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Abstract: Waterborne epoxy (WEP) coatings with enhanced corrosion resistance were prepared using
graphene oxide (GO) that was obtained from kish graphite, and amino-functionalized graphene
oxide (AGO) was modified by 2-aminomalonamide. The structural characteristics of the GO and
AGO were analyzed using X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared
spectroscopy (FT-IR), scanning electron microscopy (SEM), and transmission electron microscopy
(TEM). And the anti-corrosive performance of waterborne epoxy-cased composite coatings with
different addition amounts of AGO was investigated using electrochemical measurements, pull-off
adhesion tests, and salt spray tests. The results indicate that AGO15/WEP with 0.15 wt.% of AGO
has the best anti-corrosive performance, and the lowest frequency impedance modulus increased
from 1.03 × 108 to 1.63 × 1010 ohm·cm−2 compared to that of WEP. Furthermore, AGO15/WEP also
demonstrates the minimal corrosion products or bubbles in the salt spray test for 200 h, affirming its
exceptional long-term corrosion protection capability.

Keywords: kish graphite; modified graphene oxide; 2-aminomalonamide; waterborne epoxy coatings;
anti-corrosion

1. Introduction

To meet the challenge of metal corrosion and the goal of low volatile organic compound
(VOC) emissions [1,2], it is an urgent need to develop environmentally friendly anti-corrosion
measures that can offer superior protection in heavy-duty anticorrosive coatings. Waterborne
epoxy (WEP) coatings are distinguished by their superior adhesion, minimal curing shrinkage,
impressive mechanical properties, and negligible VOC emissions [3,4]. However, during
the curing process of WEP, micro-porosity and micro-cracking can be formed because of
the volatilization of solvent water, thus significantly affecting the barrier properties and
reducing the life of the coatings when compared to organic epoxy coatings [5]. Previous
research has demonstrated that incorporating 2D nanomaterials into water-based resins
leads to a substantial improvement in the passive barrier properties [6,7]. Two-dimensional
nanomaterials can fill the defects created during water evaporation, effectively blocking
the contact between oxygen and water vapor in the environment and WEP. However,
achieving compatibility between nanofillers and water-based resins poses a formidable
challenge [8,9]. Due to the abundant oxygen-containing functional groups at the surface and
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edges of graphene oxide (GO) [10,11], GO exhibits excellent dispersion in water-based resin
systems, which has great potential in the application of water-based anti-corrosion coatings.

Some studies have shown that the inclusion of GO in water-based epoxy resins can
enhance the barrier properties of coatings. Jiang et al. [12] studied the impact of different
aspect ratios of GO on the corrosion protection performance of GO/epoxy coatings; it
was found that GO sheets with higher aspect ratios provide a more convoluted path for
the corrosive medium to result in an improved corrosion protection performance. Due to
the strong chemical bonds between epoxy and amino groups, researchers have utilized
functional modifications of amino groups to enhance the performance of GO. Table 1 lists
the preparation method and application of amino-modified GO. Nan et al. [13] successfully
synthesized an amino-functionalized graphene oxide (DGO) and observed a remarkable
enhancement in the corrosion resistance of epoxy coatings with the incorporation of DGO.
This improvement can be attributed to the enhanced dispersion of GO within the coating
matrix and the enhancement of its barrier properties. However, in light of the growing in-
dustrial demand for graphite (graphene), natural graphite is emerging as a pivotal strategic
resource, witnessing a steady rise in prices [14,15]. So, it is necessary to identify alternative
graphite-based materials that are readily accessible and cost-effective raw materials.

Table 1. The preparation method and application of amino-modified GO.

