The microstructures of the samples were assessed using optical microscopy (OM),
scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and elec-
tron backscatter diffraction (EBSD). To prepare the samples for OM/SEM/EBSD analysis,
they underwent mounting, grinding, and either vibration polishing or electropolishing.
Electropolishing was carried out using a solution consisting of 12.5% sulfuric acid and
87.5% methanol at a potential of 25 V and at room temperature. Etching was performed
electrolytically in a 10% saturated oxalic acid solution at 12 V for a brief period.

For electrochemical testing, the specimens were EDM machined from the build block
in the size of 10 × 10 × 5 mm with the broad surface along the XY and YZ build plane.
The surface and bottom area were avoided during the harvest of specimens. The samples
were sealed with epoxy resin, exposing an area of 0.32 cm2 and ground to a P2400 grit
finish. A three-electrode cell was used with a graphite counter electrode and the aqueous
Ag/AgCl reference electrode as the reference point for all potentials. The test solution was
3.5 wt.% (0.61 M) NaCl, and the experiments were conducted at room temperature under
natural aeration. The sample was immersed in the solution under an open circuit condition
for 3 h prior to the electrochemical impedance spectroscopy (EIS) and cyclic polarization
(CP) tests. The samples after each electrochemical test (either EIS or CP) were ground to
expose fresh surfaces. The EIS test was performed using a 10 mV (rms) perturbation from
100 kHz to 10 mHz. Fitting was performed with Gamry software (version 7.9.0). Cyclic
polarization curves follow the forward scan rate of 0.1667 mV/s, starting from −250 mV
(vs. open circuit potential). Reversal occurs when the current density reaches 3 mA/cm2

at a reverse scan rate of 1.667 mV/s. Electrochemical measurements are recorded using a
Gamry potentiostat/galvanostat. The reported data represent the average of at least three
measurements.

3. Results
3.1. Microstructural Analysis

The microstructure examined by optical microscopy (OM) analysis revealed no poros-
ity or macro/microscopic cracks (Figure 2a). Dendrites were clearly observed, with the
primary dendrite arm spacing (PDAS) varying in different locations, particularly adjacent
to the fusion lines/melt pool boundaries. The dendrites mostly grew perpendicular to the
melt pool boundaries (Figure 2a). According to Hunt’s model [22], the PDAS increases as
the temperature gradient decreases. The heterogeneous PDAS indicates the presence of a
complicated solidification environment. The energy-dispersive X-ray spectroscopy (EDS)
analysis of the selected domain confirmed the presence of solute segregation, with Ni ele-
ments preferentially locating in the dendrite cores, when compared with the inter-dendritic
spacing (Figure 2b). This aligns with the expectations based on the phase diagram of the
Cu–Ni binary alloy. The formation of intermetallic compounds was not found, as Cu and
Ni are completely soluble in each other as a single-phase solid solution.

To understand the microstructural and texture changes that occur during the printing
process, EBSD analyses were conducted for all of the WAAM samples. For comparison, the
analysis of the conventional sample is also presented. In Figures 3 and 4, inverse pole figure
(IPF) maps on the XY plane (perpendicular to the build direction) and YZ plane (along the
build direction) are provided. The XY cross-sections of the grains exhibit an equiaxed shape,



Materials 2024, 17, 876 5 of 18

while the YZ plane cross-sections display a columnar shape. The longitudinal directions of
the grains tend to deviate from the build direction (z-axis). Given that the layer thickness is
estimated to be 2~3 mm (Figure 1), the grains likely do not span multiple layers, in contrast
with the observations in Inconel 718 [23]. This phenomenon is potentially related to the
heat flux direction and temperature gradient within the melt pool, which is worthy of
further analysis. Epitaxial growth from previous grains occurs at the melt pool boundary,
but these grains do not seem to be in preferential crystal growth direction and are thus
mostly hindered in the growth process, as seen in Figure 4.
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Figure 2. (a) OM images of the dendrite features on different build planes and (b) SEM image and
EDS map scanning of WAAM sample 1.

