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Abstract: Achieving the real mechanical performance of construction materials is significantly
important for the design and engineering of structures. However, previous researchers have shown
that contact friction performs an important role in the results of uniaxial compression tests. Strong
discreteness generally appears in concrete-like construction materials due to the random distribution
of the components. A numerical meso-scale finite-element (FE) method provides the possibility
of generating an ideal material with the same component percentages and distribution. Thus, a
well-designed meso-FE model was employed to investigate the effect of friction on the mechanical
behavior and failure characteristics of concrete under uniaxial compression loading. The results
showed that the mechanical behavior and failure profiles of the simulation matched well with the
experimental results. Based on this model, the effect of friction was determined by changing the
contact friction coefficient from 0.0 to 0.7. It was found that frictional contact had a slight influence on
the elastic compressive mechanical behavior of concrete. However, the nonlinear hardening behavior
of the stress–strain curves showed a fairly strong relationship with the frictional contact. The final
failure profiles of the experiments showed a “sand-glass” shape that might be expected to result from
the contact friction. Thus, the numerical meso-scale FE model showed that contact friction had a
significant influence on both the mechanical performance and the failure profiles of concrete.

Keywords: concrete; compression; meso-scale FE; contact friction; failure process

1. Introduction

Mechanical performance is deemed a significant feature of most engineering materials
used for construction [1–4]. The uniaxial compression test is one of the simplest and most
basic test methods for determining the mechanical properties of concrete-like materials.
It is generally expected that the measured values reflect the inherent material properties.
However, the mechanical response is affected by various parameters, including specifics
regarding loading by the machine, measurement devices, the geometric shape of the
specimen, the loading rate, boundary conditions, etc. [5–9]. Especially for brittle materials,
the influence of the boundary conditions has a pronounced effect on the mechanical
performance of the quickly softening regime caused by the evolution of the inherent
damage [10–14].

In most previous studies, concrete is usually assumed to be a homogeneous mate-
rial. In fact, concrete is a kind of heterogeneous composite material consisting of coarse
aggregates, a mortar matrix, an interface transition zone (ITZ), and voids [15,16]; concrete’s
macro-scale strength and failure must be related to the mechanical performance of these
components at a meso- or micro-scale. A meso-finite-element model provides the possi-
bility to bridge the meso-scale behavior of components and the macro-scale response of
structures [17–19]. The components are usually distributed randomly in the concrete, which

Materials 2024, 17, 1204. https://doi.org/10.3390/ma17051204 https://www.mdpi.com/journal/materials

https://doi.org/10.3390/ma17051204
https://doi.org/10.3390/ma17051204
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/materials
https://www.mdpi.com
https://doi.org/10.3390/ma17051204
https://www.mdpi.com/journal/materials
https://www.mdpi.com/article/10.3390/ma17051204?type=check_update&version=1


Materials 2024, 17, 1204 2 of 21

makes the experimental results unrepeatable. The numerical meso-scale finite-element (FE)
method provides the possibility of generating an ideal material with the same component
percentages and distribution. Zhang [20,21] constructed a meso-finite-element model to
simulate uniaxial compressive tests on concrete while considering the connecting friction.
The results showed that the frictional constraint had a strong influence on the peak stress
value and the softening phase. When the frictional coefficient increased from 0.1 to 0.3, the
peak stress could have a significant increase of up to 126%.

Previous researchers have found the sensitivity of the experimental results to the
friction between an upper or lower rigid platen and the connected surfaces of cubes.
Bandeira [22] investigated the influence of the boundary conditions and geometries of
specimens through unconfined compression tests on concrete. Three anti-friction strategies
were carried out on the loaded planes: grease, Teflon, and brush plates. The reported results
proved that post-peak softening is not a characteristic of the materials, but a consequence
of the interface friction in the tests. Torrenti [23] conducted serious uniaxial compressive
tests to investigate the influence of friction and found that friction has a strong influence on
the failure profiles of concrete. Cubic specimens would completely fracture and result in
the immediate loss of bearing capacity as soon as the maximum load was reached when
the connecting friction was eliminated. In this manner, the friction at the boundaries is
responsible for considerable influence on not only the compressive strength, but also the
failure profiles.

Although the effects of friction have been the focus of previous research, the macro-
mechanical behavior of concrete and the meso-scale local failure mechanism of the compo-
nents have not been well investigated with the consideration of the changes to the friction
at the boundaries in uniaxial compression tests. In this paper, a well-designed 3D-meso FE
model of concrete was constructed to investigate the effect of friction on the mechanical
response and failure behavior. This simulation work was conducted to show the uniaxial
compression damage process and analyze crack evolution to explore the mechanism of
macro-destruction and discuss the influence of boundary friction on the damage, as well as
the mechanical properties of concrete.

2. Methodology
2.1. Experimental Programs
2.1.1. Materials and Specimens

In this study, ordinary Portland cement (P. I. 42.5) with a 28-day compression strength
of 42.5 MPa was used. The coarse aggregates were round in shape and had a size ranging
from about 3 mm to 12 mm. The fine aggregate was composed of river sand with a specific
gravity of 2.6. The ratio of water to cement was 0.5.

