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Abstract: The objective of this study is to evaluate how two varying amounts of sepiolite-based
powder, infused with indigo extract, affect the appearance and durability of a water-based, white
primer. To examine the influence of this eco-friendly pigment on the coatings’ overall appearance,
assessments were performed for color, gloss, and surface roughness. Additionally, the coatings were
investigated through optical and electron microscopic observations, to evaluate the distribution
of the pigment within the polymer matrix. The effect of the pigment on the coating’s durability
was assessed through accelerated tests, including exposure in a salt spray chamber and a UV-B
chamber. These tests aimed to evaluate the emergence of defects and changes in the appearance of
the samples over time. Furthermore, the impact of different quantities of sepiolite-based powder on
the coating’s ability to act as a barrier was assessed using liquid resistance tests and contact angle
measurements. These evaluations aimed to understand how the coating responded to various liquids
and its surface properties concerning repellency or absorption. In essence, this study underscores the
considerable influence of the eco-friendly pigment, demonstrating its capacity to introduce unique
color and texture variations in the paint. Moreover, the inclusion of the pigment has enhanced the
coating’s color stability, its ability to act as a barrier, and its overall durability when exposed to
harsh environments.

Keywords: sepiolite powder; indigo extract; bio-based pigment; waterborne paint; green coating

1. Introduction

The previous unsustainable linear economy caused raw material prices to surge and
led to irreversible environmental harm, resource depletion, and a buildup of waste [1]. As
a response, a contemporary regenerative economy is emerging, emphasizing a circular
production and consumption system to curtail environmental effects [2]. This includes
replacing petroleum-derived goods with renewable sources like bio-based materials, reflect-
ing a focused effort on improving waste management systems. In this context, incorporating
natural-origin additives and pigments into composite materials and coatings is gaining
significant attention from both scientific and industrial perspectives [3,4]. Industries are
constantly seeking ecological and versatile alternatives to conventional synthetic fillers
and additives [5,6], which often lack considerations for environmental sustainability in
their production processes [7]. Recently, fillers sourced from food and natural waste have
demonstrated their ability to enhance the value of composite products, lowering manu-
facturing expenses and rejuvenating recycled materials [8]. For instance, the utilization of
bio-based materials in manufacturing rose from 5% in 2004 to 12% in 2010 and climbed to
approximately 18% by 2020, with estimates projecting a further 25% increase by 2030 [9].

These ideas have spurred both research and industrial sectors to consistently utilize
diverse, bio-based fillers sourced from nature or agri-food waste in polymeric matrices [10].
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For instance, chicken eggshells (ES) stand out as one of the extensively employed bio-
based resources for filling organic coatings [11–13] due to their abundant availability as a
bio-waste form and their high calcium carbonate content (95%) [14]. Likewise, lignin and
cellulose serve as renewable resources used as strengthening nanofillers in composite mate-
rials [15,16]. Additionally, the diverse range of discarded seashells from mollusks offers
an endless supply of CaCO3, their primary component, which can serve as an alternative
to conventional calcium carbonate in eco-friendly coatings [17–19]. Moreover, the agro-
industrial sector generates substantial waste that holds the potential for functional use as
cost-effective, high-performance fillers. Within these resources, olive pit powders [20,21], al-
mond shells [22], pistachio nutshells [23], apricot and argan remnants [24], cherry seeds [25],
peanut shells [26], avocado seeds [27], and rice husks [28] have been employed to enhance
the various properties of polymer matrices. Similarly, numerous studies have examined
the impact of bio-based resources as environmentally friendly additives to enhance the
hydrophobic characteristics of organic coatings. This exploration involves the utilization of
natural waxes [29,30] and animal proteins [31], among other green alternatives.

Absolutely, aesthetics have become a crucial aspect of coatings alongside durability.
As a result, numerous recent studies have focused on exploring natural and bio-based
pigments. The aim is to align with principles of the circular economy and decrease the envi-
ronmental footprint associated with new coloring additives. For example, spirulina [29,32]
and turmeric [30] extracts have demonstrated impressive durability and promise when
incorporated into wood paints. Numerous studies have focused on examining the dyeing
potential of leftover fruit and vegetable materials [33], as well as assessing how Aspergillus
carbonarius can be used in processing them to create natural pigments [34]. In a similar vein,
red pitaya has been utilized as a dye source for making ink and film [35], whereas wood
waste has demonstrated its potential to produce durable and effective pigments suitable
for paints [36].