GO Modifier Preparation Method Application

Angxing Technology
Co., Ltd. (Changzhou,

China)
Polydopamine 24 h at room

temperature
Anti-corrosion
coatings [16]

Modified hummers Cysteine 2 h at room
temperature

Aiagnostic agent in
nuclear medicine [17]

Modified hummers
(3-aminopropyl)
triethoxysilane

(APTES)
24 h at 30 ◦C

Adsorbent for
removal of Hg2+ and

Pb2+ from
wastewaters [18]

Modified hummers 2-Aminopyridine

24 h at 90 ◦C with
carboxylic acid

activators
(DCC/DMAP)

Photocatalyst of
Water Splitting [19]

Kish graphite, a crystalline form of graphite formed by the precipitation of carbon
from molten iron during cooling, is commonly found in the dust and slag of iron-making
and converter steelmaking plants [20]. A substantial amount of kish graphite is considered
solid waste in the iron and steel industry and has not been effectively utilized, resulting in
significant resource wastage, environmental pollution, and potential security risks [21,22].
The presence of metal oxide impurities (such as Fe2O3, CaO, etc.) and structural imper-
fections often accompany the production of kish graphite, which hinders its large-scale
application [23]. Currently, numerous research teams are engaged in the exploration of
recycling and utilization methods for kish graphite. Li et al. [24] presented a comprehensive
approach for the recycling of kish graphite, which possessed a high level of graphitization.
Wang et al. [25] employed a comprehensive separation technique to concentrate and pu-
rify kish flake graphite (KFG). The KFG exhibited a satisfactory recovery rate of 57.34%.
Additionally, KFG showcased a well-ordered-layer structure of graphite, resulting in an
exceptional electrochemical performance. There have been studies on the preparation of
exfoliated graphite by KFG and its application in the treatment of offshore oil spills [24].
However, there have been limited studies on the application of GO prepared by KFG for
enhancing the corrosion resistance of WEP. Using KFG as a raw material to prepare GO
will significantly reduce the cost of coatings, and the defects of KFG are also conducive to
the modification of surface functional groups.
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In this study, to improve the anti-corrosion properties of water-based epoxy resins
to WEP, GO from industrial byproduct KFG and amino-functionalized GO (AGO) was
prepared by 2-aminomalonamide. The AGO was employed as a functional filler in WEP
to enhance the anti-corrosive performance. Furthermore, we examined the optimum
incorporation of AGO and the corrosion protection performance of composite coatings.
KFG used as a raw material to prepare GO can overcome the restriction of the high cost of
natural graphite, which has a market application prospect in corrosion protection.

2. Experimental Section
2.1. Raw Materials

Concentrated sulfuric acid (98%, H2SO4), hydrochloric acid (36–38%, HCl), hydrogen
peroxide (30%, H2O2), sodium nitrate (≥99.9%, NaNO3), and potassium permanganate
(≥99%, KMnO4) were purchased from Tongguang Fine Chemical Co., Ltd. (Beijing, China).
2-Aminomalonamide (≥98%) was purchased from Shanghai Macklin Biochemical Co.,
Ltd. (Shanghai, China). Waterborne epoxy resin (MU-618, solid content was 48–52%) and
waterborne epoxy curing agent (CU-600, solid content was 61–65%) were purchased from
Shanghai Runtan New Material Technology Co., Ltd. (Shanghai, China). All reagents were
used as received without further purification.

Q235 steel was purchased from Jixing Stainless Steels Factory (Beijing, Chian) and the
chemical composition is listed in Table 2. They were polished in turn by SiC sandpaper
with 400, 800, and 1200 mesh, then washed with acetone and dried at 60 ◦C. Kish flake
graphite was supplied from the Qingdao Steel Mill (Qingdao, China), and the pristine kish
graphite was subjected to a purification process involving water washing dust removal,
magnetic separation, and acid leaching. The proximate analysis of purified kish graphite
and chemical composition analysis of the ash are listed in Table 3.

Table 2. Chemical composition of Q235 steel (mass percentage).

Element Fe Mn Si P S C

wt.% Balance 0.47 0.28 0.033 0.047 0.17

Table 3. Proximate analysis of the purified kish graphite and chemical composition analysis of
the ash.

Proximate Analysis XRF Analysis (wt.%)

FC (wt.%) PS (µm) SiO2 Fe2O3 CaO Al2O3 Cr2O3 ZnO TiO2 MnO Others Total

98.47 50–75 56.97 19.89 4.88 3.52 3.07 2.90 2.81 2.26 3.70 100

FC: carbon content; PS: particle size; Others: K2O, NiO, MgO, Na2O, V2O5, and P2O5.