The mixes were prepared and cured under laboratory conditions. All concrete cubes
had a size of 50 mm × 50 mm × 50 mm and were cast simultaneously and cured for 28 days
under the same ambient conditions (20 ± 2 ◦C and 95% relative humidity).

2.1.2. Experimental Setup

Figure 1 shows the specific setup for the uniaxial compressive tests of the concrete.
A hydraulic servo material testing machine (MTS-180-50; shown in Figure 1a) with a con-
stant compressive velocity of 0.5 mm/s was utilized to load concrete cubic specimens under
a quasi-static condition. To accurately measure the micro-strain of the brittle materials, the
digital image correlation (DIC) technique was employed to measure the real-time strain
by spraying speckles on the surface of the cubes, as shown in Figure 1b. To capture the
evolution of cracking, a Photron FASTCAM SA.5 camera was adopted to record the surface
deformation of the specimens. Then, the DIC technique was applied to detect the initiation
of cracks by measuring the strain concentration in real time. The relative motion of the
region of interest (ROI) could be tracked by comparing the grey-level distributions of the
reference and deformed images. An accurate strain and cracking process for concrete can
thus be determined using the DIC method and a high-resolution camera.
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Figure 1. Experimental setups of uniaxial compression using an MTS machine (a) to load the
specimens with speckles (b) spread on the surface of cubes calculated using the DIC method (c).

2.2. Meso-Scale Finite-Element Model
2.2.1. Geometry of Coarse Aggregates

Herein, the 3D Voronoi diagram method was used to generate coarse aggregates
with a specific size distribution. Coarse aggregates were randomly distributed inside a
concrete cube with a size of 50 mm × 50 mm × 50 mm to simulate the cubic specimen
fabricated in a mold. Figure 2 shows six typical polyhedrons generated using the 3D Voronoi
diagram method, closely resembling the shapes and sizes of the actual aggregates utilized in
the experiment.

Figure 2. Several typical coarse aggregates used in this model.
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2.2.2. Grading of Coarse Aggregate

The size distribution of coarse aggregates is typically determined by analyzing a
grading curve. A grading curve depicts the cumulative percentage passing through sieve
openings of various sizes. Among the methods commonly employed to describe this
distribution for typical concrete aggregates is the Fuller curve, which can be expressed as:

P(d) = 100
(

d
dmax

)n
(1)

where P(d) is the corresponding passing percentage (%), d is the diameter of each grading
class, and dmax is the maximum aggregate diameter. In this study, the maximum size, dmax,
was 12.7 mm, and n is an exponent of the chosen grading curve. Generally, n is taken as 0.5,
which was used in this model.

In the meso-FE model, the grain size distribution is designed as a classic Fuller curve
with a size ranging from about 2.36 mm to 12.7 mm [24]. The size distribution of aggregates
is shown in Table 1, which is very close to that of the experimental matrix with a size
ranging from 2.36 mm to 12.7 mm. The total grading passing percentage of aggregates is
described in Figure 3. For sizes of less than 2.36 mm, the coarse and fine aggregates were
considered as mortar for their increasing computational efficiency.

Table 1. Size distribution of aggregates according to a classic Fuller curve [24].

Sieve Size (mm) Total Percentage Retained (%) Total Percentage Passing (%)

12.7 0 100
9.5 23 77
4.75 74 26
2.36 100 0

Figure 3. Total grading passing percentage of aggregates used in this model.
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2.2.3. Amount of Coarse Aggregate

After the size distribution of aggregate particles is given as the Fuller grading curves,
then the amount of aggregates within the grading segment [di, di+1] can be calculated as:

N[di, di+1] =
VP[di, di+1]

Ve
(2)

where Ve is the equivalent volume of a single aggregate in the range [di, di+1]. Generally,
Ve was calculated according to 4

3 πd3
med, where dmed was the median diameter of [di, di+1],

where Ve[di, di+1] can be expressed as:

Vp[di, di+1] =
P(di)− P(di+1)

P(dmax)− P(dmin)
× vp × V (3)

where dmax and dmin are the maximum and minimum size of aggregates, namely 12.7 mm
and 2.36 mm respectively; vp is the volume fraction of aggregates, and V is the volume of
the concrete sample.

The volume fraction of aggregate vp of the concrete can be determined as:

vp =
wp

ρpV
(4)

where Vp is the volume fraction of aggregates, wp is the total weight of aggregate particles,
ρp is the specific weight, and V is the total volume of the specimen.

In normal-strength concrete, the total volume of aggregates is generally taken to be
no greater than 70% of the entire volume (V), while the volume of coarse aggregates is
expected to be up to 40% of V [25]. Therefore, the volumetric fraction of coarse aggregates
assumed as 30% seemed reasonable for the meso-scale FE model.

According to the size distribution of aggregates in Table 1, the grain number of
aggregates calculated as Equation (2) is shown in Table 2. In this meso-scale model,
344 aggregates were generated randomly according to a classic Fuller curve.

