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Abstract: In order to address the irregularity of the welding path in aluminum alloy frame joints, this
study conducted a numerical simulation of free-path welding. It focuses on the application of the
TIG (tungsten inert gas) welding process in aluminum alloy welding, specifically at the intersecting
line nodes of welded bicycle frames. The welding simulation was performed on a 6061-T6 aluminum
alloy frame. Using a custom heat source subroutine written in Fortran language and integrated into
the ABAQUS environment, a detailed numerical simulation study was conducted. The distribution
of key fields during the welding process, such as temperature, equivalent stress, and post-weld
deformation, were carefully analyzed. Building upon this analysis, the thin-walled TIG welding
process was optimized using the response surface method, resulting in the identification of the best
welding parameters: a welding current of 240 A, a welding voltage of 20 V, and a welding speed of
11 mm/s. These optimal parameters were successfully implemented in actual welding production,
yielding excellent welding results in terms of forming quality. Through experimentation, it was
confirmed that the welded parts were completely formed under the optimized process parameters
and met the required product standards. Consequently, this research provides valuable theoretical
and technical guidance for aluminum alloy bicycle frame welding.

Keywords: TIG welding; free path; 6061-T6; optimization; numerical simulation

1. Introduction

Aluminum alloy is a new type of structural material with significant advantages
over steel, including corrosion resistance, lightweight properties, ease of processing and
welding, and recyclability. It finds widespread applications in construction, transportation,
and various other fields [1,2]. The 6xxx series Al-Mg-Si alloy, known for its excellent
comprehensive properties, exhibits a high level of strength and plasticity. Compared to
other aluminum alloys, it demonstrates superior impact toughness and can withstand
greater ultimate deformation. Hence, the 6061-T6 aluminum alloy was chosen as the
material for the bicycle frame in this study. In production and processing, the 6061-T6
aluminum alloy frame is typically welded using TIG (tungsten inert gas) welding. Due
to the thin tube wall thickness of 2~3 mm in aluminum alloy frames and the specific
shape of the tube connections, welding defects such as weld leakage, weld penetration,
cracks, porosity, and poor weld formation commonly occur during thin-walled welding.
To ensure that the welding meets production requirements and results in the desired form,
it is essential to optimize the welding process parameters. The conventional trial-and-
error method, relying on welding experiments, consumes substantial time and effort in
optimizing the welding process, leading to unnecessary economic losses. Therefore, the
development of corresponding control technology based on numerical simulation becomes
imperative. Numerical simulations enable the effective prediction of the distribution of the
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welding temperature field and welding stress field [3–5], facilitating the optimization of
welding process parameters [6–10]. This optimization enhances welding quality, reduces
production costs, and enhances production efficiency in the welding process.

For the numerical simulation of the welding process, Nisar et al. simulated the laser
welding process of AA5083 aluminum alloy in a straight path through ABAQUS v2020.
They conducted a transient thermal analysis of the AA5083 aluminum alloy to study the
effects of laser power and welding speed on the peak temperature of samples with different
thicknesses, the aspect ratio of weld width and depth, and the width of the heat-affected
zone [11]. Using the ANSYS platform, Doshi et al. performed transient thermal simulation
of the welding process by utilizing an ANSYS APDL subroutine. They conducted a transient
thermal simulation of pulsed MIG welding of a 1 mm thick AA6061-T6 thin plate. The study
mainly focused on comparing the applicability and effects of various moving-heat-source
models [12]. Liu et al. used ANSYS v2018 software to simulate the multi-pass TIG welding
process of an RAFM steel plate. They numerically simulated the temperature field and
stress field of TIG welding, supported by experimental studies [13]. Wang et al. introduced
a sequential combination of thermal–mechanical and mechanical simulation methods. They
conducted thermal–mechanical and mechanical simulations of double-pulse MIG welding
of a 6061-T6 aluminum alloy sheet. The deformation behavior and load-bearing capacity of
the welded joints, obtained through numerical simulation, were in good agreement with
the corresponding experimental results. This demonstrates the feasibility and superiority
of the established sequential simulation method, combining heat and force [14]. Lu et al.
utilized the metal inert gas (MIG) welding method to weld aluminum alloy sheets and
numerically simulated the welding process. They analyzed the welding temperature field
and residual stress field of the butt joint. The model’s reliability was verified by comparing
experimental data with simulation data [15]. Given the difficulty in writing free-path
welding heat source subroutines, previous studies on numerical simulations of aluminum
alloy welding have primarily focused on regular welding paths, with limited investigations
into special-shaped pipe welding [16–20]. This paper conducts the secondary development
of an irregular-path welding heat source subroutine for aluminum alloy frames. The
TIG welding process parameters were optimized through numerical simulation using
the response surface method [21–23], aiming to enhance welding quality and improve
production efficiency [24–26].

