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Abstract: In the field of highway construction, the application of styrene–butadiene rubber (SBR)-
modified asphalt has gained popularity across different levels of road surfaces. A crucial aspect
in ensuring the efficacy of this modification lies in the compatibility between SBR and the matrix
asphalt. To address this, the current study utilizes molecular dynamics simulation as a technique. By
establishing a model for the SBR-modified asphalt mixture, the research quantifies the compatibility
level between the SBR modifier and the asphalt. The aim is to uncover the underlying mechanisms
of compatibility between the SBR modifier and the base asphalt, ultimately contributing to the
improvement of the storage stability of SBR-modified asphalt, which holds significant importance.
The investigation began with the creation of models for both the base asphalt and the SBR modifier.
A model for the SBR-modified asphalt blending system was then formulated based on these initial
models. After undergoing geometry optimization and annealing procedures, the model attained
its lowest energy state, providing a reliable basis for examining the performance of SBR-modified
asphalt. The study proceeded to calculate solubility parameters and interaction energies of the
system to evaluate the compatibility between the SBR modifier and the base asphalt at various
temperatures. The analysis of these parameters shed light on the compatibility mechanism between
the two components. Notably, it was found that at a temperature of 160 °C, the compatibility was
significantly enhanced. The findings were further corroborated through scanning electron microscope
and rheological tests. The outcomes of this research offer theoretical guidance for the application of
SBR-modified asphalt.

Keywords: molecular dynamics; compatibility; solubility parameters; modified asphalt

1. Introduction

The modification of base asphalt has been extensively implemented in practical ap-
plications across various countries for many years. Styrene–butadiene–styrene (SBS) is
predominantly employed for this purpose, primarily due to its ability to enhance multiple
properties of the base asphalt, resulting in superior modification effects [1]. SBS is a block
copolymer composed of styrene and butadiene monomers, exhibiting characteristics of both
plastics and rubbers. It demonstrates compatibility with water, weak acids, and alkalis and
possesses outstanding tensile strength, a high surface friction coefficient, commendable low-
temperature performance, excellent electrical properties, and good processability. These
attributes have led to SBS becoming the most widely consumed thermoplastic elastomer.
While SBS is often utilized for high-grade highway asphalt pavements due to its superior
modification effects, its high cost renders it less suitable for ordinary road applications.
Conversely, SBR, a widely used synthetic rubber in industrial production, presents a more
cost-effective alternative [2]. SBR is a random copolymer of butadiene and styrene, known
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for its well-rounded properties. When blended with asphalt, it forms a rubber network
that enhances the asphalt’s characteristics [3]. Although the performance of SBR-modified
asphalt may not match that of SBS-modified asphalt, it still offers significant improvements.
Therefore, investigating the compatibility between SBR and asphalt is essential.

Molecular dynamics simulation, acclaimed for its microscopic precision, is extensively
utilized to predict the macroscopic physical attributes of asphalt and lay a theoretical
groundwork for studies on asphalt performance [4–7]. This technique is predominantly
applied to examine a range of aspects, including asphalt diffusion behavior, compatibility
between asphalt and modifiers, and the adhesion characterization between asphalt and
aggregates. For example, Guo et al. employed a solubility parameter and binding energy
as evaluation criteria to analyze the compatibility of matrix asphalt and rubber-modified
asphalt, thereby identifying the optimal dosage of rubber-modified asphalt modifier via
molecular dynamics simulation [8]. Yu et al. investigated the compatibility of epoxy
and matrix asphalt using a solubility parameter and interaction energy as assessment
metrics, uncovering that the incorporation of biobased epoxidized soybean oil improved
the compatibility of the modified asphalt system [9]. Bhasin et al. utilized molecular
dynamics simulations to study the relationship between the asphalt chain length, branched
chains, and the asphalt self-diffusion coefficient, thus enhancing the understanding of the
interplay between the asphalt molecular structure, self-diffusion coefficient, and self-healing
performance [10]. Furthermore, Ding et al. explored the diffusion mechanism between new
and aged asphalt, finding that asphalt macromolecules, particularly asphaltene, played a
crucial role in asphalt’s sensitivity to temperature and aging. They also discovered that the
addition of a regenerant to aged asphalt facilitated mutual diffusion between new and old
asphalt, thereby improving recycling efficiency [11].