Table 2. The grain number of aggregates calculated according to a classic Fuller curve.

Grain diameter (mm) 9.5–12.7 4.75–9.5 2.36–4.75

Grain number 19 57 268

Figure 4 shows the spatial distribution of aggregates in a 50 mm × 50 mm × 50 mm
cube with three different grading sizes ranging from 2.36 mm to 12.7 mm. It can be observed
that coarse aggregates are randomly placed in the cube, guaranteeing no intersection
between any two of them.

2.2.4. ITZ Layer

Generally, primary macro-cracks originate at weakened interfaces or within the inner
voids between the mortar matrix and coarse aggregates. Discrete cracks often exhibit
pronounced curvature along aggregate grains, but seldom propagate through a single weak
aggregate grain. Therefore, a three-phase meso-scale model, including a mortar matrix,
aggregates, and an ITZ, was most widely employed in previous meso-FE numerical studies
on concrete. An ITZ was observed to possess a layered structure characterized by lower
density and reduced mechanical strength in comparison to the surrounding mortar matrix.
Skarzynski [26] et al. measured the width of ITZs using a scanning electron microscope
with a magnification factor of 30,000, and found that the width of ITZ layers along the
aggregate particles was arranged from 30 to 50 µm.

Figure 5 gives the finite-element model of concrete with three phases including mortar
(color of gray element), aggregate (color of red element), and ITZ (color of blue element).
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The cohesive element was employed to describe the ITZ layer elementsandwiched between
the mortar element and coarse aggregate element. To avoid the generation of unacceptable
numerous elements in the FE model, the thickness of the ITZ was set at 0.05 mm, a
dimension closely approximating the actual layer thickness, as depicted in Figure 5c.
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Figure 4. Insertion of aggregates in the cube with three different grading sizes. (a) Grading from
9.50 mm to 12.7 mm, (b) grading from 4.75 mm to 12.7 mm, and (c) grading from 2.36 mm to 12.7 mm.

(a) (b) (c)
Figure 5. The three-phase structure of the concrete employed in the meso-scale FE model. (a) Macro-scale
model of the cube, (b) three phases of Zone A, and (c) elements of Zone B in the three-phase model.
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2.3. Material Properties

The meso-scale mechanical behavior of concrete was taken as relatively complex due
to a random array of morphological features inherent in the concrete microstructure. In
meso-scale FE simulation, the aggregates were assumed as a linear elastic material without
consideration of the nonlinear behavior, damage, or cracking. For the mortar, the concrete
damage plasticity (CDP) model was employed for the wide use range of its constitutive
laws in meso-scale analyses of concrete [21,27]. A cohesive element with damage evolution
was adopted to identify the inter-phase crack nucleation and propagation. The detailed
constitutions of the phases in concrete are described as follows.

2.3.1. The CDP Model

The CDP model is a continuum, plasticity-based damage model of concrete [28]. There
are two main failure mechanisms assumed in this model, namely (1) tensile cracking and
(2) compressive crushing. Under uniaxial tension loading, the stress–strain response
followed a linear elastic relationship before the onset of tensile cracking. Once the load
reached the failure stress, σt f , it began to form, leading to softening in the stress–strain curve
at a macroscopic level. Under uniaxial compressive loading, the stress–strain response
exhibited linearity up to the yield stress, σcy. Subsequently, there was a phase of relatively
weakened plastic hardening before the stress–strain response transitioned into softening
beyond the ultimate stress, σc f . The typical stress–stain curves of tensile crackingand
compressive crushing are shown in Figure 6. The stress–strain relations at the failure stage
are governed by scalar damaged elasticity, as shown in Equation (5).

σ = (1 − D)Eel
o (ε − εpl) = Eel(ε − εpl), 0 ≤ D ≤ 1 (5)

where σ is the stress. ε and εpl represent the strain and the plastic strain. Eel
0 is the initial

(undamaged) elastic modulus of the materials. Eel = (1 − D)Eel
0 is the degraded elastic

modulus. D is the scalar stiffness degradation variable, where 0 means the undamaged
state and 1 means the fully damaged stage.

�  e lt�  p lt

� t

� t

E 0

( 1 - d t ) E 0

� t 0

(a)

� c 0

� c u

E 0

( 1 - d c ) E 0

� c

� c�  p lc �  e lc

(b)
Figure 6. The response of concrete to uniaxial loading in the CDP model. (a) Tensile cracking and
(b) compressive crushing.

A fracture energy cracking criterion is employed to describe the progressing tensile
cracking of concrete, where the fracture energy, G f , is defined as the energy required to
open a unit area of the crack. The cracking displacement ut0 at which a complete loss of
strength took place is expressed as Equation (6):

ut0 =
2G f

σt0
(6)
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where σt0 is the tension strength. The typical value of G f is taken as 120 N/m for concrete
with a compressive strength of 40 MPa.