2. Experimental Process and Materials
2.1. Materials and Methods

The material selected for this experiment is 6061-T6 aluminum alloy, and its chemical
composition is presented in Table 1. The 6061-T6 sheet utilized in the experiment was
purchased and its chemical composition was provided by the material supplier. In this
study, the 3D modeling of the components is based on an actual bicycle frame. To facilitate
specific analysis, a simple local modeling of its primary welding parts was conducted.
The dimensions of the local modeling were as follows: a circular tube with a diameter
of 44.7 mm, a length of 120 mm, and a thickness of 3.1 mm below, and an egg-shaped
mouth-shaped tube with a curved radius, and a thickness of 2.85 mm above. The weld area
is highlighted in Figure 1. The primary welding parameters of the TIG welding process are
welding current, welding voltage, and welding speed. These three parameters are typically
considered crucial for controlling welding quality and weldability characteristics. With the
intersection line of the frame as the primary focus of the welding part, a welding analysis
of the node position at the frame’s intersection line was conducted. The response surface
method was employed to design corresponding experiments, optimizing the welding
process parameters, with subsequent mechanical testing of welded parts and microstructure
analysis. The fatigue performance of welded frame products was tested to validate the
feasibility and accuracy of the welding optimization model.



Materials 2024, 17, 1039 3 of 23

Table 1. Chemical composition of 6061-T6 aluminum alloy (wt.%).

Chemical Composition of 6061-T6 Aluminum Alloy

Si Fe Cu Mn Mg
0.4~0.8 0.7 0.15~0.4 0.15 0.8~1.2

Cr Zn Ti Al Other
0.04~0.35 0.25 0.15 residuals 0.15
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Figure 1. Frame’s intersecting line node parts and welding model. (a) Overall frame model. (b) Frame
weldment model. (c) Weldment local model.

2.2. Build Finite Element Model

The establishment of a welding finite element simulation model involves five main
steps: model positioning, material setting, meshing, boundary condition definition, and
loading of the heat source subroutine. The thermophysical performance parameters of
6061-T6 aluminum alloy material were obtained utilizing JmatPro v7.0 software and con-
sulting the related literature [14]. The material’s relevant parameter settings are displayed
in Tables 2 and 3.

Table 2. Thermophysical properties of 6061-T6 aluminum alloy.

Alloy
Material Material Properties 20 ◦C 100 ◦C 200 ◦C 300 ◦C 400 ◦C 500 ◦C

6061-T6

Elastic modulus (MPa) 6.67 × 104 6.08 × 104 5.44 × 104 4.31 × 104 3.60 × 104 3.00 × 104

Poisson ratio 0.334 0.339 0.344 0.349 0.356 0.363
Thermal conductivity 119 121 126 130 138 145

Specific heat (J kg−1 K−1) 900 921 1010 1050 1090 1130
Yield stress (MPa) 250 225 190 133 20.8 8.6

Plastic strain 0 0 0 0 0 0
thermal expansion

coefficient
(mm/mm/◦C)

2.23 × 10−5 2.28 × 10−5 2.47 × 10−5 2.55 × 10−5 2.67 × 10−5 2.70 × 10−5

Table 3. Welding model parameters.

Absolute zero
(◦C)

Boltzmann’s constant
(W/mm2/◦C)

Coefficient of
convective heat

transfer
(mJ/mm2/s/◦C)

Radiation heat
transfer coefficient

−273.15 5.677 × 10−11 0.02 8.50 × 10−4

Density
(t/mm3)

Latent heat
(mJ/t)

Solidus temperature
(◦C)

Liquidus temperature
(◦C)

2.70 × 10−9 3.90 × 1011 615 655

In order to carry out the welding numerical simulation more conveniently, the direct
thermal–mechanical coupling method was used for the welding numerical simulation. Two
physical field problems can be solved by using one element type, and the real coupling
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between heat and structure can be realized. Figure 2a is a schematic diagram of grid division
and welding path. The red line is the welding trajectory, and the yellow arrow indicates the
welding direction. The welding trajectory route is a specific free path of the intersecting line
node. It is necessary to control the heat source movement trajectory of welding numerical
simulation by writing specific subroutines. The heat source subroutine was written in
Fortran language to control the welding path trajectory of the heat source movement in the
welding numerical simulation process. According to the energy distribution characteristics
of the heat source in the actual TIG welding of aluminum alloy, the heat source moves along
the welding path, and the temperature of the heated position rises sharply and diffuses
rapidly to the surrounding area. As the heat source moves, the heated position will form
a tailing phenomenon of heat. The distribution on the surface of the welded plate is an
asymmetric double-ellipsoid shape. A large temperature gradient will be formed around
the weld, so the double-ellipsoid heat source model is used in this numerical simulation,
as shown in Figure 2b [12]. The DFLUX subroutine interface provided by ABAQUS can
realize the transformation simulation of moving the heat source load in time and space.
At the same time, combined with the double-ellipsoid heat source distribution function,
Fortran was used to complete the preparation of heat source load.
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The double-ellipsoid heat source model takes into account the influence of the heat
source movement on the heat flux distribution. The front of the heat source (the first half) is
a 1/4 ellipsoid, and the rear (the second half) is another 1/4 ellipsoid. The heat flux density
distribution function is expressed as [12]:

q(x, y, z, t) =
6
√

3 f f

abc1π
√

π
exp(−3(

x2

a2 +
y2

b2 +
(z − vt)2

c1
2 ))

q(x, y, z, t) =
6
√

3 fr

abc2π
√

π
exp(−3(

x2

a2 +
y2

b2 +
(z − vt)2

c22 ))