From this perspective of environmental-friendly pigments for protective coatings, the
potential combination of bio-based pigments with sepiolite powders seems highly intrigu-
ing and promising. Clay-based fillers have garnered significant interest because of their
remarkable barrier properties, thermal stability, mechanical strength, and ability to resist cor-
rosion [37]. Sepiolite is a type of 2:1 silicate clay mainly made of aggregates of nanorods and
nanofiber bundles [38], with an ideal molecular formula of Si12Mg8O30(OH)4(OH2)4-8H2O.
This material demonstrates a potential for its use in polymers, forming a robust connection
with the polymer matrix owing to its exceptional physical attributes and solid thermal
stability [39]. As a result, sepiolite has frequently served as a filler to enhance the corro-
sion resistance of epoxy [40–43] and polyurethane [44] polymer matrices, or to bolster the
thermal insulation within coatings [45,46].

Nevertheless, sepiolite has proven to be highly effective as a protective additive
for particular coloring agents. This quality renders it a compelling material for crafting
the bio-based pigments utilized in paints. Indeed, drawing inspiration from the Maya
Blue pigment, discovered in ancient Maya ruins [47,48], which notably lacks mineral-
based color yet exhibits remarkable stability even in highly humid conditions [49], certain
researchers explored the adsorption potential of clay minerals. They transformed soluble
dyes into insoluble pigments using a liquid-phase method, resulting in hybrid pigments
with exceptional stability [50]. In creating a vibrant blue cobalt hybrid pigment, the
incorporation of sepiolite not only significantly decreased the cost of the cobalt blue pigment
but also enhanced its stability [51]. Subsequent to these findings, considerable research
efforts have oriented on investigating the influence of cationic dye species on the structure
and functionality of sepiolite hybrid pigments [52,53]. Particularly, there has been a focus
on the chemical bonding of indigo with the phyllosilicate material [54,55]. Moreover,
multiple recent studies have centered on environmentally friendly methods, such as ball
milling [56–58] and grinding [59], for the eco-friendly production of the sepiolite-based
pigment, omitting the need for chemical reagents.
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Despite these premises, there is a lack of comprehensive research in the literature
concerning the application of these specific pigments in industrial paint. Hence, this
research aims to examine the effectiveness and long-term visual appeal of a sepiolite-based
pigment containing Indigofera tinctoria extract when incorporated into a water-based primer.
Indigofera tinctoria L. is a tropical semi-shrub belonging to the Fabaceae family [60]. Its leaves
serve as the primary source for producing indigo, a highly colorfast blue dye historically
referred to as the “king of dyes” due to its exceptional quality [61]. Indigo stands as
one of the earliest dyes in human history, utilized across numerous ancient civilizations
worldwide [62]. Hence, this extract’s remarkable coloring properties make it well suited for
integration into sepiolite fibers, aiming to create a highly effective and durable pigment.

Beyond just aesthetics, this study endeavors to assess how the bio-based pigment
influences both the morphology of the coating and its protective properties. Optical
microscope and scanning electron microscope (SEM) observations and measurements
of color, gloss, and surface roughness were employed to investigate how the bio-based
pigment affected both the appearance and structure of the coating. To gauge the impact of
varying pigment quantities on the durability of the coating, a range of tests were conducted.
These included exposure trials in salt spray and UV-B chambers, assessments of resistance
to liquids, contact angle measurements, and electrochemical impedance spectroscopy
(EIS) measurements.

2. Materials and Methods
2.1. Materials

The bio-based pigment was supplied by Pigm’Azur (Nice, France). The pigment
manifests as a blue powder comprising 91–92 wt.% sepiolite and 8 wt.% indigo. The
indigo molecules are encapsulated in the needle structure of the sepiolite through a simple
grinding process. The product particle size averages at 11 µm (D50), with a density of
0.3 g/cm3 and a pH ranging between 7 and 8. The waterborne urethane alkyd resin-based
white primer paint, Antiruggine RE H2O, was supplied by Industrie Bruno Stoppani
(Capriano del Colle, BS, Italy). The paint possesses a pH ranging from 8 to 8.5, a specific
weight equal to 1.4–1.5 kg/L and a dry residue (% by weight) of 55 ± 3. The carbon steel
substrate (Q-panel type R (0.15 wt.% C—Fe bal.)—152 mm × 76 mm × 2 mm dimensions)
was purchased by Q-lab (Westlake, OH, USA).

2.2. Samples Production

Prior to painting, the steel panels were cleaned using acetone to eliminate any grease
and surface dirt, enhancing the bonding between the coating and the surface. Hence, the
paint was sprayed on, resulting in a layer approximately 60 µm thick. This initial layer
underwent cross-linking at room temperature for 24 h before a second application. As a
result, the final coatings have a combined thickness of roughly 120–130 µm.