The yield functions expressed by effective stress, σ̄, and effective plastic strain, ε̄pl , are
presented as Equation (7).

f
(

σ̄, ε̃pl
)
=

1
1 − α

(
q̄ − 3α p̄ + β

(
ε̃pl

)
⟨ ˆ̄σmax⟩ − γ⟨− ˆ̄σmax⟩

)
− σ̄c

(
ε̃

pl
c

)
(7)

where p̄ is the effective hydro-static pressure. q̄ is the Mises equivalent effective stress. ˆ̄σmax
is the algebraically maximum eigenvalue of effective stress, σ̄.

The function of β
(

ε̃pl
)

is expressed as:

β
(

ε̃pl
)
=

σ̄c

(
ε̃

pl
c

)
σ̄t

(
ε̃

pl
t

) (1 − α)− (1 + α) (8)

where σ̄t and σ̄c are the effective tensile and compressive cohesion stress, respectively.
α and γ are dimensionless material constants. The constant of α is expressed by

Equation (9):

α =
(σb0/σc0)− 1

2(σb0/σc0)− 1
; (0 ≤ α ≤ 0.5) (9)

where σb0 and σc0 represent the initial equibiaxial and uniaxial compressive yield stress.
Lubliner et al. [28] gave a typical experimental value of the ratio σb0

σc0
for concrete ranging

from 1.10 to 1.16.
The constant of γ is expressed by Equation (10).

γ =
3(1 − Kc)

2Kc − 1
(10)

where Kc is the ratio of the second stress invariant of the tensile meridian, q(TM), to that
of the compressive meridian, q(CM), at the initial yield of any given value of the pressure
invariant p so that the maximum principal stress is negative. It must satisfy the condition
0.5 < Kc ≤ 1.0, where the default value is 2

3 for the concrete.
Moreover, a non-associated potential plastic flow is assumed based on the CDP model.

The flow potential G used for this model is the Drucker–Prager hyperbolic function ex-
pressed as Equation (11):

G =

√
(∈ σt0 tan ψ)2 + q̄2 − p̄ tan ψ (11)

where ψ is the dilation angle measured in the p-q plane at a high confining pressure, whose
value was taken by default as 30◦. σt0 is the uniaxial tensile stress at failure. ∈ is a parameter,
referred to as the eccentricity of materials, which was set as ∈ = 0.1 for the concrete in
this study.

2.3.2. Cohesive Elements of ITZ

Generally, the onset of microcracks in concrete was thought to occur first in ITZ layers.
In order to simulate the fracture process, the ITZ layers were replaced by cohesive elements
for describing cracks as jumps in a displacement field. The elastic behavior of cohesive
elements is governed by Equation (12):

t =


tn
ts
tt

 =

 Knn Kns Knt
Kns Kss Kst
Knt Kst Ktt


εn
εs
εt

 = Kε (12)

where t is a nominal traction stress vector consisting of three components: the normal
traction of tn and two shear tractions of ts and tt. K is the stiffness matrix, where Knn, Kns,
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. . ., Ktt are the components of K. ε is the nominal strain vector, where it can be expressed
by the components of εn, εs, and εt. The component of nominal strains can be expressed by
the corresponding separations δn, δs, and δt, as shown in Equation (13):

εn =
δn

To
, εs =

δs

To
, εt =

δt

To
(13)

where T0 is the original thickness of the cohesive element, which was set as 0.05 mm in
this study.

For a traction separation model, the stiffness of the interface relating the nominal
traction stress to the separation displacement can be carried over to a cohesive layer of the
initial thickness, T0, as described in Equation (14).

K′ =
K
T0

(14)

Without considering the couple behavior between the normal and shear components,
the off-diagonal terms in the elasticity matrix, K, can be set as zero. Thus, the elastic
behavior of cohesive elements can be rewritten as Equation (15):

t =


tn
ts
tt

 =

 K′
nn 0 0

0 K′
ss 0

0 0 K′
tt


δn
δs
δt

 = K′δ (15)

where K′
nn = Knn/T0, K′

ss = Kss/T0, K′
tt = Ktt/T0. It is recommended to assume the following

stiffness of the cohesive elements for the concrete–concrete interface:

K′
nn ≈ Ec

T0
K′

ss = K′
tt ≈

Gc

T0
(16)

where Ec and Gc are the Young’s and Kirchhoff’s modules of the weaker concrete, re-
spectively. Here, Ec and Gc were set to be the same as those of the mortar. Generally, a
weakening ratio factor was assumed to describe the ratio of the material strength between
the ITZ and mortar. The weakened ratio factor was arranged from 0.5 to 0.9, the same as
that of previous meso-scale numerical models of concrete. In this study, the ratio was set as
70% [21,29], which is acceptable for a general range.