In the formula, f f and fr are heat flux distribution coefficients. f f + fr = 2, f f takes 0.7,
fr takes 1.3; a, b, c1, and c2 are the geometric dimensions of the molten pool [12]. Based on
the above analysis, the heat source program was written in Fortran language and debugged
to match the actual molten pool morphology. The DFLUX subroutine describes the model
shape and moving state of the heat source. It has specific format requirements, and the
overall format should conform to the characteristics of the Fortran statement. The basic
way of writing its subprograms is as follows:
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SUBROUTINE DFLUX(FLUX, SOL, KSTEP, KINC, TIME, NOEL, NPT, COORDS, JLTYP,
1 TEMP, PRESS, SNAME)

INCLUDE ‘ABA_PARAM.INC’
DIMENSION COORDS(3), FLUX(2), TIME(2)
real*8 Am, Bm, Cm, Dm, dmm, An, Bn, Cn, Dn, disn, Aw, Bw, Cw, Dw, dww
real*8 p1x, p1y, p1z, p2x, p2y, p2z, p3x, p3y, p3z
CHARACTER*80 SNAME

a = 3
b = 3
c = 3
c2 = 6
ratio = 0.5
ff = 0.66666667
fr = 1.33333333
CI = 280
U = 20
vel = 7
yita = 0.85
power = 1000*yita*U*CI

User coding to define FLUX(1) and FLUX(2)
RETURN
END

Based on previous production experience, the welding process parameters were set as
follows: the welding voltage was set to 20 V, the welding current was set to 280 A, and the
welding speed was set to 7 mm/s. Subsequently, a welding numerical simulation was con-
ducted using these parameters. In Figure 3, the results of the welding numerical simulation
for the weldment are presented. Figure 3a displays the Mises equivalent stress distribution
map of the weldment, with a maximum equivalent stress value of 582.853 MPa and a
minimum equivalent stress value of 1.255 MPa. The region with the higher stress values is
predominantly concentrated at the bending angle of the intersecting line. Figure 3b exhibits
a cloud diagram depicting the post-weld displacement deformation of the weldment, where
the maximum deformation value is recorded at 1.179 mm. Moreover, Figure 3c illustrates
the cloud diagram showcasing the equivalent plastic strain distribution in the weldment
post-welding, primarily observed in the weld area. The maximum value of equivalent
plastic strain is calculated to be 0.328.

Materials 2024, 17, 1039 6 of 25 
 

 

      power = 1000*yita*U*CI 

 

User coding to define FLUX(1) and FLUX(2) 

      RETURN 

      END 

Based on previous production experience, the welding process parameters were set 

as follows: the welding voltage was set to 20 V, the welding current was set to 280 A, and 

the welding speed was set to 7 mm/s. Subsequently, a welding numerical simulation was 

conducted using these parameters. In Figure 3, the results of the welding numerical sim-

ulation for the weldment are presented. Figure 3a displays the Mises equivalent stress 

distribution map of the weldment, with a maximum equivalent stress value of 582.853 

MPa and a minimum equivalent stress value of 1.255 MPa. The region with the higher 

stress values is predominantly concentrated at the bending angle of the intersecting line. 

Figure 3b exhibits a cloud diagram depicting the post-weld displacement deformation of 

the weldment, where the maximum deformation value is recorded at 1.179 mm. Moreo-

ver, Figure 3c illustrates the cloud diagram showcasing the equivalent plastic strain dis-

tribution in the weldment post-welding, primarily observed in the weld area. The maxi-

mum value of equivalent plastic strain is calculated to be 0.328. 

 

Figure 3. The welding numerical simulation results of the welding part of the frame intersecting 

line node. (a) Mises equivalent stress cloud diagram. (b) Displacement deformation cloud map. (c) 

Equivalent plastic strain cloud diagram. 

In summary, the weldment experiences excessive stress and strain post-welding due 

to the impact of welding process parameters. This directly affects the post-weld forming 

quality of the frame. Hence, it is imperative to optimize the welding process parameters 

in a rational manner. By obtaining the optimal welding process parameters, the forming 

quality of the weldment can be ensured. 