During the production of modified asphalt, the direct inclusion of modifiers fre-
quently leads to segregation. This is attributed to the differences in structural and external
characteristics between the modifier and the asphalt, which hinder uniform dispersion
within the asphalt [12,13]. Thermodynamically, modifiers and asphalt can only achieve
limited compatibility, resulting in a partially compatible two-phase system. Therefore,
ensuring compatibility between these components is vital for creating high-quality modi-
fied asphalt, highlighting the importance of assessing their compatibility [14]. Currently,
methods for evaluating the compatibility of modified asphalt from both microscopic and
macroscopic perspectives include the segregation method [15], glass transition tempera-
ture analysis [16], electron microscopy [17], infrared spectroscopy [18], and the Cole–Cole
diagram method [19], among others. Each method provides distinct insights into the
compatibility between modifiers and asphalt, aiding in the refinement of modified asphalt
production techniques.

The aim of this paper is to establish the calculation parameters and fundamental
models used in molecular dynamics simulations, building on previous research. The focus
is on developing molecular models for both the SBR modifier and asphalt. The main goal
is to explore the compatibility between the SBR modifier and matrix asphalt at different
temperatures. By examining the solubility parameters and interaction energy within the
modified asphalt blending system, we can gain a deeper understanding of the compatibility
mechanisms between the asphalt and modifiers. Microscopic insights into the compatibility
mechanism between SBR and the matrix asphalt are obtained through scanning electron
microscopy (SEM) testing. Additionally, the compatibility is evaluated from a macroscopic
perspective through rheological testing. Moreover, by comparing the simulation results
with experimental data, the reliability of the findings can be enhanced, providing strong
support for experimental design and results interpretation. In conclusion, molecular simu-
lation offers significant innovative potential in understanding the compatibility between
asphalt and SBR modifiers. It serves as an important tool for providing theoretical guidance
and technical support for the design and engineering application of modified asphalt.
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1.1. Construction of Molecular Models
1.1.1. Asphalt

In the realm of molecular simulation for asphalt molecular modeling, two primary tech-
niques are employed: the average molecular structure method and the assembly method.
The former emphasizes simulation efficiency and the conservation of computational re-
sources, albeit at the expense of neglecting interactions between different components
within the asphalt structure. The latter, however, can be subdivided into two strategies:
one involves selecting the average structure of each asphalt component, while the other
involves choosing representative molecules from each component to represent the asphalt
structure. Chu et al. [20] found that the four-component model constructed using the repre-
sentative molecule approach demonstrated a higher accuracy and suitability for molecular
dynamics simulations. Consequently, this study adopts the approach of constructing a
representative molecular model for each asphalt component to develop a matrix asphalt
molecular model. The matrix asphalt molecular model employed in this research is derived
from the asphalt model proposed by Li et al. [21], which includes saturated components,
aromatic components, resins, and asphaltenes, with each component consisting of multiple
molecules, totaling 12 molecules. The asphalt molecular model was then assembled based
on the proportions of the Panjin 90 matrix asphalt (produced by Northern Asphalt in Panjin,
Liaoning Province, China) components used in this study, as outlined in Table 1. The
structural representation of each component is illustrated in Figure 1.

Table 1. Parameters of four components of matrix asphalt.

Components Molecular Formula Molecular Number Percentage of
Components (%)

Asphaltene
C51H62S 2

10.35C42H54O 2
C66H81N 1

Saturation
C35H62 4

10.86C30H62 4

Aromatic
C30H46 21

50.68C35H44 18

Resin

C18H10S2 8

28.11
C36H57N 4
C29H50O 4
C40H60S 3
C40H59N 3
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Figure 1. Asphalt molecular component structure formula. (Yellow represents sulfur atoms, red
represents oxygen atoms, blue represents nitrogen atoms, gray represents carbon atoms, and white
represents hydrogen atoms).

1.1.2. SBR Modifier

Styrene–butadiene rubber is a synthetic rubber produced through the copolymeriza-
tion of butadiene and styrene. Its chemical formula is commonly denoted as (C8H8)x(C4H6)y,
where ‘x’ and ‘y’ signify the molar ratio of styrene and butadiene monomers, typically
falling within the range of 20:80 to 30:70. The composition ratio of SBR is outlined in Table 2,
with the structural formula of each component depicted in Figure 2.