In this work, a quadratic nominal stress criterion was set to describe the damage
initiation of cohesive elements. When the nominal stress ratio reaches 1, the damage is
assumed to initiate as expressed by Equation (17):{

⟨tn⟩
to
n

}2
+

{
ts

to
s

}2
+

{
tt

to
t

}2
= 1 (17)

where to
n, to

s , and to
t represent the critical traction in fracture mode I and fracture mode I I

along the first and second pure shear direction. In this study, to
n and to

s = to
t were taken

as the tensile strength and shear strength of the ITZ layers, respectively. Here, ⟨⟩ is the
Macaulay bracket:

⟨tn⟩ =
{

0, tn < 0
to
n, tn ≥ 0

(18)

To describe the evolution of damage, it is useful to introduce a fracture energy Gc
of ITZ. The exponential softening curve was chosen to describe the behavior of cohesive
elements in a post-peak regime as shown in Figure 7. The scalar damage variable D,
dependent on the effective relative displacement, was calculated as:

D =
∫ δ

f
m

δo
m

Te f f dδ

Gc − Go
(19)
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where Te f f is the effective traction, Te f f =
√

t2
n + t2

s + t2
t . Go is the elastic energy at

damage initiation.

t

( 1 - D ) t G c  =  ∫t d �

�  0m �  fm S e p e r a t i o n ,  �

T r a c t i o n ,  t

G c

Figure 7. Exponential damage evolution of ITZ layer.

2.3.3. The Constitutive Parameters

In summary, the meso-scale FE model of concrete employed three constitutive models,
each corresponding to a specific phase. Coarse aggregate elements were modeled using
a linearly elastic model. The mortar phase utilized the CDP model, while the interface
behavior of the ITZ layer between the coarse aggregate and mortar matrix was described
using the cohesive crack model. Table 3 provides the constitutive parameters used in
these models.

Table 3. Constitution parameters of the three phases in concrete.

Composition Elastic
Modulus (GPa) Poisson’s Ratio Compressive

Strength (MPa)
Tensile

Strength (MPa)
Fracture

Energy (N/m)
Stiffness
MPa/mm

Aggregate 48 0.2 - - - -
Mortar 30 0.2 50.2 3.8 100 -

ITZ 30 0.2 33.6 2.66 120 6 × 105

2.4. Mesh Generation and Convergence

The mesh-generation process was hereby divided into two steps: In the first step, the
initial mesh of tetrahedron elements without cohesive elements was defined using Abaqus.
In the second step, the cohesive elements were placed between the solid elements of the
mortar matrix and aggregates. The mesh convergence was discussed using four mesh sizes
arranged from 0.1 mm to 2 mm (Figure 8), which was the average length of the elements.
Figure 9 provides the engineering stress–strain curves with different element sizes. While
minor variations in mesh configurations might result in slight changes in the numerical
stress–strain curves, the engineering stress–strain curves remained fairly comparable until
the stress approached its maximum. The significant disparity in the stress–strain curves
typically occurred during the post-failure stage. Although slightly different meshes could
lead to a slight change in the numerical stress–strain curves, the engineering stress–strain
curves were quite comparable before the stress reached the maximum. The main difference
of the stress–strain curves was reflected in the post-failure stage. Figure 10 shows the
maximum compressive stress with different mesh sizes, where a quite close maximum
compressive stress can be clearly observed. From the result, it was deduced that the mesh
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dependence was negligible for the selected element sizes before the loss of strength. Thus,
an element length of 1 mm was selected in this study, though finer meshes would lead to
a high computational cost. The element information of components is shown in Table 4
in detail.

Table 4. Element-related information of mortar, aggregate, and ITZ.

Component Element Type Element Size
(mm)

Number

Mortar C3D4H 1 964,611
Aggregate C3D4H 1 182,557
ITZ layer Zero-thickness cohesive elements 1 57,808

Figure 8. The mesh size of (a) 2 mm, (b) 1 mm, (c) 0.5 mm, and (d) 0.1 mm.

0 . 0 3 . 0 x 1 0 - 4 6 . 0 x 1 0 - 4 9 . 0 x 1 0 - 4 1 . 2 x 1 0 - 3 1 . 5 x 1 0 - 3 1 . 8 x 1 0 - 3
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Figure 9. The engineering stress–strain curves with different element sizes.
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Figure 10. The mesh convergence using four different mesh configurations with an average element
size of 0.1 mm–2 mm.

2.5. Boundary and Load Conditions

A numerical compression test was carried out with the consideration of the contacting
friction between the rigid plate and the concrete cube, as shown in Figure 11. The friction
factor was taken as µ = 0.2, which represents the boundary condition of static friction. In
this study, all freedoms of the bottom plate (Rigid Plate 2) were constrained. In the vertical
direction, a displacement boundary condition was allowed with a constant velocity of
0.5 mm/s for the upper plate (Rigid Plate 1), where other freedoms were constrained.

Figure 11. The boundary and loading conditions with the consideration of the contacting friction.

3. Results

In this section, meso-scale FEM simulations were performed using the commercial FE
software Abaqus 6.12/Explicit [30] with a displacement condition in the vertical direction
applied to the upper rigid plate in the compressive tests. The experimental results of the
strain and fractures were exhibited with the field on the surface of the specimens calculated
using the DIC method.