3. Optimization of TIG Welding Process Parameters Based on RSM 

3.1. Box–Behnken Experimental Design 

The main factors influencing the welding quality in the TIG welding process are the 

welding current, the welding voltage, and the welding speed. To determine the optimal 

process parameters for welding, a three-factor, three-level, three-response Box–Behnken 

design test was established [27–30]. Table 4 presents the factor and level table of this ex-

periment, while Table 5 displays the complete test table. The post-welding stress value, 

post-welding deformation, and welding temperature were selected as indicators. 

Figure 3. The welding numerical simulation results of the welding part of the frame intersecting
line node. (a) Mises equivalent stress cloud diagram. (b) Displacement deformation cloud map.
(c) Equivalent plastic strain cloud diagram.

In summary, the weldment experiences excessive stress and strain post-welding due
to the impact of welding process parameters. This directly affects the post-weld forming
quality of the frame. Hence, it is imperative to optimize the welding process parameters
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in a rational manner. By obtaining the optimal welding process parameters, the forming
quality of the weldment can be ensured.

3. Optimization of TIG Welding Process Parameters Based on RSM
3.1. Box–Behnken Experimental Design

The main factors influencing the welding quality in the TIG welding process are the
welding current, the welding voltage, and the welding speed. To determine the optimal
process parameters for welding, a three-factor, three-level, three-response Box–Behnken
design test was established [27–30]. Table 4 presents the factor and level table of this
experiment, while Table 5 displays the complete test table. The post-welding stress value,
post-welding deformation, and welding temperature were selected as indicators. ABAQUS
was employed to conduct the welding numerical simulations using the parameters listed
in the table, and the results are summarized in the table.

Table 4. Experimental factor level.

Factor
Level

−1 0 1

Welding current (A) 200 240 280
Welding voltage (V) 18 19.5 21

Welding rate (mm/s) 3 7.5 12

Table 5. Box–Behnken analysis table.

Run
Factor 1

A: Welding
Current (A)

Factor 2
B: Welding
Voltage (V)

Factor 3
C: Welding
Rate (mm/s)

Response 1
Stress (MPa)

Response 2
Deformation

(mm)

Response 3
Temperature

(◦C)

1 280 19.5 12 403.949 0.468 1301.62
2 280 21 7.5 553.971 1.308 2296.86
3 240 19.5 7.5 387 0.4 1440
4 240 18 12 405.554 0.364 1029.57
5 240 19.5 7.5 420.514 0.524 1452.93
6 240 19.5 7.5 422 0.48 1513
7 240 18 3 565.88 0.957 1680.95
8 280 19.5 3 575.95 1.275 2139.58
9 240 19.5 7.5 419.5 0.491 1390
10 200 18 7.5 400.682 0.424 1121.81
11 280 18 7.5 431.733 0.645 1534.53
12 200 19.5 12 408.11 0.297 954.805
13 240 19.5 7.5 432 0.38 1385
14 200 21 7.5 415.422 0.537 1328.47
15 240 21 3 582.853 1.179 2001.55
16 200 19.5 3 562.451 0.872 1547.92
17 240 21 12 403.535 0.426 1221.12

3.2. Response Surface Model Fitting and Significance Analysis Test

In Figure 4a–c, the predicted correlation models between post-welding stress value,
post-welding deformation, and welding temperature are, respectively, illustrated. The
results demonstrate a strong fitting effect of the model with minimal fitting errors. This
indicates that the established response surface model provides accurate predictions for the
fitting parameters. The coefficient of determination (R2) in the model reflects the goodness
of fit, where a higher R2 value signifies a better correlation. The R2 values for the three
models are 0.9876, 0.9855, and 0.9529, indicating a high degree of fit for all three models. The
absolute differences between the predicted R2 and the adjusted R2 for the three models are
all less than 0.2, indicating minimal errors in the response surface equations. Furthermore,
the signal-to-noise ratios (22.7616, 23.0807, 19.9807) in the three models exceed 4, indicating
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sufficient signal strength and a strong discriminative ability of the model. This suggests
that the model is suitable for optimizing the design of the welding process parameters. The
variance analysis table and fitting statistics for the three models are provided below.
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3.3. Analysis of Response Surface and Contour Map

Figure 5 depicts the response surface of the post-welding stress value of the weldment
concerning the variations in welding current, welding voltage, and welding speed. The
evident curvature of the response surface signifies that the post-welding stress value of
the weldment is notably impacted by the interaction of these three factors. A positive
correlation exists between the post-welding stress value and both welding voltage and
welding current—higher values of these parameters correspond to increased stress levels
after welding. Conversely, there is a negative correlation between the post-welding stress
value and welding speed, indicating that higher welding speed leads to reduced stress
values post-welding. Table 6 presents the variance analysis table of the post-weld stress
response surface model, while Table 7 displays the fitting statistical table of the post-weld
stress response surface model. The dominance of welding speed in influencing the post-
weld stress value is evident from the chart. The impact of the three forming process
parameters varied in intensity; welding speed had the most significant influence, followed
by welding voltage and welding current. Notably, interaction effects are observed among
all three factors.