The grain size analysis in Figure 5 reveals an increased aspect ratio of the columnar
grains with rising TS, indicating smaller sizes in the XY plane and larger sizes in the YZ
plane. Additionally, the size on the YZ plane decreases with increasing track distance at the
same WFS and TS, attributed to a faster cooling rate that benefits grain refinement. It is
noteworthy that the very small grains in Figures 3 and 4 may result from the intersection of
some dendrite arms with the examined planes.
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Figure 3. IPF maps for grain orientation and grain structure maps on the XY plane at different track
distances (d) with respective torch speed (TS) as follows: TS = 500 mm/min, 800 mm/min, and
1000 mm/min; subfigure (a) corresponds to the conventional sample, and subfigures (b–g) correspond
to WAAM samples 1–6.

In contrast with the conventional condition, the inverse pole figure (IPF) map indicates
a concentration of the XY plane in the ⟨001⟩ texture (Figure 3). However, approximately
30–40% of the area in the XY cross-section consists of randomly oriented grains. The pole
figure (PF) plots (Figure 6) further illustrate the strength of the texture for the three families
of planes in face-centered cubic (FCC) on ⟨001⟩, ⟨110⟩, and ⟨111⟩. These plots confirm that
the ⟨001⟩ texture component is the strongest among the three. The maximum multiple of
uniform density (MUD) value is highest for sample 3 (MUD = 11.9), even though that of
⟨001⟩ is not strongly aligned along the z direction. Conversely, the MUD value is lowest for
sample 5 (MUD = 4.3), indicating a weak texture.
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Figure 4. IPF maps for grain orientation and grain structure maps on the YZ plane at different track
distances (d) with respective torch speed (TS) as follows: TS = 500 mm/min, 800 mm/min, and
1000 mm/min; subfigure (a) corresponds to the conventional sample, and subfigures (b–g) correspond
to WAAM samples 1–6.

Figure 7 illustrates the kernel average misorientation (KAM) and grain boundaries of
the EBSD analysis, presented for the YZ planes. The KAM provides a qualitative description
of the degree of homogenization of plastic deformation or the density of defects such as
dislocations, lamellar dislocations, and sub-grain boundaries. Higher KAM values indicate
a greater degree of plastic deformation or a higher density of defects. The KAM analysis
of the three samples reveals a low degree of dislocation in most regions, suggesting that
residual stresses in the additively fabricated samples have been adequately released, and
that deformation within the grains is minimal. This phenomenon can be attributed to the
relatively slower cooling rate in the WAAM process compared with other powder-based
AM processes. Additionally, the stress-relieving annealing effect caused by the subsequent
depositions may also be responsible.
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Figure 5. Variation of grain size in the XY and YZ planes of the conventional sample (conv)
and WAAM samples under different printing conditions; x-axis labels 1–6 indicate the WAAM
samples 1–6.
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Figure 7. Kernel average misorientation (KAM) maps of WAAM samples at different travel
speeds (TS) of the YZ plane with respective TS as follows: TS = 500 mm/min, 800 mm/min, and
1000 mm/min; subfigures (a–f) correspond to WAAM samples 1–6.

3.2. Electrochemical Impedance Spectroscopy

To investigate the corrosion resistance of the WAAM Cu/Ni, impedance spectra
were recorded at the OCP, repeating the process 3–4 times for each sample. Figure 8
displays both Bode and Nyquist plots for the selected tests. The bode plot illustrates
a consistent trend in impedance frequency dependence across various conditions, with
some discrepancies noted in the low-frequency domain (<1 Hz). In the Nyquist plot, the
capacitive loop exhibits variable sizes based on processing conditions. Generally, a large
semicircle suggests challenges in electron transfer between the substrate and solution. The
high capacitance indicates a link between two processes: the formation of the passive oxide
layer and the charging of the electric double layer. A secondary capacitive loop emerges at
lower frequencies but displays some instability. The impedance spectra underwent analysis
using the equivalent electrical circuit depicted in Figure 9a. Here Rsoln is the electrolyte
resistance, Rpo is the resistance inside the film pores, Q1 the constant phase element (CPE)
parallel to Rpo. Rf is the resistance of the corrosion product or film, and Qf corresponds
to the CPE parallel to Rf. The use of a CPE is necessary due to a distribution of relaxation
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times resulting from heterogeneities at the electrode surface. The impedance of the CPE is
given by

ZCPE =
1
Q
(jω)−n (1)

where Q represents the impedance of the CPE and n represents the empirical exponent,
which can vary between 1 for a perfect capacitor and 0 for a perfect resistor. The important
fitting parameters are listed in Table 3.
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Figure 9. (a) Equivalent electrical circuit used to fit the impedance spectra. (b) The fitted parameter
Rf of the conventional sample (conv) and WAAM samples under the different printing conditions;
x-axis labels 1–6 indicate the WAAM samples 1–6.