3.1. Mechanical Behaviors
3.1.1. Linear Elastic Behaviors

The stress–strain curves obtained from the compressive experiment and simulation are
shown in Figure 12, where the experimental strain was calculated based on the DIC in the
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vertical direction. The engineering stress and engineering strainexpressed as Equation (20)
were used in Figure 12. It was found that the mechanical behavior of the simulation matched
well with the experimental results at the stage of elasticity. The two elastic modules were
quite close (error ≤ 1.7%), which were 33.9 GPa and 34.5 GPa from the numerical and
experimental results, respectively. {

σ = P
A0

ε = ∆L
L0

(20)

where P is the load of the rigid plate; A0 is the initial cross-area of the cube; ∆L is the
dimension of the compression deformation; L0 is the initial height of the cube.

In composite materials, the elastic properties can be approximated using a simple
homogeneous theory based on the Mori–Tanaka method and the generalized self-consistent
method. This involves calculating the weighted average of the modulus of individual
components [31–33]. Using this approach, the unknown mechanical properties at the
macro-scale could be theoretically calculated using the known mechanical properties of
each constituent phase at the meso-scale in the range of linear elasticity. Herein, the ITZ
layer was ignored for the contentions. Two phases of the aggregates and the mortar matrix
were considered when calculating the homogeneous Young’s modulus, Eho, using the
volume fraction, elastic modulus, and Poisson’s ratio of each phase. Eho can be expressed
using Equation (21):

Eho = Em +
Vp(Ea − Em)

1 +
(
1 − Vp

) Ea−Em
Em+ 4ζm

3

= 30 +
0.3(48 − 30)

1 + (1 − 0.3) 48−30
30+ 4ζm

3

= 34.25 GPa (21)

ζm =
Em

2(1 + νm)
=

30
2(1 + 0.2)

= 12.5 GPa (22)

where Em is the Young’s modulus of mortar. Em is the Young’s modulus of aggregates.
Vp is the volume fraction of aggregates. νm is the Poisson’s ratio of mortar.

Based on the parameters in Table 3, the value of Eho was calculated to be 34.25 GPa by
Equation (21). Compared to the value of the numerical result, 34.25 GPa was almost close
to the value of 34.5 GPa assumed in the simulations.
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Figure 12. The stress–strain curves obtained from the experimental and numerical results.
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3.1.2. Nonlinear Mechanical Behaviors

The nominal stress–strain curves presented significant nonlinear mechanical behavior
following the linear elasticity, as shown in Figure 12. The compressive stress had a short
stage of slight oscillation following the linear increment of the curve. Then, the stress kept
increasing with increased deformation until the maximum stress was reached. After the
maximum of the curve, the concrete specimen lost its loading resistance, and the stress
decreased sharply.

3.2. Failure Profiles

A comparison of the final failure pattern of the cubic specimens was made between the
experimental observations and the meso-scale FE results, as shown in Figure 13. Figure 13a
shows the experimental result, in which a sand-glass-shaped column was found to form
after removing the weakened fracture pieces on the cube’s surface. The fracture profiles
showed that the damage was more serious in the middle than that at the upper and
bottom ends. The meso-scale FE model also presented similar failure profiles, as shown in
Figure 13b. In the numerical results, a sand-glass-shaped column could also be observed
after removing the elements whose damage scale reached 1 (d = 1). This column typically
formed due to friction between the loading plates and the contacted boundaries of the
cube. The presence of contact friction influenced not only the failure profiles, but also the
mechanical behavior of the system. The impact of friction will be elaborated upon in detail
in the following section.

(a) (b)
Figure 13. The final profiles of specimens showed a “sand-glass” (indicated as the red line) shape in
both numerical and experimental results. (a) Final profiles of the experiment. (b) Final profiles of the
meso-FE model.

The initial cracking profile exhibited a strong correlation between the experimental
and simulated results, as illustrated in Figure 14. The first crack occurred at the nominal
compressive strain of about 0.001 when the curve transited from a linear state to a nonlinear
one in the experiment. Figure 14a shows the tensile strain map of the simulation, where an
inclined tensile crack was formed near the left edge. Similar fracture profiles were observed
in the experimental results of the tensile strain calculated from the DIC, where an inclined
crack was formed near the left edge. The difference was that a small crack was observed
at the upper-right corner, as shown in Figure 14b. Thus, the nonlinear behavior of the
compressive stress–strain curves must be related to the meso-scale damage and cracking.
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(a) (b)
Figure 14. The first cracking profile that led to the nonlinear response of the stress–strain curves.
(a) Compressive strain = 0.001 in the simulation. (b) Compressive strain 0.001 in the experiment.