Table 6. Analysis of variance of stress value after welding.

Source Sum of
Squares df Mean Square F-Value p-Value

Model 81,495.28 9 9055.03 61.80 <0.0001 significant
A-current 2449.16 1 2449.16 16.71 0.0046
B-voltage 1181.71 1 1181.71 80.6 0.0251
C-welding

speed 62,181.01 1 62,181.01 424.36 <0.0001

AB 2702.86 1 2702.86 18.45 0.0036
AC 0.0625 1 0.0625 0.0004 0.9841
BC 11.35 1 11.35 0.0775 0.7888
A2 700.98 1 700.98 4.78 0.0649
B2 1107.72 1 1107.72 7.56 0.0285
C2 10,312.40 1 10,312.40 70.38 <0.0001

Residual 1025.70 7 146.53
Lack of Fit 793.56 3 264.52 4.56 0.0885 not significant
Pure Error 232.14 4 58.04
Cor Total 82,520.98 16
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Table 7. Fitting statistical scale of post-welding stress value.

Std. Dev. Mean C.V. % R2 Adjusted
R2

Predicted
R2

Adeq
Precision

12.10 457.68 2.64 0.9876 0.9716 0.8417 22.7616
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Figure 5. The response of the post-weld stress value of the weldment to the welding voltage, welding
current, and welding rate. (a) The effect of the interaction between welding current and welding
voltage on the stress value after welding. (b) The effect of the interaction between welding current
and welding rate on the post-weld stress value. (c) The influence of the interaction between welding
voltage and welding speed on the stress value after welding.

Figure 6 illustrates the response surface of the post-weld deformation of the weldment
in relation to changes in welding current, welding voltage, and welding speed. The
post-weld deformation is significantly impacted by the interaction among these three
factors. A positive correlation is observed between the post-weld deformation and both
welding voltage and welding current—higher values of these parameters correspond to
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increased deformation post-welding. Conversely, a negative correlation is noted between
the post-weld deformation and welding speed, indicating that higher welding speed results
in reduced deformation post-welding. Table 8 provides the variance analysis table of
the response surface model of post-weld deformation, while Table 9 presents the fitting
statistical table of the response surface model of post-weld deformation. Analysis of the
chart reveals that, in the post-welding deformation response surface model, the influence
of the three factors varies in intensity, with welding speed having the most significant
influence, followed by welding current and welding voltage. Additionally, interaction
effects among all three factors are evident.
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Figure 6. The response of the post-welding deformation of the weldment to the change of welding
voltage, welding current, and welding rate. (a) The effect of the interaction between welding current
and welding voltage on the deformation after welding. (b) The effect of the interaction between
welding current and welding rate on the deformation after welding. (c) The influence of the interaction
between welding voltage and welding speed on the deformation after welding.
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Table 8. Variance analysis table of deformation after welding.

Source Sum of
Squares df Mean Square F-Value p-Value

Model 1.60 9 0.1781 52.86 <0.0001 significant
A-current 0.2387 1 0.2387 70.86 <0.0001
B-voltage 0.0959 1 0.0959 28.47 0.0011
C-welding

speed 0.9302 1 0.9302 276.11 <0.0001

AB 0.0724 1 0.0724 21.84 0.0024
AC 0.0135 1 0.0135 3.99 0.0858
BC 0.0064 1 0.0064 1.90 0.2106
A2 0.0697 1 0.0697 20.70 0.0026
B2 0.0736 1 0.0736 21.84 0.0023
C2 0.0764 1 0.0764 22.68 0.0021

Residual 0.0236 7 0.0034
Lack of Fit 0.0189 3 0.0063 5.33 0.0699 not significant
Pure Error 0.0047 4 0.0012
Cor Total 1.63 16

Table 9. Fitting statistical scale of post-welding deformation.

Std. Dev. Mean C.V. % R2 Adjusted
R2

Predicted
R2

Adeq
Precision

0.0580 0.6508 8.92 0.9855 0.9669 0.8099 23.0807

Figure 7 presents the response surface of the welding temperature of the weldment
concerning changes in welding current, welding voltage, and welding speed. There exists a
positive correlation between welding voltage, welding current, and welding temperature—
higher values of welding voltage and welding current correspond to increased welding
temperature. Conversely, a negative correlation is observed between welding speed and
welding temperature, indicating that higher welding speed leads to lower welding temper-
ature. Table 10 displays the variance analysis table of the welding temperature response
surface model, while Table 11 showcases the fitting statistical table of the welding tem-
perature response surface model. The chart indicates that the welding temperature is
significantly influenced by the interaction of the three parameters.

Table 10. Analysis of variance of welding temperature.