To assess the pigment’s effectiveness, the paint was prepared by incorporating varying
amounts of sepiolite-based powder into two separate solutions. The two specific quantities,
0.5 wt.% and 5.0 wt.%, were deliberately selected for specific reasons. The lower limit of
0.5 wt.% was chosen as it represents the minimum amount required to observe a noticeable
color alteration in the coating. On the other hand, the upper limit of 5.0 wt.% was selected
because it typically represents the maximum amount commonly utilized in the industrial
sector for such purposes. These ranges were chosen to encompass a visible color change
while staying within the boundaries commonly employed in industrial practices. Both
solutions underwent stirring for 30 min using an ultrasound probe to ensure an even
dispersion of the pigment. The performance of these two sets of pigmented coatings was
then contrasted with that of a white primer, based solely on a waterborne urethane alkyd
resin, devoid of any bio-pigment. Table 1 summarizes the three sample series along with
their respective nomenclature, while Figure 1 represents their overall appearance.
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Table 1. Samples nomenclature, with associated amount of bio-based pigment.

Sample Nomenclature Bio-Based Pigment Concentration (wt.%)

B0.0 0.0
B0.5 0.5
B5.0 5.0
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2.3. Characterization

The analysis of the pigment’s morphology and the coatings’ cross-sections was con-
ducted using the low vacuum scanning electron microscope (SEM) JEOL IT 300 (JEOL,
Akishima, Tokyo, Japan), alongside the optical stereomicroscope Nikon SMZ25 (Nikon
Instruments Europe, Amstelveen, The Netherlands). The primary goal was to analyze
the distribution of the pigment and ascertain the compatibility between the polymeric
matrix and the bio-based powder. Additionally, the influence of varying amounts of
sepiolite-based powder on the coatings’ visual appearance was investigated using a Konica
Minolta CM2600d spectrophotometer (Konica Minolta, Chiyoda, Tokyo, Japan), employing
a D65/10◦ illuminant/observer configuration in SCI mode. A glossmeter Erichsen 503
(ERICHSEN GmbH & Co. KG, Hemer, Germany), following the ASTM D523-14 (2018) stan-
dard [63], was utilized to further examine the coatings’ aesthetic properties. Furthermore,
the surface roughness of the coatings was evaluated utilizing the MarSurf PS1 mobile sur-
face roughness measurement instrument (Carl Mahr Holding GmbH, Gottingen, Germany).
Furthermore, the coatings’ adhesion was evaluated using a cross-cut test in accordance
with the ASTM D3359-17 standard [64]. This assessment aimed to discern whether the
incorporation of the pigment had induced any changes in the coatings’ adherence to the
steel substrate.

The protective performance of the coatings was investigated through accelerated
degradation tests. The samples underwent exposure in a salt spray chamber (Ascott
Analytical Equipment Limited, Tamworth, UK) for 500 h, adhering to the ASTM B117-11
standard [65] using a 5 wt.% sodium chloride solution. This test aimed to gauge how the
presence of the bio-based pigment influenced the corrosion protection capabilities of the
composite layers in a harsh, aggressive environment. Additionally, the adhesion of the
coatings was assessed by making a mechanical cut on the sample surface, allowing for the
analysis of potential detachment and water uptake phenomena. This evaluation helped
determine the coatings’ resilience and adhesion under stress, providing insights into their
overall durability and performance.

Likewise, the samples underwent exposure to UV-B radiations (313 nm—60 ◦C) utiliz-
ing a UV173 Box Co.Fo.Me.Gra (Co.Fo.Me.Gra, Milan, Italy), following the ASTM D4587-11
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standard [66]. This test spanned a duration of 300 h. To track the coatings’ degradation,
colorimetric assessments and gloss analyses were conducted in intervals, specifically, after
24, 48, and every 100 h of UV-B exposure. Moreover, the FTIR spectra of the pigment were
acquired in attenuated total reflection (ATR) mode using a Varian 4100 FTIR Excalibur
spectrometer (Varian Inc., Santa Clara, CA, USA), before and after the exposure test. This
method helped evaluate any chemical modifications occurring in the pigment due to the
UV exposure. Furthermore, to better evaluate the aesthetic durability of the pigment for
outdoor applications, the coatings were exposed in an oven at temperatures of 100 ◦C for
24 h, measuring any chromatic changes by means of colorimetric analyses.

The influence of the green pigment on the protective properties of the coating was
investigated through cold liquid-resistance tests, following the UNI EN 12720 standard [67].
In this experiment, filter paper was immersed in separate solutions containing 15% sodium
chloride, pure acetone, olive oil, and coffee. Moreover, the color resistance of the pigment
to acidic and basic conditions was assessed using solutions with pH levels of 1 and 14,
respectively, achieved by employing concentrated HCl and NaOH. These soaked filter
papers were then placed onto the surface of the coating and covered with a glass lid. After
24 h, the glass cover and filter paper were removed, and any remaining liquid on the
coating surface was eliminated. The resulting imprints and any changes in color and
gloss were examined using color and gloss analysis. This assessment allowed for the
evaluation of the coatings’ resistance to various chemical substances. Moreover, to evaluate
the influence of the sepiolite-based pigment on the surface wettability of the coatings,
contact angle measurements were performed following the ASTM D7334-08 standard [68].
A Nikon 60 mm lens with an aperture of f/2.8 (Nikon Instruments Europe, Amstelveen, the
Netherlands), was used for capturing macro pictures. The contact angle measurements were
conducted using the NIS-Elements Microscope Imaging software on a Windows Version
platform. Demineralized water droplets (2 µL), generated via a syringe and dispersed from
a distance of approximately 2 cm, were observed. Then, 60 s after deposition on the coating,
the drop was photographed, and the wetting angle was calculated using the imaging
software. To ensure statistical reliability, each sample underwent 10 measurements. This
comprehensive approach facilitated a thorough analysis of the coatings’ surface wettability
properties, allowing for a more accurate understanding of the impact of the pigment on
this aspect.