4. Discussion
4.1. Evolution of Compressing Failure

Using the present meso-scale FE model, the failure process of concrete was simulated
at the meso-scale under a uniaxial compression condition. Figure 15 describes the devel-
opment of the maximum principal stress, the maximum principal strain, and the damage
maps of concrete under a uniaxial compression at different loading stages. Note that the
maps were taken from the slicingfrom the center of the cube. With the loads increasing,
the distribution of the maximum principal stress was found to be a “sand-glass” shape, as
shown in Figure 15(a1–a5). In most of the area of this “sand-glass”, the stress was negative,
meaning a compression state. However, the area outside of this “sand-glass” showed a
tensile stress state. As is known, tensile failure stress is commonly less significant than the
compressive strength of brittle materials, contributing to the formation of the initial crack
at the tensile triangular zones outside of the “sand-glass”. Through careful observation, the
earliest damage merged at T1, which was very close to the time when the compressive stress
reached the peak, as shown in Figure 15(c2). Then, the first crack was formed and grew
obliquely to the center of the cube according to the stress state of the “sand-glass”, as shown
in Figure 15(b3). However, the compressive stress increased with increasing deformation
after a slight reduction from T2 to T3, as shown in Figure 15d. During this period, more
cracks emerged at the tensile triangular zones outside of the “sand-glass”. After the peak
stress of T3, the stress–strain curves showed a stress collapse from T3 to T4. Accordingly,
several cracks could be found at the center of the cube, as shown in Figure 15(b5).

Therefore, the compression stress–strain curves could be divided into three stages
according to the failure characteristics: the linear elastic stage (Stage I), the nonlinear
hardening stage (Stage II), and the post-failure (Stage III). In Stage I, all components were
kept at the linear elastic state without any crack observed. The maximum stress in Stage
I can be defined as the elastic limit. In this stage, the stress dropped first and then kept
nonlinearly strain-hardening until the maximum was reached, which could be defined
as the strength of this test. Though the number of cracks increased with the increasing
loading, the resistant center column could still bear the compression stress. Until Stage III,
the cracks crossed through the center column, and the stress collapsed. In Stage III, the
numerical smeared cracks resulted in stress loss. The formation of the final “sand-glass”
profile was influenced by the stress distribution within the concrete cube. Notably, the peak
stress was not attained when the initial crack appeared. However, once cracks began to
develop at the center of the column, the stress reached its peak, causing the concrete cube
to lose its compressive resistance capacity.
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Figure 15. The evolution of the maximum principal stress (a1–a5), maximum principal strain (b1–b5),
and damage maps (c1–c5) under the condition of uniaxial compression, where the numbers 1 to 5 are
related to the points of the macro-stress–strain curve in (d).

4.2. Effect of Friction

A “sand-glass” related to the friction between the rigid loading plates of universal test
machines and the contacted surfaces of cubes has been previously reported [20,22]. For
instance, Hao [34] conducted friction tests and obtained a real friction coefficient between
concrete and steel of 0.235. Zhang [20] set the friction coefficient between the specimen
and steel plate as 0.1 in a simulation work, utilizing similar experimental materials and
loading conditions as those adopted by Hao and Zhang. Thus, µ = 0.2 can be thought to be
close to the real friction coefficient. To further investigate the effect of friction, a series of
friction coefficients was set for the contacting surfaces between the rigid loading plates and
cubic specimens. Previous researchers [35] have reported the friction coefficient between
concrete and steel plates to range from 0.1 to 0.7 in experiments. Thus, eight friction
coefficients ranging from 0.0 to 0.7 were set as the contacting properties to discuss the effect
of friction on the meso-scale FE model. Figure 16 shows eight compressive stress–strain
curves under different contacting conditions with the changes in the friction coefficients
ranging from 0.0 to 0.7.

As shown in Figure 15d, the effect of friction on the mechanical behavior was discussed
as the division of three stages: linear elasticity, nonlinear hardening, and post failure.
Herein, several parameters summarized in Figure 17 were taken to characterize the effect
of friction on the mechanical responses of concrete under uniaxial compression: the elastic
limit, σE, strength, σS, normalized stress or strain increment, dσN or dεN , and average elastic
modulus, E. Note that the average elastic modulus, E, is the slope of the linear elastic stage
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of the engineering stress–engineering strain curve before the elastic limit in Figure 14. The
normalized stress or strain increment, dσN or dεN , can be expressed as follows:{

dσN = σS
σE

dεN = εS
εE

(23)
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Figure 16. The compressive stress–strain curves of different contacting friction properties with the
change of friction coefficients ranging from 0.0 to 0.7.

In Stage I, the elastic modulus almost stayed constant at 33.9 GPa with the change of µ,
as shown in Figure 15. However, a difference could be observed between the curve µ = 0
and µ > 0 within the elastic limits. The elastic limit with µ > 0 was larger than that with
µ = 0, which could also stay constant with increasing µ when µ > 0. Actually, µ should
commonly be >0, as it is quite difficult to conduct any test with µ = 0. Thus, one may
conclude that contacting friction had a rather limited influence on the elastic mechanical
behavior of the concrete in the experiments.