Source Sum of
Squares df Mean Square F-Value p-Value

Model 2.068 × 106 6 3.446 × 105 33.75 <0.0001 significant
A-current 6.726 × 105 1 6.726 × 105 65.86 <0.0001
B-voltage 2.742 × 105 1 2.742 × 105 26.85 0.0004
C-welding

speed 1.025 × 106 1 1.025 × 106 100.33 <0.0001

AB 77,192.29 1 77,192.29 7.56 0.0205
AC 14,987.27 1 14,987.27 1.47 0.2536
BC 4163.48 1 4163.48 0.4077 0.5375

Residual 1.021 × 105 10 10,211.35
Lack of Fit 91,165.01 6 15,194.17 5.55 0.0595 not significant
Pure Error 10,948.45 4 2737.11
Cor Total 2.170 × 106 16
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Figure 7. Response of welding temperature to welding voltage, welding current, and welding
rate. (a) The influence of the interaction between welding current and welding voltage on welding
temperature. (b) The influence of the interaction between welding current and welding rate on
welding temperature is studied. (c) The influence of the interaction between welding voltage and
welding rate on the welding temperature.

Table 11. Fitting statistical scale of welding temperature.

Std. Dev. Mean C.V. % R2 Adjusted
R2

Predicted
R2

Adeq
Precision

101.05 1490.57 6.78 0.9529 0.9247 0.8058 19.9807

The analysis above indicates that during the welding of the frame, the welding tem-
perature, the post-weld stress value, and the post-weld deformation of the weldment are
influenced by the interaction of the three process parameters: welding current, welding
voltage, and welding speed. It is essential to consider the interaction between these pro-
cess parameters thoughtfully to achieve the optimal welding process parameters. When
aiming to minimize post-welding stress and post-welding deformation of the weldment,
it is crucial for the simulated welding temperature value to align with the actual welding
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temperature. Based on these considerations, the response surface method was utilized to
optimize the welding process parameters under these circumstances. Subsequently, the
most appropriate welding process parameters were identified as following: a welding
current of 241.145 A, a welding voltage of 19.5376 V, and a welding speed of 11.0634 mm/s.
Considering practical adjustments, the optimized solution for this set of welding process
parameters was fine-tuned to attain a welding current of 240 A, a welding voltage of
20 V, and a welding speed of 11 mm/s. Following this optimization, relevant welding
experiments were conducted using this refined set of welding process parameters.

4. Result and Discussion
4.1. Numerical Simulation Results
4.1.1. Welding Temperature Field Analysis

A welding temperature field analysis was performed in order to optimize the welding
process parameters and improve the forming quality of the weldment. According to
the optimal process parameters obtained by the response surface, a welding numerical
simulation was carried out. Figure 8 shows the dynamic process of temperature field
change during welding. At the beginning of welding, the temperature of the heat source
rises rapidly. As the welding progresses, a quasi-steady state is formed on the weldment;
that is, the temperature of each point on the weld moves together with the heat source at
a fixed value. As the welding ends, the heat source leaves the weld, and the weldment
enters a cooling state. The isothermal line is gradually expanded until the temperature
drops to room temperature. During welding, the heating rate of the weldment is much
higher than the cooling rate. Therefore, the isotherms in the forward direction of the
heat source are dense, and the rear isotherms are sparse. The heat source presents an
asymmetric double-ellipsoid shape. The trailing phenomenon of heat is formed during
the traveling of the heat source, and a large temperature gradient is formed around the
weld [31]. From the simulation results, it can be seen that the change of the temperature
field of the welding heat source can be well simulated by the heat source subroutine. It can
reflect the correctness of the heat source program, and the heat source model can be used
for the numerical calculation of the profile model.
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In this study, the joints at the intersecting line weld were selected as the research
subjects, and the temperature variation patterns of each point on the weld were analyzed.
The positions of the chosen points are illustrated in Figures 9a and 10a. Figure 9b depicts
the welding temperature cycle curve before optimization, whereas Figure 10b presents the
optimized welding temperature cycle curve. Figure 9 reveals that the temperature range
of the molten pool at nodes in the welding temperature cycle curve before optimization
spans approximately 1200 to 2000 ◦C, with the highest temperature exceeding 2000 degrees
Celsius. In a practical TIG welding of aluminum alloy thin-walled components, welding
defects such as burn-through and cracking may occur. Conversely, Figure 10 displays the
optimized welding temperature cycle curve, demonstrating a reduction in the molten pool
temperature range of the welded joint to approximately 1000 to 1300 ◦C. The highest molten
pool temperature is recorded at 1307 ◦C. A comparative analysis of Figures 9 and 10 clearly
indicates a significant reduction in the optimized welding temperature values, rendering
them more compatible with the welding temperature requirements of the actual production
process. This adjustment facilitates improved TIG welding of aluminum alloy thin-walled
components [32].
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4.1.2. Welding Stress Field Analysis