Table 3. Summary of the essential fitting parameters for the EIS results.

Specimen
Rf × 105 (Ω) Qf × 10−5 (F) nf df (µm)

XY YZ XY YZ XY YZ XY YZ

Wrought 1.08 1.18 2.44 2.37 0.34 0.32 0.13 0.095
1 0.68 1.14 2.84 2.83 0.340 0.29 0.20 0.041
2 1.44 1.57 2.13 2.29 0.29 0.31 0.063 0.051
3 1.25 1.09 2.54 2.98 0.29 0.31 0.046 0.049
4 1.01 1.39 2.36 2.34 0.31 0.30 0.12 0.058
5 0.93 1.24 2.43 2.04 0.32 0.33 0.14 0.14
6 1.40 1.66 2.68 2.47 0.27 0.28 0.021 0.023

As can be seen in in Figure 9b, the film resistance (Rf) of WAAM samples 2 and
6 surpasses that of the other conditions, exceeding that of the conventional sample. Con-
versely, sample 1 underperforms in comparison with the conventional ones. The elevated
film resistance (Rf) suggests a deceleration in the kinetics of the electrochemical process.
This behavior may be attributed to a higher growth rate of the passive film or an increased
thickness of the passive layer. Additionally, the resistance on the YZ plane is higher than
that on the XY plane for the WAAM samples, except for sample 3, where the horizontal
(XY) and vertical (YZ) planes exhibit similar resistance (Rf).

Furthermore, the equivalent film thickness can be estimated from the fitted parameters
derived from the EIS results with,

d =
εε0 A

Q1/n(Rf)
(1−n)/n

(2)

where d is the film thickness; ε0 is the vacuum permittivity (8.854 × 10−12 F m−1); ε is the
dielectric constant, assumed to be 7.11 which is the value for cuprous oxide Cu2O; and
A is the effective surface area of the sample. The derivation of Equation (2) is based on
the equivalent film capacitance of the oxide layer that can be calculated with Equation (3),
which is then related to the equivalent film thickness via Equation (4) [24,25],

Ceff = Q1/n(Rf)
(1−n)/n (3)

d =
εε0 A
Ceff

(4)

The equivalent film thickness is thus calculated via Equation (2), and the values are
listed in Table 3. The estimated surface film varies from tens to hundreds of nm.
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3.3. ElectroPolarization Test

The cyclic potentiodynamic polarization curves, tested in the 3.5 wt% NaCl solution,
are displayed in Figure 10. The corrosion potential Ecorr is summarized in Figure 11a,
where the difference between the conventional and WAAM samples is quite small. The
YZ plane has a slightly more positive Ecorr than that of the XY plane. As the potential
shifts further in the positive direction, the quick current density increase is associated
with transpassive dissolution. The potential at the current density of 5 × 10−5 A cm−2 is
measured as the breakdown potential Eb and is summarized in Figure 11b. Almost all of
the WAAM samples outperform the conventional one. WAAM sample 6 has the highest
overall Eb when considering both the XY and YZ planes. Moreover, the YZ plane has a
higher Eb than that of the XY plane. The YZ plane for sample 3 has the highest Eb.
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(c) passive current density from the potentiodynamic test for conventional sample (conv) and WAAM
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The conventional samples (depicted in black and red lines) demonstrate a domain of
low current density (<5 × 10−5 A cm−2) before the transpassive dissolution. This can be
ascribed to the protective corrosion product film formed on the sample surface. The passive
region is atypical, as the passive current density (ip) increases with a positively shifting
applied potential. The passive current density over the potential window from −120 mV to
−75 mV has been averaged and compared between the conventional and WAAM samples
in Figure 11c. WAAM sample 6 exhibits the lowest passive current density among them
and is significantly lower than that of the conventional sample. WAAM sample 2 also
demonstrates a slightly lower current density than the conventional sample. Additionally,
the passive current density is higher in the XY plane compared with that in the YZ plane.
The YZ plane for sample 3 has the lowest ip.