Table 2. Composition proportions of SBR.

Component Mass Ratio Molecular Weight Number of
Molecules

Styrene 14.8% 106 g/mol 2
Trans butadiene 62.6% 56 g/mol 9

Cis butadiene 7.8% 56 g/mol 1
1.2 Butadiene 14.8% 56 g/mol 2
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Figure 2. Molecular formula of modifier. (The atoms wrapped in the light blue net are the head of the
chain structure, and the atoms wrapped in the pink net are the tail of the chain structure).

Studies have shown that a two-phase continuous state occurs between SBR and matrix
asphalt when the SBR content is between 4% and 5%. For simplification purposes, we will
consider the degree of polymerization for SBR to be 1 (indicating that the SBR molecule
consists of a single repeating unit). Based on the structural representation shown in Figure 2,
Build Polymer Plate was used to create an SBR block random copolymer with a degree of
polymerization of 1, as shown in Figure 3.
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1.2. Building a Crystal Cell Model

Employing the molecular quantities outlined in Tables 1 and 2 for the matrix asphalt
and modifier models, respectively, the construction function within the amorphous cell
module was utilized to create amorphous crystal cells for both the matrix asphalt and
modifier. These cells were initialized at a density of 0.4 g/cm3 to avoid entanglement or
overlapping of molecular chains. For the SBR-modified asphalt, SBR single chains were
integrated into the matrix asphalt at a molar mass of 5%. The molecular models for the
three crystal cell configurations are illustrated in Figure 4.
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1.3. Molecular Model Optimization and Kinetic Operations

The geometry optimization function of the forcite module in Materials Studio 8.0
software is used to minimize the model energy. The maximum number of iterations is
20,000, and the force field is COMPASS. Throughout this process, the model’s energy
gradually approaches its minimum and can achieve convergence. However, geometric
optimization solely guarantees the lowest local energy for the molecular structure. To
attain the configuration with the lowest global energy, annealing is necessary to fully reveal
the model’s internal structure at elevated temperatures and eliminate any unreasonable
structures. Given that this study employs periodic boundary conditions to construct a
three-dimensional model, the Andersen temperature control method and the Berendsen
air pressure method are chosen for system relaxation. In the NPT system, the initial
temperature is set at 298 K, raised to 798 K, then lowered back to 298 K, with five annealing
cycles conducted. Post-annealing, the system energy stabilizes, and any local irrational
structures in the model are eradicated. Subsequently, a 100 ps dynamic calculation is
carried out on the molecular model under the NPT system at room temperature (25 ◦C)
and a pressure of 1 standard atmosphere (0.0001 Gpa). To ensure comprehensive software
simulation performance, this study opts for a 1 fs step size, ultimately yielding a reasonable
and stable molecular model.

1.4. Validation of Molecular Models

The density curves for the asphalt model and the SBR modifier model, as obtained
from the calculations under the conditions described in Section 1.3, are depicted in Figure 5.
With increasing time steps, the curves gradually reach a stable state, exhibiting fluctuations
within a range of no more than 5%. The density curves for matrix asphalt molecules stabi-
lize around 0.98 g/cm3, while those for SBR modifier molecules stabilize at 0.93 g/cm3. The
actual densities of matrix asphalt and the SBR modifier are reported to be 1.00 g/cm3 [22]
and 0.94 g/cm3 [23], respectively, which are in close agreement with the simulation re-
sults. Consequently, it can be inferred that the molecular model of matrix asphalt and the
molecular model of SBR modifier constructed in this study possess high applicability.
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2. Compatibility Study of SBR with Asphalt Based on Molecular Simulation
2.1. Solubility Parameters
2.1.1. Simulation Methods

Molecular dynamics simulations were conducted on models of matrix asphalt and
the SBR modifier. Due to the fact that modified asphalt is produced at a higher heating
temperature compared to matrix asphalt, kinetic equilibrium simulations of 100 ps were
performed under the NVT system at temperatures of 140 ◦C, 150 ◦C, 160 ◦C, 170 ◦C,
180 ◦C, and 190 ◦C. This was performed to ensure the acquisition of more precise data
for analysis. Meters of the SBR modifier and matrix asphalt at different temperatures.
Finally, the cohesive energy density function was utilized to calculate the trajectory files
obtained from the above temperatures to obtain the cohesive energy density as well as
solubility parameters.