The simulation results of the surface stress field are depicted in Figure 11, showcasing
stress field contours at 1 s, 3 s, 6 s, and 300 s post-welding. Throughout the welding
process, the localized melting of metal by the heat source forms a molten pool, where
the stress value is nearly zero due to the flow and mixing of liquid metal. The rapid
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heating and cooling experienced by the metal in the weld area during welding result
in thermal expansion and shrinkage, generating welding stress around the weld. As
illustrated in Figure 11, the primary concentration of welding stress occurs around the
weld, rather than inside the weld pool. Post-processing analysis of the simulation results
for the weldment was conducted, with points selected as shown in Figures 12 and 13. The
Mises equivalent stress, transverse residual stress (S11), radial residual stress (S22), and
longitudinal residual stress (S33) at these points along the weld path and perpendicular
to it were compared and analyzed. Comparing Figures 12 and 13, it is evident that, at the
selected points, the equivalent stress value of the optimized weldment is lower than the
equivalent stress value before optimization. Figure 14 presents a comparison of welding
stress and welding deformation before and after optimization. The maximum welding
stress value before optimization reached 582.853 MPa, whereas the maximum welding stress
value after optimization was reduced to 408.007 MPa. Additionally, the maximum welding
deformation before optimization was 1.179 mm, and after optimization, it decreased to
0.479 mm. This comparison clearly indicates that the optimized welding quality surpassed
the quality observed before optimization.
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Figure 12. Comparison of welding stress field before and after optimization. (a) Point-taking diagram.
(b) Mises stress value. (c) S11 stress value. (d) S22 stress value. (e) S33 stress value.
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Figure 13. Comparison of welding stress field before and after optimization. (a) Point-taking diagram.
(b) Mises stress value. (c) S11 stress value. (d) S22 stress value. (e) S33 stress value.
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Figure 14. Comparison of stress and deformation before and after optimization. (a) Welding stress
before optimization. (b) Optimized welding stress. (c) Welding deformation before optimization.
(d) Optimized welding deformation.

4.2. Experiments and Analysis
4.2.1. Structure Property Analysis

According to the optimized welding process parameters (welding current of 240 A,
welding voltage of 20 V, and welding speed of 11 mm/s), a TIG welding forming exper-
iment was conducted on a 6061-T6 aluminum alloy bicycle frame. Prior to welding, the
materials and parts were cleaned, ensuring the surfaces were free from oil, paint, and
other contaminants, and the welding burrs were removed. The welding process specifica-
tions followed the Chinese national standard GB/T 19869.2-2012 [33], ‘Welding Procedure
Qualification Test for Aluminum and Aluminum Alloys’. The experimental results are
presented in Figure 15. No defects such as cracks, incomplete fusion, incomplete pene-
tration, or burn-through were observed in the appearance inspection of the welded parts.
The welding surface exhibited a well-spread appearance with dense fish-scale welds. The
overall deformation of the weldment after welding was minimal, which closely matched the
simulated post-weld deformation results. Overall, the welding quality of the entire frame
was high, confirming the reliability of the welding numerical simulation and optimization
design model.
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Figure 15. TIG welding experiment of 6061-T6 aluminum alloy bicycle frame.

The specimen was extracted by welding the experimental sample. As depicted in
Figure 16, the welded components were sectioned using wire cutting to obtain samples for
tensile testing and metallographic analysis. The mechanical properties and microstructural
changes of the weldment were examined. The elongation and ultimate tensile strength
(UTS) of all samples were assessed using a universal tensile testing machine (Instron, USA,
model 3382). Testing was conducted at room temperature with a strain rate of 0.45 mm/min.
The tensile specimens of the weldment were oriented vertically from the welding direction
to ensure that the fusion zone fell within the specified length. The experimental findings
are presented in Figure 17. The tensile strength of the frame amounted to 290 MPa,
meeting the design criteria. The weld zone was sectioned and sampled, followed by
the preparation of optical metallographic samples using standard mechanical polishing
techniques. Subsequently, the samples underwent chemical etching with Keller reagent
(HF:HCl:HNO3:H2O = 1:1.5:2.5:95) and were observed using an optical microscope (Leica
Metallographic Microscope DMI8C) [34–37].
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Figure 18 illustrates the metallographic structure of the 6061-T6 aluminum alloy weld
sample. After etching, the macrostructure of the weld can be categorized into three regions:
the base metal, the heat-affected zone (HAZ), and the melting zone (MZ). These regions
are symmetrically arranged along the weld center. The weld interfaces were identified as
BM/HAZ and HAZ/MZ on the left side, and MZ/HAZ and HAZ/BM on the right side.
Observation was conducted using a metallographic microscope [38,39].
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Figure 18. Metallographic structure of specified specimens in different locations. (a) A 50× micro-
scopic view of the left side of the weld structure. (b) A 50× microscopic view of the right side of the
weld structure. (c) There are certain pores at the base metal and the heat-affected zone. (d) There are
certain microcracks in the base metal and the heat-affected zone.