4. Discussion

The film resistance (Rf) measured by EIS, along with the Eb and ip measured by
cyclic polarization tests, reveals differences in corrosion resistance, passivity, and transpas-
sive behaviors between the conventional and WAAM Cu/Ni samples. WAAM sample 2
(TS = 500 mm/min and track distance of 5.25 mm) and 6 (TS = 1000 mm/min and track
distance of 3.85 mm) exhibit higher film resistance (Rf) than the conventional sample in
both XY and YZ build planes. Sample 6 also exhibits the lowest passive current density
(ip) among the WAAM samples, significantly lower than that of the conventional sample.
WAAM sample 2 also demonstrates a slightly lower current density than the conventional
sample. In terms of breakdown potential Eb, almost all of the WAAM samples outperform
the conventional sample. WAAM sample 6 has the highest overall Eb. Overall, the elec-
trochemical analysis indicates that WAAM sample 6 has the best corrosion performance
in the 3.5% NaCl solution. Moreover, the YZ plane exhibits higher film resistance at OCP,
higher transpassive potential, and lower passive current density when compared with the
XY plane, indicating better corrosion resistance.

The corrosion morphologies of both the conventional and WAAM samples demon-
strate uniform dissolution on the millimeter scale, but noteworthy differences in grain/
subgrain level corrosion behavior exist. In the conventional sample, uneven corrosion
depth is observed for grains with different orientations (Figure 12a). In the WAAM sample,
the inter-dendritic area is less resistant to corrosion attack compared with the dendritic
core area (Figure 12b,c), closely related to the uneven Ni element distribution revealed in
Figure 12d. A quantitative analysis using EDS line scan, as seen in Figure 13, further reveals
that the concentration difference between the dendritic core and inter-dendritic area can be
as high as 20%. Due to the highly non-uniform distribution of the Ni element at different
locations, even within the same sample, making comparisons among different printing
conditions is not straightforward (Figure 13). The uneven Ni solute distribution could be
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ascribed to various factors, as follows. Firstly, the melt pool experiences a non-uniform
cooling rate and temperature gradient. Typically, the bottom region undergoes a more
rapid cooling rate and higher thermal gradient compared with the central molten pool.
Secondly, dendrite growth direction plays a crucial role in solute diffusion. Dendrites
growing along the heat flux direction allow solute diffusion into the liquid away from
the interface. Conversely, dendrites growing obliquely could be hindered by preceding
dendrites. Furthermore, the solute concentration ahead of inclined dendrite tips surpasses
that of dendrites perpendicular to the molten pool’s isotherm [26]. Finally, subsequent
deposition leads to repetitive thermal cycling, potentially causing grain coarsening and
migration of Ni solute driven by concentration gradients. However, due to Ni’s slightly
larger atomic radius compared with copper, the migration rate of atoms may become more
challenging as the Ni content in the area increases. The increase of the Ni element enhances
the corrosion resistance, as the corrosion rate of Ni is at least two orders of magnitude
lower than Cu [27]. Ni could reside at the interface between the substrate/film interface
or the inner side of the passive film [28]. This Ni enrichment could occur quickly in the
early stage when exposed to seawater [28]. The contrast in corrosion resistance between
the inter-dendritic and dendritic core areas is thus likely attributed to the depletion of Ni in
the inter-dendritic area (Figure 12).