3. Results and Discussion
3.1. Pigment Appearance and Coatings Characterization

Figure 2 showcases the bio-based pigment, providing images captured both through
the optical microscope and at a more detailed level under the SEM. The optical microscope
images offer a macroscopic perspective of the pigment, emphasizing its dark blue hue. Con-
versely, the SEM images offer a closer inspection, highlighting the distinctive morphological
structure of the sepiolite-based pigment. Under SEM observation, the pigment presents as a
powder with an average grain size slightly exceeding 10 µm. However, these grains consist
of agglomerates comprising extremely short and fine sepiolite fibers, recalling the typical
morphology of sepiolite-based pigments [56,58,69]. Within these fiber agglomerations lies
the extract of Indigofera tinctoria L., contributing to the pigment’s characteristic blue color.
Absolutely, the combination of its compact size and vibrant color renders this powder a
compelling option as a pigment for organic paints and coatings, particularly those requiring
thin applications. EDXS investigations on the pigment revealed the typical composition of
sepiolite, with traces of magnesium, aluminum, silicon, potassium, calcium, and iron. The
EDXS spectra can be found in Appendix A.

Thus, the addition of the pigment to the white primer resulted in the creation of the
series of samples depicted in Figure 1, showcasing the chromatic alteration brought about
by the bio-based additive. The initial white hue of the primer transitions towards blue
tones, exhibiting a brighter and more pronounced effect depending on the quantity of
pigment incorporated. The graph in Figure 3 effectively emphasizes the shift in color, gloss,
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and roughness induced by the pigment concerning the reference white sample B0.0. It
illustrates how the addition of the pigment alters these properties compared to the base
white sample, providing a clear visual representation of the changes brought about by
the pigment.
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The formula used to calculate the color change (∆E) in the composite coatings is
typically derived from the CIELAB color space. It involves the following equation [70]:

∆E = [(∆L*)2 + (∆a*)2 + (∆b*)2]1/2, (1)
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where ∆L* represents the difference in lightness, ∆a* represents the difference in red–green
values and ∆b* represents the difference in yellow–blue values. This formula quantifies
the overall color difference between the two samples, providing a numerical value (∆E)
that indicates the magnitude of the change in color appearance. Certainly, the color
changes induced by the blue pigment, measuring approximately nine and twenty-six
points for sample B0.5 and sample B5.0, respectively, can be considered substantial [71].
The initial gloss of sample B0.0, roughly measured at twenty-nine, experiences a decrease
to approximately twenty-one and eight for sample B0.5 and sample B5.0, respectively. The
pigment not only introduces specific coloration but also heightens the opacity of the primer.
This effect is closely tied to a notable escalation in surface roughness (Ra), which transitions
from around 0.6 µm for sample B0.0 to 0.9 and 2.3 µm for sample B0.5 and sample B5.0,
respectively. The pigment granules, despite their relatively small size, contribute to an
elevation in the surface roughness of the composite layer, particularly when added in larger
quantities. This increase in roughness correlates with the reduction in gloss, signifying a
tradeoff between color intensity and the surface’s smoothness when incorporating higher
levels of the pigment.

Absolutely, these investigations undeniably showcase the significant influence of the
bio-based pigment on the distinct coloration of the coating, concurrently modifying its
texture by notably augmenting roughness while diminishing gloss. Incorporating the
sepiolite-based pigment into the paint generates compelling effects, both morphologi-
cally and aesthetically, underscoring its capacity to fundamentally transform the coating’s
appearance and surface characteristics.

Figure 4 illustrates the observation of samples both in plan and in section under an
optical microscope to analyze the impact of the pigment on the coatings’ morphology.
Even when present in significant quantities, the pigment demonstrates a homogeneous
distribution within the polymeric matrix, facilitating its vibrant coloring effect. Analysis
of the sections accentuates the presence of granules, further scrutinized through SEM
observations. The section of sample B0.0 displays a homogeneous and compact structure.
In contrast, the two composite coatings reveal the presence of sepiolite-based granules
firmly integrated into the polymer matrix. Remarkably, these granules do not seem to in-
troduce specific flaws in the coating; instead, they synergistically merge with the polymeric
bulk, showcasing excellent compatibility with the urethane alkyd resin. This seamless
integration suggests a robust cohesion between the pigment and the polymer matrix, indi-
cating promising properties in terms of structural integrity and compatibility within the
coating system.