2.1.2. Principle of Solubility Parameter Calculation

The concept of cohesive energy density was first proposed by Hildebrand in the context
of blending theory, which uses cohesion energy to estimate the energy change when mixing
two substances [24]. At the same time, the theory introduced the solubility parameter as a
measure to assess the compatibility of two materials, especially non-polar polymers. The
solubility parameter (δ) is defined as the square root of the cohesive energy density and
acts as an indicator of molecular interaction properties. Therefore, the relationship between
the solubility parameter and the cohesive energy density can be described by Equation (1).

δ =
√

CED (1)

where δ is the solubility parameter ((J/cm3)1/2); CED is the cohesive energy density (J/cm3).
In the molecular dynamics (MD) simulation, the cohesive energy density of the mate-

rials is determined using the cohesive energy density panel in the MS 8.0 software, which
facilitates the calculation of the solubility parameter (δ) of the materials for evaluating
the compatibility of the polymers. When there is an absence of strong polar groups or
hydrogen bonds between the molecules of the two materials, compatibility is achieved if
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the difference in the solubility parameter is minimal. Therefore, in this study, the difference
in the solubility parameter is selected as an index to assess the degree of miscibility between
the SBR modifier and matrix asphalt.

2.1.3. Results and Discussion

Figure 6a illustrates the trend of solubility parameters of asphalt and SBR molecules
with temperature, while Figure 6b illustrates the trend of solubility difference between the
asphalt and SBR molecules with temperature.
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With the rise in temperature, the molecular motion of both the matrix asphalt and SBR
modifier intensifies, leading to an increase in the kinetic energy between molecules. As a
result, the speed of molecular diffusion also increases along with the kinetic energy, causing
the volume to expand. This expansion in volume leads to a greater separation between the
molecules of the matrix asphalt and SBR modifier, as well as between atoms. When the
distance surpasses the equilibrium distance, the nature of the intermolecular forces shifts
from repulsive to attractive. Therefore, as the spacing between molecules widens, negative
work is performed within the molecules of both the matrix asphalt and SBR modifier
models, leading to a decrease in the bonding energies between molecules. In simpler terms,
the bonding energy becomes more negative as the spacing between molecules increases.

With the increase in temperature, both the kinetic and potential energies of the matrix
asphalt and SBR modifier rise, resulting in a higher total energy of the system. It is
important to note that the intramolecular energy remains relatively stable during molecular
dynamics simulations of asphalt mixtures [25]. This means that the intramolecular energies
of the matrix asphalt and SBR modifier are consistent across various temperatures. The rise
in total system energy is accompanied by a decrease in cohesive energy and an increase
in volume. As a result, the cohesive energy densities of both the matrix asphalt and SBR
modifier decrease, leading to a reduction in the solubility parameters of both the asphalt
and SBR modifier.

The minimal disparity in solubility parameters between the matrix asphalt and SBR
modifiers at 160 ◦C could be attributed to the similarities and differences in their molecular
structures. Matrix asphalt is a complex blend of hydrocarbons, primarily composed of
hydrocarbon chain polymers, while SBR modifiers are elastomers formed from the copoly-
merization of styrene and butadiene. The molecular structures of these two materials
exhibit significant differences in their chemical composition and macroscopic properties,
leading to variations in the simulated values and rates of change in their solubility pa-
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rameters. At varying temperatures, the interaction between matrix asphalt and the SBR
modifier is influenced by temperature, causing fluctuations in the differences between their
solubility parameters, with a peak value at a specific temperature point. According to
compatibility theory, the interaction between the matrix asphalt and SBR modifier may be
optimal at 160 ◦C, as their molecular structures or chemical properties are more similar at
this temperature, reducing mutual repulsion and enhancing their compatibility.