It has been reported that the passive film formed on Cu–Ni alloy is different from that
on stainless steels, which is typically nanometer thick. The film on Cu–Ni takes a long
time (several days to 2–3 months) at 15–17 ◦C, with a thickness in the micrometers [28].
Additionally, its protection of the matrix is not as desirable when compared with that of
stainless steels [28]. The cuprous oxide (Cu2O) film produced is believed to be predomi-
nately responsible for the corrosion protection, and the thicker passive film mainly reduces
the corrosion rate by inhibiting the cathodic processes, such as the oxygen reduction reac-
tion on the sample surface [29]. In this work, the passive film formed during polarization
test and that generated at OCP during the EIS test are formed within hours and may not be
thick enough to inhibit the cathodic reaction by mitigating oxygen migration. However,
it is still possible that the protective passive film is established within a few hours, as the
associated discharge of copper ions can reduce 10-fold over 10 min and 100 fold within the
first hour [30]. The estimated passive films from the EIS test listed in Table 2 vary from tens
to hundreds of nanometers. There could be inaccuracies in this estimate, that arise from
(1) the selection of the equivalent electric circuit and fitting process, (2) the assumption that
the passive film is composed of cuprous oxide Cu2O because the products of corrosion
reactions could form a multi-layered oxide structure [31]. This thickness range is much
smaller than the film formed for a Cu–Ni alloy that is immersed in seawater for a much
longer time [28]; however, the EIS test reveals a comparable film resistance to those exposed
to much longer times [29], indicating that the film that forms on 70/30 Cu–Ni within hours
can possess substantial protectiveness.

The difference in alloy elements (such as Ti and Si) between the conventional and
WAAM Cu–Ni could also affect their corrosion performance. It is worth mentioning
that there is no segregation present in the conventional condition. Understanding the
variation in different corrosion behaviors associated with the minor element is challeng-
ing, especially in combination with the drastically different grain structures and segrega-
tion characteristics between the conventional and WAAM samples. We plan to explore
the alloying element effect in our future study, by analyzing the passive film and corro-
sion product characteristics for the conventional and selected WAAM samples with the
highest performances.
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Figure 13. SEM images of the dendritic features on the XY plane, the arrow represents the EDS line
scan and the results are shown in the subfigure inset. Subfigures (a–f) correspond to WAAM samples
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5. Conclusions

In this study, 70/30 Cu–Ni has been successfully fabricated by WAAM at TSs varying
between 500 and 800 mm/min. A conventional 70/30 Cu–Ni was also investigated for
comparison purposes. The as-built microstructures of WAAM Cu–Ni were analyzed, con-
sidering the grain structure, chemical segregation, and other defects. Corrosion properties
were examined in a 3.5 wt% NaCl solution. The main conclusions are drawn as follows:

1. The as-fabricated microstructures are characterized by columnar grains with promi-
nent dendrites. The longitudinal direction of the columnar grain deviates from the
build direction. Strong chemical segregation has been observed in the form of Ni
element depletion in the inter-dendritic area.

2. With increasing TS, the aspect ratio of columnar grains increases, resulting in a
reduced size of the XY cross-section and an increased length of the YZ cross-section.
The grain size also decreases with increasing track distance. A close-to-⟨001⟩ texture
has developed on 30% to 40% of the area on the XY plane. The grain size of the
conventional sample is one order of magnitude smaller compared with that of the
WAAM samples and exhibits random orientation.

3. The corrosion performance is evaluated in terms of film resistance at OCP, the passive
current density and breakdown potential during polarization. Two WAAM samples,
produced under a TS of 800 mm/min and track distance of 5.25 mm as well as a TS of
1000 mm/min and track distance of 3.85 mm, have the best corrosion performance in
the 3.5% NaCl solution.

4. Anisotropy in the corrosion performance has also been observed. The YZ plane ex-
hibits higher film resistance at OCP, a higher breakdown potential, and lower passive
current density, compared with the XY plane, indicating better
corrosion resistance.

5. At the grain/subgrain level, the conventional Cu–Ni demonstrates crystallography-
dependent corrosion resistance, whereas the WAAM Cu–Ni exhibits preferential
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corrosion attack at the inter-dendritic area due to the uneven distribution of Ni ele-
ment. The reason behind the apparent corrosion enhancement in the aforementioned
WAAM Cu–Ni samples compared with its conventional counterpart needs further
analysis, which will be carried out in our study in the near future.

This study aims to provide a microstructural and corrosion analysis of the WAAM Cu–
Ni processed by various printing parameters. It paves the way to a further understanding
of the applicability of WAAM to copper-based alloys and the optimization of their corrosion
properties though tailored microstructures, which themselves will be achieved through the
optimization of the printing parameters and post-processing methods.
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