Even with these considerations, the pigment does indeed impact the coating’s perfor-
mance, marginally diminishing its adherence to the metal substrate. Figure 5 depicts the
outcome of the cross cut test, revealing a decrease in adhesion from grade 5B to 4B observed
in sample B0.0 to grade 4B and 3B in sample B0.5 and sample B5.0, respectively [64]. While
the pigment granules themselves do not induce substantial defects within the coatings, they
do modify the compactness and chemistry of the coating matrix. As a result, this alteration
diminishes the robustness of the chemical bond between the urethane alkyd resin and the
metal substrate.

Hence, the pigment demonstrates a potent coloring capability that significantly in-
fluences the coating’s reflective qualities while inducing substantial alterations in its mor-
phology and texture. Despite its even dispersion within the polymer matrix, the pigment
initiates structural modifications at a chemical level, resulting in a decreased adhesion
between the coating and the metal substrate. This aspect could potentially impact the
coating’s barrier and protective functions. Consequently, various accelerated degradation
tests were conducted on the samples to assess how the pigment might affect the durability
of the composite coating.
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3.2. Coatings Durability
3.2.1. Salt Spray Chamber Exposure

The samples underwent monitoring every 24 h for the initial 100 h within the salt
spray chamber. Afterward, observations were made at 100 h intervals until the completion
of the test. To prompt corrosion reactions at the interface between the substrate and the
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coating, a 2 mm-wide artificial notch was created on the coating’s surface. Throughout the
sample observation period, attention was given to the progression of a blister formation
and eventual delamination phenomena of the coating at the notch [72].

Figure 6 illustrates the chronological progression of the degradation morphology
close to the notch for every sample set. The intentionally created flaw accelerates the
formation of corrosion byproducts, which partially encroach upon the coating. Despite
no specific peeling observed, the corrosive damage intensifies gradually. Nevertheless,
solely examining the notch does not facilitate the distinction between the behaviors of
the three sample sets. All three sample sets demonstrate highly comparable patterns; as
anticipated, the emergence of corrosion byproducts facilitates blister development near the
notch, irrespective of whether the polymer matrix contains blue pigments or not.
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in the salt spray chamber.

Significant disparities among the samples become evident in regions distant from
the artificial defect, where the coating remains undamaged and can showcase its genuine
protective capabilities. Even in these areas, blisters form because the primer selected for
the study does not possess particularly strong barrier properties. Essentially, the primer’s
primary function is to ensure excellent adhesion to the metal substrate. Nonetheless, the
examination of pigment behavior was conducted within the primer because of its inherently
limited durability. This approach aimed to better emphasize the protective function of
the sepiolite-based powder. Figure 7 illustrates a depiction of the blisters that emerged
within the three series of samples, situated close to the intact and flaw-free coating. The
blisters frequently are accompanied by leaked corrosion products, stemming from the
compromised integrity of the coating, no longer effectively shielding the surface. Yet, this
occurrence seems less prominent in sample B5.0, where the development of blisters appears
to be impacted by the bio-based pigment.

For a thorough examination of the pigment’s behavior, the progression of these blisters
was meticulously tracked by subjecting five samples per series to the accelerated degra-
dation test. These analyses encompassed not only the count of blisters that formed over
time but also tracked the changes in their average size and the overall area affected by the
defect. This area is quantified as the percentage of the sample surface covered by blisters.
The findings from these analyses are presented in the three graphs depicted in Figure 8.
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To underscore the advantageous impact of the pigment, it is essential to analyze all
three graphs concurrently. Figure 8a distinctly emphasizes how the existence of elevated
pigment concentrations significantly diminishes the blister count. Specifically, in com-
parison to the pure urethane alkyd matrix coating, sample B5.0 displays an average of
50% fewer blisters. Simultaneously, Figure 8b indicates that a higher pigment amount
generally correspond to larger average blister sizes. However, this trend is intricately
linked to the observations in Figure 8a, where a smaller blister count is noted. Specifically,
examining the blister size evolution in sample B0.0 and sample B0.5 reveals a distinctive
pattern: the blisters undergo rapid initial growth, followed by an average reduction in
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size between 50 and 200 h of exposure, succeeded by subsequent growth. This decline
observed in the second phase actually signifies the emergence of new, smaller blisters.
This is supported by the significant rise in slope concerning the increase in blister count,
observed in Figure 8a. In sample B5.0, the pattern of blister size fluctuation—growth,
decrease, followed by stabilization—is notably absent. Instead, blister sizes tend to increase
and reach a point of near stabilization after about 300 h. Analyzing Figure 8a,b together
elucidates the behavior of sample B5.0; it demonstrates limited blister development, with
subsequent growth over time. Unlike samples B0.0 and B0.5, the high-pigment content
coating displays fewer instances of blister development, suggesting either a reduced de-
fectiveness or, at the very least, an effective barrier effect of the pigment in minimizing
moisture penetration from the salt spray chamber. These analyses are corroborated by
the findings depicted in Figure 8c, affirming that the overall defectiveness in sample B5.0
is notably diminished. Approximately half of the surface area in the samples with high
pigment content remains unaffected by the formation of blisters, indicating a substantial
reduction in defects compared to the other samples.