In Stage II, the nonlinear hardening behavior led to a large difference in the compres-
sive stress–strain curves, as shown in Figure 16. Firstly, significant nonlinear hardening
behavior occurred due to the stress when µ ≥ 0.1. The concrete lost resistance capacity as
soon as the elastic limit was reached as the stress–strain curve µ = 0. Due to the strength
σS with an increasing µ when µ ≤ 0.5, even a significant linear increase was observed.
Interestingly, σS seemed to stop the increasing trend and even decreased slightly when
µ > 0.5. The strain of εS corresponding to σE and σS showed the same trend with an
increasing µ, as Figure 17b shows. Secondly, with an increasing µ, the nonlinear hardening
was more significant. The increment of the strain dεN was larger than that of the stress
dσN in this stage, as shown in Figure 17c. Thirdly, multiple oscillations were observed in
Stage II in the numerical results when µ ≥ 0.1, and the number of oscillations increased
with an increasing µ until µ = 0.5, as shown in Figure 16. Actually, the oscillations were
related to the emergence and propagation of cracks, as described in Section 4.1. After
exceeding the elastic limit, numerical micro-cracks were gradually formed and spread with
the increasing compressive deformation of the macro-cubic specimens. As this progressed,
the friction confined the micro-cracks from growing to macro-cracks close to the contacting
surface of the specimen, and the confinement would be stronger with increasing µ. Thus,
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an increase occurred due to the strength with the increase of µ when µ < 0.5. However,
the strength stopped increasing when µ ≥ 0.5, which might be related to the confinement
caused by the contacting friction reaching the stress, which was large enough to suppress
the formation of micro-cracks at the contacting surface. Figure 18 shows the final fail-
ure profile of the specimens after compression with different µ values. In Figure 18, the
damage in Figure 18d at the contacting surface is clearly less than the damage profiles in
Figure 18a–c. Only a small area of the contacting surface showed apparent damage, most
of which presented, respectively, low damage and even no damage, as shown in Figure 18d.
This result potentially explains the cessation of the strength increase when µ ≥ 0.5.

In Stage III, the resistant columns could be found, as shown in Figure 18. The “sand-
glass” shape can be seen more clearly with an increasing µ after the peak stress. Thus,
the contacting friction between the loading plates and cubic specimens had a significant
influence on both the mechanical performance and the failure profiles.
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Figure 17. Characteristic parameters with changes in friction coefficients ranging from 0.0 to 0.7:
elastic limit, σE, strength, σS (a), normalized stress or strain increment (b), ∆σ or ∆ε (c), and average
elastic modulus, E (d).

Figure 18. The final failure profiles with different friction coefficients shown in the damage cloud map.

5. Conclusions

In this study, a well-designed 3D meso-FE model was employed to investigate the
effect of friction on the mechanical behavior and failure characteristics of concrete under
uniaxial compression loading. The effect of friction was discussed by changing the contact-
ing friction coefficients of a simulation model from 0.0 to 0.7, which was demonstrated to
be effective for the above mechanical behavior and failure profiles of the simulation and
matched well with the experimental results. Based on this model, the following was found:
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(1) The contacting friction had quite a small influence on the compression elastic mechan-
ical behavior of the concrete;

(2) The nonlinear hardening behavior of the stress–strain curves had a quite strong
relationship with the contacting friction;

(3) The final failure profiles of the experiments showed a “sand-glass” shape, which may
be expected to result from the contacting friction;

(4) The contacting friction had a significant influence on both the mechanical performance
and the failure profiles of the concrete.

Despite a well-designed 3D meso-FE model applied in this study to investigate the
effect of friction, the weakness remains that the constitutive model and parameters were not
discussed in depth. Herein, the constitutive model of aggregates was assumed to be elastic
without considering the scenario of failure. However, this may lead to the overestimation
of the strength and failure performance. In the future, the failure of the aggregate should
be taken into consideration for the meso-scale FE simulation.
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Abbreviations

The following abbreviations are used in this manuscript:

3-D three-dimensional
DIC digital image correlation
FE finite-element
ITZ interface transition zone
d diameter of each grading class
dc compression scalar stiffness degradation variable
dmax maximum aggregate diameter
dmin minimum aggregate diameter
dt tensile scalar stiffness degradation variable
D scalar stiffness degradation variable
Ec Young’s modules of the weaker concrete
Eho homogeneous Young’s modulus
Em Young’s modules of the mortar
Epl

0 initial elastic modulus
G flow potential
Gc Kirchhoff’s modules of the weaker concrete
G f fracture energy
K stiffness matrix
Kc ratio of the second stress invariant of the tensile meridian to that of the compressive meridian
µ frictional coefficient
n exponent of the chosen grading curve
N amount of aggregates
p̄ effective hydro-static pressure
P loading force
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P(d) corresponding passing percentage
q̄ Mises equivalent effective stress
qcm compression meridian
qtm tensile meridian
t nominal traction stress vector
T0 original thickness of the cohesive element
Te f f effective traction
Ut0 cracking displacement
V volume of the concrete sample
Ve equivalent volume of a single aggregate
vP volume fraction of aggregates
wP total weight of aggregate particles
α characteristic parameter of yield function, α

β characteristic parameter of yield function, β

γ characteristic parameter of yield function, γ

δ separation
ε strain
εpl plastic strain
ϵ parameter, referred to as the eccentricity of materials
ψ dilation angle
ν Poisson’s ratio
Vp specific weight
σ Stress
σ̄ effective stress
σb0 initial equi-biaxial compressive yield stress
σc0 initial uniaxial compressive yield stress
σc f compression failure stress
σcy yield stress,
σt0 tension strength
σt f tension failure stress
ς module parameter of mortar
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