Figure 18a–c depicts microscopic observations at 50× magnification. In these figures,
the melting zone (MZ), the heat-affected zone (HAZ), and the base metal (BM) of the
weld structure are clearly discernible. During the welding process, some internal pores
often form in the composite interface area between the base metal and the heat-affected
zone, as illustrated in Figure 18a,c. While the size of these pores varies, their number
is not significant relative to the cross-section of the entire weld joint. Based on previous
production experience, although some pores exist, they do not significantly impact the
strength and reliability of welded joints. Hence, it can be inferred that the quality of
the welded joint is relatively stable and meets general requirements. Figure 18d shows
microscopic observation at 100× magnification of the welding relative composite interface
section between the base metal and the heat-affected zone, revealing the presence of
microcracks in this area.

The results of metallographic experiments are distinctive and provide valuable in-
sights. Through such experiments, various defects in welded joints, including porosity,
inclusions, and cracks, can be identified, allowing for a comprehensive evaluation of
weldment quality. Additionally, the outcomes of metallographic experiments serve as
a foundation for optimizing the welding process, facilitating enhancements in welding
techniques and overall welding quality. Metallographic experiments conducted on weld-
ments are crucial for evaluating welding quality, offering essential guidance for optimizing
welding processes and ensuring product quality control.
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4.2.2. Frame Performance Testing

The bicycle frame manufactured using the optimal welding process parameters under-
went performance testing to determine its adherence to standards. The frame was subjected
to vertical fatigue testing, pedal fatigue testing, and horizontal repeated fatigue testing.
The details of the performance tests are illustrated in Figure 19, with the corresponding
results presented in Table 12. The data in Table 12 were obtained from the company’s
testing organization, with all performance tests conducted in compliance with the Chinese
national standard GB 3565.2-2022 [40]. Following the performance tests and inspections,
the experimental outcomes were deemed satisfactory. This indicates that the bicycle frame
produced using the best welding process parameters not only meets the performance test
standards but also fulfills the practical requirements of production.

Table 12. Performance test results.

Test Items Standard Requires Test Result

Vertical fatigue test of frame

A. Vertical downward force: 1200 N
B. Test frequency: 2 Hz

C. Test times: 100,000 times
Judgment standard of test results: There shall be no visible
cracks or fractures on the frame, no parts shall fall off, and
the fiber frame shall be broken. The maximum deviation of
the force from any direction in the middle position during

the test shall not exceed 20% of the original value.

Tested for 100,000 times
Pass

Foot pedal fatigue test of frame

A. Distance: Each pedal shaft is 150 mm away from the
center of the frame.

B. Load: 1200 N
C. Force direction: The center of the frame is tilted
7.5 degrees outwards (accuracy within 0.5 degrees).

D. Test times: 100,000 times
Judgment standard of test results: There should be no
visible cracks on the frame, and no parts of the shock

absorber system should not fall off. For the carbon fiber
frame, the maximum deviation of the force in any direction
deviating from the middle position during the test shall not

exceed 20% of the original value.

Tested for 100,000 times
Pass

Horizontal repeated fatigue test
of frame

A. Horizontal force F2: 1200 N; F3: 600 N
(F2-The forward force; F3-The backward force)

B. Test frequency: 2 Hz
C. Test times: 100,000 times

Judgment standard of test results: There must be no visible
cracks or fracture on the frame, and no parts must fall off.

The carbon fiber frame, the maximum deviation of the force
generated by the force in any direction deviating from the
middle position during the test shall not exceed 20% of the

original value.

Tested for 100,000 times
Pass
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5. Conclusions

This paper primarily addresses the optimization design of TIG thin-wall welding
process parameters for aluminum alloy bicycle frames and the practical application of
optimized welding process parameters in production. Analysis of the macroscopic mor-
phology and mechanical properties of the frame post-welding was conducted, along with
related metallographic experiments on the weld. These investigations offer guidance for
inexperienced practitioners, enhancing welding efficiency and weld quality, while also
providing theoretical and technical guidance for welding aluminum alloy thin-walled
special-shaped tubes for bicycles. The key conclusions are as follows:

With a focus on the TIG thin-walled welding of aluminum alloy bicycle frame, the
welding numerical simulation was completed by compiling the free-path heat source
subroutine in Fortran language based on an ABAQUS environment.

Using Box–Behnken experimental design and response surface method, the response
surface model of post-welding stress value, post-welding deformation, and welding tem-
perature evaluation index was established, and the influence of each process parameter on
the evaluation index was determined. The optimum welding parameters were obtained:
welding current of 240 A, welding voltage of 20 V, and welding speed of 11 mm/s.

Through welding test and performance test analysis, the optimization of TIG thin-
walled welding forming process of 6061-T6 aluminum alloy bicycle frame was verified. The
results show that the welding forming quality of the frame under the process parameters is
high, meeting actual production needs, thus verifying the feasibility of the best welding
process parameters.
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