In conclusion, it can be confidently stated that the pigment provides a tangible protec-
tive benefit, notably seen in its ability to diminish the emergence of defects such as blisters.
This effect is prominently noticeable, especially in a non-protective primer akin to the
one employed in this study, which exhibits heightened susceptibility to the test solution’s
permeation. Nonetheless, this favorable outcome suggests a promising potential for the
sepiolite-based powder. It could be applied in multi-layer systems, serving not only as a
pigment but also as a protective filler within a top coat, demonstrating its dual functionality
and indicating a prospect for further application in enhancing protective coatings.

3.2.2. Outdoor Resistance

Even though alkyd urethane resins are acknowledged for their robust UV resis-
tance [73], the samples underwent an exceptionally intense UV-B radiation exposure to
assess the pigment’s long-term visual endurance. Indeed, not just the three series of sam-
ples, but the individual pigment was also subjected to the accelerated degradation test.
This was aimed at gaining more specific insights into its performance within the polymer
matrix and understanding its inherent durability characteristics.

Figure 9 illustrates the visual comparison of the three series of samples and the pig-
ment, observed through an optical microscope before and after the accelerated degradation
test. The image emphasizes a shift in the appearance of the three samples, which becomes
progressively less noticeable as the pigment quantity increases. Surprisingly, the pigment’s
appearance appears relatively unaffected by exposure to UV-B radiation. The polymeric
matrix of the coating indeed experiences chemical and physical degradation, noticeable by
a slight yellowing, observed in sample B0.0. Nevertheless, it appears that the durability of
the pigment mitigates and protects against this phenomenon of aesthetic deterioration.
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This observation is elucidated by the graphs depicted in Figure 10, showcasing the
changes in color and gloss within the three coating series throughout the test. The UV-B
radiation exposure is notably intense, leading to significant degradation of the samples
within the initial 24 h of testing. However, afterward, the color and gloss values tend to
stabilize. As a result, the test was halted at 300 h of exposure, by which time the samples
displayed consistent aesthetic attributes. Figure 10a, which illustrates the color change ∆E
during the test, quantitatively substantiates the earlier qualitative observations outlined
in Figure 9. As the pigment concentration increases, a noticeable reduction in the color
change in the samples are evident: from a final ∆E value of approximately 6.0 points for
sample B0.0, it decreases to roughly 3.0 points and 1.5 points for sample B0.5 and sample
B5.0, respectively. In this instance, it is conclusive that the color alteration induced by
UV-B radiation in sample B5.0 is nearly negligible. The noticeable shift in color in sample
B0.0 primarily comes from a rise in the coordinate b*, moving towards the positive values
associated with yellow tones. This yellowing is a common occurrence in the photochemical
breakdown of polymer structures. Conversely, the b* value stays nearly unchanged in
sample B5.0. This affirms the exceptional durability of the bio-based pigment, showcasing
its ability to potentially conceal any photochemical degradation occurring in the polymer
matrix of the coating. Indeed, the deterioration of the polymer matrix is corroborated by
the considerable decrease in gloss observed in sample B0.0 (Figure 10b). However, this
gloss reduction is notably less pronounced in the B5.0 sample. This is partially attributed to
the pigment’s intrinsic characteristic of introducing a matte effect, linked to the heightened
roughness (as depicted in Figure 3). This immediate increase in roughness contributes to
lowered reflectance values in the coating.
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Ultimately, the incorporation of 5 wt.% of pigment leads to a reduction of about 75%
in color change and approximately 71% in gloss change, compared to the coating solely
comprised alkyd urethane matrix. These significant reductions highlight not only the
pigment’s remarkable color stability but also its contribution to enhancing the overall
aesthetic uniformity and consistency of the composite coating.