2.2. Interaction Energy
2.2.1. Principle of Interaction Energy

The intermolecular interaction energy (EInter) can quantitatively characterize the
strength of intermolecular interactions to predict the mixing ability and compatibility of the
two materials in the blended system [26], and the interaction energy can be characterized
by Equation (2).

EInter = Eab − (Ea + Eb) (2)

where Eab is the total energy of an a, b co-mingled system (kJ/mol); Ea, Eb are the average
single-point potential energy of an a, b system (kJ/mol).

When the system of intermolecular interaction energy is greater, the system of inter-
molecular interaction force is stronger, and the higher the stability of the system, the greater
the performance of good compatibility. When the interaction energy is positive, it means
that the SBR modifier and matrix asphalt exhibit mutual repulsion; when there is a negative
value, it means that the SBR modifier and matrix asphalt exhibit mutual attraction.

As the SBR modifier and matrix asphalt are compatible only on the physical level
of co-mingling, this paper will not consider the energy within the molecule. The total
potential energy between molecules is mainly composed of van der Waals potential energy
and electrostatic potential energy, so this paper will choose the total molecular potential
energy (Ep), van der Waals potential energy (Ev), and electrostatic potential energy (Ee) to
characterize the interaction between molecules within the SBR-modified asphalt blending
system, when the energy of these types of interactions is large enough to show that the in-
teraction between the SBR-modified asphalt blending system is stronger, and the molecules
of the SBR modifier and matrix asphalt are not easily separated. If the SBR modifier and
matrix asphalt molecules are not easy to separate or destroy, then the system shows a
good compatibility.

2.2.2. Simulation Methods

Molecular dynamics simulation calculations were performed on the SBR-modified
asphalt blend system model. The 100 ps kinetic flat calculation under the NVT ensemble
was also performed at 140 ◦C, 150 ◦C, 160 ◦C, 170 ◦C, 180 ◦C, and 190 ◦C to achieve a full
mixing process of the SBR modifier and matrix asphalt. Then, the dynamic calculation of
100 ps is continued under the NPT ensemble to reach a stable state. Finally, the stable con-
figurations in the last three steps are selected, and the potential energies of different systems
at different temperatures are calculated through the energy program in the software.

2.2.3. Results and Discussion

According to the kinetic calculation results, the total potential energy (Ep), van der
Waals potential energy (Ev), and electrostatic potential energy (Ee) of the modified asphalt,
matrix asphalt, and modifier were obtained. The average value of the operation results is
shown in Table 3.

As indicated in Table 3, the total potential energy and van der Waals potential energy
of the three molecular systems comprising base asphalt, the SBR modifier, and modified
asphalt escalate with the rise in temperature, whereas the electrostatic potential energy
exhibits fluctuations with the increasing temperature. This phenomenon occurs because,
as the temperature increases, the system is heated, leading to a continuous rise in internal
thermal energy and consequently, an increase in total energy. This thermal energy is then
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transformed into molecular potential energy and kinetic energy, resulting in the observed
increase in total potential energy and kinetic energy.

Table 3. Energy of the SBR co-mingled model at different temperatures (kJ/mol).

Temperature (◦C) 140 150 160 170 180 190

SBR-modified
asphalt

Ep 45,548.37 45,851.15 46,775.12 47,576.17 49,158.31 49,519.14
Ev −2591.69 −2509.28 −2432.36 −2253.12 −2248.35 −2118.20
Ee −3756.62 −3778.64 −3778.18 −3745.41 −3755.66 −3774.83

Matrix asphalt
Ep 45,360.09 45,780.30 46,767.42 47,414.54 49,007.48 49,390.74
Ev −1807.38 −1732.21 −1522.42 −1474.92 −1438.47 −1292.54
Ee −3744.91 −3776.96 −3758.88 −3736.16 −3747.79 −3766.37

SBR
Ep 969.37 1023.99 1098.60 1147.11 1158.53 1165.19
Ev 119.77 131.91 137.73 146.39 159.45 171.38
Ee −9.17 −2.72 −14.27 −5.40 −7.20 −6.36

As the kinetic energy rises, the volume of SBR-modified asphalt expands, leading to
an increase in the distance between molecules in the system. However, since van der Waals
forces act as attractive forces, their potential energy in the SBR-modified asphalt mixing
system continues to increase as the distance between molecules grows, resulting in negative
work by van der Waals forces. Electrostatic forces, being conservative, depend solely on
the initial and final positions of the atoms, not on the path taken. The electrostatic potential
energy is proportional to the product of the charges between the atoms and is influenced
by the distance between them. Although the volume of the SBR-modified asphalt and the
distance between atoms are increasing, the rate of increase is diminishing. Consequently,
the electrostatic potential energy of the system fluctuates as the temperature increases.

The total potential energy, van der Waals potential energy, and electrostatic potential
energy between the molecules of the matrix asphalt and SBR modifier in the SBR-modified
asphalt mixing system were calculated using Equation (2), with the results presented in
Figure 7.

The interaction energy between the SBR modifier and matrix asphalt is negative,
indicating that the interaction between the molecules of the matrix asphalt and the SBR
modifier in the SBR-modified asphalt system is characterized by attraction. Since the van
der Waals force is an attractive force, it can be deduced that the interaction between the
base asphalt and the SBR modifier is predominantly governed by van der Waals forces.
Consequently, in the modified asphalt system, the interaction between the SBR modifier
and the base asphalt molecules is primarily driven by van der Waals forces.

In the SBR-modified asphalt system, the interaction energy peaks at 160 ◦C, indicating
that the force of interaction between the SBR modifier and the matrix asphalt is the strongest
at this temperature within the mixed system. This phenomenon occurs because, with rising
temperature, the kinetic energy of the molecules increases, leading to more vigorous motion
between them. This enhanced motion facilitates the molecules’ escape from each other’s
interaction range, thereby increasing the average distance between them. Consequently,
interactions that seem repulsive at lower temperatures gradually transform into attraction
as the temperature rises. Hence, the interaction between the SBR modifier and the matrix
asphalt intensifies and reaches its maximum value at 160 ◦C.

At this temperature, the attraction between the SBR modifier molecules and the matrix
asphalt molecules is the largest, while the repulsion is the smallest, so they ultimately exhibit
a strong interaction. Therefore, at 160 ◦C, the intermolecular interaction in the SBR-modified
asphalt system reaches an equilibrium state, making the system more stable and compatible.
This is consistent with simulation results based on differences in solubility parameters.
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3. SBR and Asphalt Compatibility Test Verification
3.1. Preparation of SBR-Modified Asphalt

In this paper, Panjin 90# matrix asphalt was selected to prepare modified asphalt, and
its main technical indicators are shown in Table 4.

Table 4. Technical specifications of matrix asphalt.

Technical
Indicators

Density
(g/cm3)

Penetration at
25 ◦C (0.1 mm)

Ductility at
15 ◦C (mm)

Softening
Point (◦C)

Flash Point
(◦C)

Numerical
value 1.000 68 >100 49.1 >220

The SBR modifier used in this paper is a synthetic rubber produced in Panjin, Liaoning
Province, used to modify asphalt, and the technical specifications are shown in Table 5.

In this paper, we only control the difference in shear temperature, respectively, 150 ◦C,
160 ◦C, 170 ◦C, and 180 ◦C, and the rest of the preparation conditions are the same. The
preparation process of the specific SBR-modified asphalt is as follows.
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Table 5. Technical specifications of the SBR modifier.

Density
(g/cm3)

Constant Tensile
Strength (100%)

Tearing
Strength Friction Hardness S/B Copolymer

Type

0.94 6.0 MPa 15.1 MPa 0.46 77 0.3–0.35 Random
copolymer

The procedure entails setting the oven temperature to 140 ◦C and placing four 500 g
batches of matrix asphalt into the oven for dehydration. Concurrently, the corresponding
amount of SBR modifier is weighed. With the matrix asphalt temperature maintained at
140 ◦C, it is transferred to a shear apparatus. The pre-weighed SBR modifier is gradually
added to the matrix asphalt, with continuous stirring using a glass rod for 15 min to ensure
thorough mixing. The shear apparatus is operated at a rotation speed of 3000 r/min for 1 h.
After shearing, the SBR-modified asphalt is placed back in the 140 ◦C oven for dissolution,
with a duration of 1 h. Once the dissolution process is complete, the SBR-modified asphalt
is cooled to room temperature, allowed to rest, and then subjected to related tests for
modified asphalt.