Yet, to solidify the intriguing durability of the pigment against UV-B radiation-induced
degradation, the sepiolite-based powder underwent FTIR analysis both before and after
direct exposure in the UV chamber for 300 h. Figure 11 displays the outcomes of this
examination, presenting the two spectra of the pigment—one prior to and the other fol-
lowing the accelerated degradation test. The spectrum acquired before the exposure in
the UV chamber reveals distinctive peaks representing the composition of the material
constituting the bio-based pigment. The spectral bands within the 4000–3000 cm−1 range
indicate vibrations related to the stretching of the Mg–OH group [74], coordinated water,
and zeolitic water present in the compound. Furthermore, the peak observed at 1619 cm−1

specifically signifies the vibrational pattern characteristic of zeolitic water [75]. Other
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notable peaks include those at 1199 cm−1 and 972 cm−1, attributed to Si–O bonds, and
the peak at 1011 cm−1, indicative of Si–O–Si plane vibrations [75,76]. Lastly, the signal
detected at 690 cm−1 corresponds to the vibrations associated with the bending vibration
of Mg–OH [74]. The indigo extract signal, while existing in smaller amounts within the
powder, is significantly masked by the dominant sepiolite signature. Specifically, the charac-
teristic peaks of indigo, such as those linked to C=O vibrations near 1600 cm−1, 1060 cm−1,
and 690 cm−1 [77], as well as the stretching vibration of the C–N group combined with the
rocking of C–H and N–H groups around 1170 cm−1 [78], overlap and coincide with the
signals attributed to sepiolite that were previously described.
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The second spectrum on the graph, representing the pigment’s condition after the
accelerated degradation tests, notably overlays perfectly with the first one. This empha-
sizes the consistency and chemical stability of the sepiolite-based powder. Therefore, the
analysis affirms that exposure to UV-B radiation has no discernible impact on the pigment’s
appearance, indicating minimal degradation.

Indeed, sepiolite’s strong UV resistance [51,79,80] was harnessed during the pigment’s
design to enhance the visual endurance of the Indigofera tinctoria L. extract, which is
well known for its susceptibility to photofading of color induced by UV radiation [81,82],
encompassing the cleavage of C=C double bonds [83].

As a result, the UV chamber exposure test underscored the outstanding performance
of the bio-based pigment, showcasing its ability to sustain prolonged color stability without
succumbing to photodecay caused by UV-B radiation. Moreover, the pigment demon-
strated its capacity to minimize the aesthetic degradation of the coating’s polymeric matrix,
preserving the overall appearance nearly unchanged throughout the test.

However, a crucial consideration for pigments employed in outdoor applications is
the exposure to high temperatures that surfaces may experience during the hottest seasons.
Thus, to assess the chromatic stability of the pigment under elevated temperatures, the
color and gloss of the samples were evaluated after a 24 h exposure at a temperature of
100 ◦C. Figure 12 illustrates the variation in these two parameters following the test.

The two graphs highlight a good chromatic consistency provided by the pigment
even at high temperatures, as both the gloss and the color of the samples show slight
changes following the accelerated degradation test. Specifically, sample B0.0 demonstrates
a color change ∆E of approximately 5 points. Notably, the color stability of the samples
improves with higher pigment concentrations. Consequently, while the coating lacking
the bio-based pigment experiences a slight color shift when exposed to high temperatures,
the sepiolite-based additive successfully preserves consistent color. This phenomenon is
ascribed to the well-known thermal durability of sepiolite [84,85]. Sepiolite effectively
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shields the indigo extract, with which it is infused, from potential thermal degradation
phenomena. Similarly, the delta gloss values remain relatively low, affirming the samples’
good aesthetic uniformity.
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In essence, the pigment proves its suitability for outdoor applications, which often
pose the greatest challenges for natural and bio-based pigments [30,32,86]. Its exceptional
resistance enables the sepiolite-based powder to effectively shield the coloring extract
within, maintaining its vibrant blue hue intact.