3.2. Microscopic Morphology Analysis of Modified Asphalt

Scanning electron microscopy (SEM) imaging involves the stimulation of electron
beams and the collection of physical signals from the surface of the sample under investiga-
tion, reflecting its surface topography. For the analysis of SBR-modified asphalt samples
prepared at various temperatures, these samples were mounted on slides and coated with
gold prior to imaging. The EM-30 Plus SEM, produced by COXEM Ltd., (Seoul, Republic
of Korea) was employed for this analysis. This instrument facilitated the characterization
of the blending of the SBR modifier with matrix asphalt, enabling the examination of the
morphology of SBR-modified asphalt prepared at different temperatures, as illustrated in
Figure 8.
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Based on the observations in Figure 8, the interface characteristics between the SBR
modifier and asphalt vary at different preparation temperatures. At a preparation tempera-
ture of 150 ◦C, the SBR modifier is evident on the asphalt surface, resulting in a distinct
interface effect. In contrast, at 160 ◦C, the SBR modifier and asphalt exhibit a uniform dis-
tribution, with the interface effect being less pronounced. However, at 170 ◦C and 180 ◦C,
despite the uniform distribution between the SBR modifier and asphalt, the interface effect
is more noticeable compared to 150 ◦C, suggesting a more optimized distribution of the
SBR modifier. Therefore, taking into account the various preparation temperatures, the
compatibility between the SBR modifier and asphalt is optimal at 160 ◦C. This observation
aligns with the conclusion drawn from molecular dynamics simulations, further validating
the effectiveness of molecular dynamics simulations in investigating the compatibility of
SBR modifiers and matrix asphalt.

3.3. Dynamic Shear Rheology Based Compatibility Testing

Multiple approaches exist for investigating the compatibility between polymers. The
upper section relies on the electron microscope method to assess the compatibility between
SBR and asphalt from a microscopic perspective. Conversely, from a macroscopic stand-
point, compatibility can be determined using the rheological test method. The Cole–Cole
plot, derived from the frequency scan, is employed to evaluate the compatibility of the
polymer blend system.

The so-called Cole–Cole diagram [27] collects the η′ value (η′ = G′′/ω) and η′′ value
(η′′ = G′/ω) relationship diagram. The experimental temperatures were also selected as
160 ◦C, 170 ◦C, 180 ◦C, and 190 ◦C, and the frequency scanning range was 0.01–100 Hz.
Generally speaking, for a polymer blend system with a unimodal molecular weight dis-
tribution, the relationship curve between the real part η′ and the imaginary part η′′ of the
complex viscosity is a half arc, which has a good compatibility; while for incompatible
polymers for the blending system, the relationship curve will form a characteristic that
deviates from the semi-circular arc. The Cole–Cole diagram of the SBR-modified asphalt at
different temperatures is shown in Figure 9.

The observations from Figure 9 indicate that the Cole–Cole plots of all modified
asphalt samples display a circular shape, implying compatibility between asphalt and SBR.
However, it is important to note that only the curve corresponding to 160 ◦C maintains a
consistently circular shape, with deviations or steepening observed at other temperatures.
Interpreting the Cole–Cole plot to evaluate the compatibility of SBR and asphalt, it can be
deduced that the optimal compatibility between asphalt and SBR is achieved at 160 ◦C.
Furthermore, it can be hypothesized that the modified asphalt prepared at this temperature
may exhibit superior rheological properties.
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4. Conclusions

(1) Through the examination of the SBR-modified asphalt blending model, it was dis-
covered that at 160 ◦C, the solubility parameter difference between the SBR modifier
and matrix asphalt was minimal, and the interaction was at its strongest, indicating
optimal compatibility. The interactions within the SBR-modified asphalt blending
systems were primarily governed by van der Waals forces, and the addition of SBR
improved the organization of the asphalt molecules.

(2) The SEM test outcomes revealed that the compatibility interface between SBR and
asphalt was the most stable at 160 ◦C. Additionally, based on the Cole–Cole plot,
the rheological properties of the modified asphalt prepared at this temperature were
deemed to be superior.
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