3.2.3. Liquids Resistance

The two different amounts of the sepiolite-based pigment were analyzed to see how
they impacted the barrier properties of the polymeric matrix across a range of tests. The
outcomes from the cold liquid resistance test are presented in Figure 13. Figure 13a displays
the changes in color, referred to as ∆E, following interactions between the coatings and the
four test solutions. Meanwhile, Figure 13b illustrates how the surface gloss of the samples
changed based on the chosen test solution. As expected, the NaCl solution typically does
not cause significant color changes in the coating, resulting in ∆E values that fall within
the category 0 range, according to standard [87]. On the contrary, the gloss appears to
be influenced by exposure to the saline solution. Yet, the decrease in gloss becomes less
conspicuous with higher levels of pigment. The acetone yields comparable results in both
color alteration and gloss: the former being minimal, while the latter diminishes in relation
to the presence of the bio-based pigment. Regarding color alteration, the oil showcases an
almost imperceptible impact while causing a roughly 10-point rise in gloss across all three
groups of samples. This pattern is characteristic of a highly reflective substance like olive
oil [88]. Lastly, coffee has the least effect on the gloss of the coatings but induces the most
notable color alteration. Based on the reference standard [87], samples B0.0, B0.5, and B5.0
demonstrate ∆E values corresponding to categories 4, 2-3, and 1, respectively. The positive
impact of the pigment on the long-term appearance of the coating is undeniable, evident
in the superior color and reflectance stability of sample B5.0. This effect is likely aided by
the initial darker shades that partially obscure the absorption of dark solutions within the
coating. Indeed, this finding aligns with the observations from the salt spray chamber test,
affirming a positive barrier effect of the pigment. This effect complicates the percolation of
the test solution into the coating of the B5.0 sample, as depicted in Figure 8. Additionally,
the higher surface roughness and consequently lower initial gloss values make sample
B5.0 less susceptible to alteration when in contact with test solutions. Likewise, sepiolite
has a tendency to minimize color changes caused by highly acidic or alkaline solutions.
For instance, sample B5.0 demonstrates minimal alterations in both color and gloss when
exposed to pH 1 and pH 14 solutions. Despite indigo’s vulnerability to varying acidity
levels [89], sepiolite maintains the pigment’s color consistency, shielding it from the typical
degradation processes.
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Surface roughness is a pivotal factor in enhancing the long-lasting color stability of
the coating, closely linked with a hydrophobic effect. Figure 14 displays the outcomes
of the contact angle measurements conducted on the three sample types, including the
average contact angle value derived from measurements of 10 distinct drops per sample
series. The analysis underscores a distinct pattern: a rise in the contact angle corresponding
to the quantity of pigment integrated into the paint. This trend is not directly linked to
the inherent hydrophobic nature of the pigment but rather to an escalation in surface
roughness facilitated by the sepiolite-based powder, as demonstrated earlier in Figure 3.
Indeed, various studies highlight how surface roughness can influence the hydrophobic-
hydrophilic traits of a surface [30,90,91]. Nevertheless, while the addition of 5 wt.% of
pigment leads to a 25% increase in the contact angle compared to the reference sample B0.0,
it is inaccurate to label these coatings as purely hydrophobic, since a 73◦ contact angle is
not indicative of a distinctly hydrophobic surface. Absolutely, the pigment, by changing
the surface texture of the coating, indeed adjusts its hydrophobic–hydrophilic properties,
thus affecting its resilience when exposed to specific aggressive solutions, as emphasized
by the graphs in Figure 13.
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In summary, it can be inferred that the sepiolite-based pigment does not encourage
specific percolation or solution absorption within the acrylic matrix of the coating. Instead,
it appears to bolster the coating’s ability to act as a barrier, diminishing color fading and
gloss reduction while enhancing its hydrophobic traits. Consequently, these discoveries
shed light on potential novel applications for this environmentally friendly material as an
innovative pigment in organic coatings, capable of imparting unique aesthetic qualities
and heightened resistance to liquids.
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4. Conclusions

This study underscores the potential of an innovative bio-based pigment derived from
sepiolite, infused with Indigofera tinctoria L. extract, offering applicability in exterior paints.
This pigment, displaying a vibrant blue hue when incorporated into a white primer, notably
transforms its visual appearance by introducing colors that vary according to the powder
concentration. Additionally, it diminishes the gloss and enhances the surface roughness of
the composite layer.

The pigment, uniformly dispersed within the polymer matrix, induces a minor shift in
its structural chemistry, leading to a slight reduction in its coating adhesion. However, this
phenomenon does not compromise the protective capabilities of the composite layer; rather,
it enhances them. Several accelerated degradation tests have consistently demonstrated the
pigment’s exceptional role in augmenting the durability of the white primer.

Exposure within the salt spray chamber has underscored the pigment’s significant
barrier properties, effectively restricting solution absorption within the coating and subse-
quently minimizing the occurrence of visible defects. Simultaneously, the UV-B radiation
exposure test has revealed the pigment’s intriguing capacity to maintain prolonged color
stability, demonstrating resilience against the photodegradation phenomena over an ex-
tended period. Likewise, the thermal resilience of sepiolite serves to safeguard the pigment
against thermal degradation, thereby preserving the aesthetic attributes of the coating even
after exposure to elevated temperatures. Finally, the liquid resistance tests and contact
tangle measurements have underscored the pigment’s pivotal role in fortifying the coating’s
barrier function. This includes mitigating color fading, reducing gloss loss, and enhancing
the coating’s hydrophobic characteristics.

Ultimately, the pigment has consistently demonstrated its ability to enhance the
durability of the coating by mitigating the absorption of aggressive solutions. Specifically,
the sepiolite-based powder complicates the percolation path of aggressive solutions within
the polymeric matrix of the coating, which would typically absorb liquids due to its intrinsic
porosity. Moreover, the pigment alters the surface texture of the coating, thereby slightly
augmenting its hydrophobic properties.

These findings collectively reveal promising prospects for this environmentally friendly
material as an innovative pigment in organic coatings. Its capability to bestow distinc-
tive aesthetic attributes while augmenting the coatings durability opens doors to novel
applications in various industries.
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