2.2. Synthesis of GO and AGO

GO was synthesized by the modified Hummers method. Firstly, the purified kish
graphite (0.5 g) was combined with H2SO4 (20 mL) and NaNO3 (0.25 g), with constant
stirring for 2 h at the temperature below 15 ◦C. An amount of 3 g of KMnO4 was slowly
added and further stirred at 35 ◦C for 0.5 h. Subsuquently, 40 mL of deionized (DI) water
was slowly added into the solution and stirred for 15 min. Finally, 7.5 mL of H2O2 was
added slowly until a bright yellow suspension appeared. The residual acids were removed
using 5% HCl and DI water several times. GO powders were obtained after filtration and
freeze drying.

Figure 1 shows the mechanism diagram of the AGO synthesis. An amount of 0.2 g
of GO and 20 mg of 2-aminomalonamide were dispersed in 50 mL of DI water, then
ultrasonicated in an ice bath for 30 min. Next, the 2-aminomalonamide and GO solutions
were mixed and stirred at 55 ◦C, 65 ◦C, 75 ◦C, and 85 ◦C for 1 h [26]. The final products
were obtained by freeze drying, which were denoted as AGO55, AGO65, AGO75, and
AGO85 to specify the respective reaction temperatures.
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2.3. Preparation of GO/WEP and AGO/WEP Composite Coatings

AGO/WEP composite coatings were prepared by incorporating AGO65 (the optimum
modification temperature) at mass fractions of 0.05%, 0.15%, and 0.3% relative to the solid
weight of the resin and curing agent. Firstly, AGO65 was dispersed in DI water at the
specified mass fractions and sonicated for 10 min to disperse it well. The evenly distributed
mixture was combined with MU-618. Then, CU-600 with a stoichiometric amount was
added to the mixture, maintaining a resin/curing agent weight ratio of 2:1. Finally, the
prepared coatings were applied onto the pre-treated Q235 steel using a wire bar (100 µm)
and cured at 60 ◦C for 24 h. The thickness of the coatings was controlled within the range
of 40 ± 5 µm. The composite coatings were named AGO05/WEP, AGO15/WEP and
AGO30/WEP by incorporating 0.05%, 0.15%, and 0.3% of AGO65, respectively. In addition,
GO/WEP composite coatings were prepared with 0.15% GO, and the coating without
AGO65 was named WEP.

2.4. Characterizations

X-ray diffraction (XRD, Bruker D8 Advance, Karlsruhe, Germany) was used to de-
termine the crystal structure of the GO and AGO. Raman spectra were obtained with a
Raman spectrometer (HORIBA, LabRAM HR Evolution, Tokyo, Japan) covering 500 to
4000 cm−1. Fourier transform infrared (FT-IR, Bruker VERTEX 70 V, Ettlingen, Germany)
spectroscopy of the GO and AGO was conducted with a resolution of 4 cm−1 in the range
of 4000–500 cm−1. The morphology and microstructure of the materials were observed
using scanning electron microscopy (SEM, ZEISS GEMINISEM 500, Munich, Germany) and
transmission electron microscopy (TEM, JEOL JEM-2100F, Tokyo, Japan). And the element
mapping was also performed by EDS (X-MAX20, OXFORD INSTRUMENTS, Oxford, UK).

2.5. Electrochemical and Salt Spray Tests

Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in
a 3.5 wt.% NaCl aqueous solution that simulated a seawater environment were conducted
to investigate the electrochemical properties of the composite coatings. These tests were
performed on an electrochemical workstation (CHI-760E) equipped with a three-electrode
configuration. The steel substrate coated with coatings (1 cm2) was the working electrode.
Saturated calomel (SCE) was the reference electrode. EIS tests were conducted over a frequency
range of 100 kHz to 0.01 Hz with an amplitude of 20 mV. Potentiodynamic polarization curves
were plotted from an open circuit voltage (OCV) potential of −250–250 mV with a sweep rate
of 1 mV/s. Electrochemical software (CHI-760E Version 21.02) was utilized to analyze the
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corrosion current density (icorr) and polarization resistance (Rp). Additionally, the following
equation was used to calculate the corrosion rate (vcorr):

vcorr = 87.600 × Ewicorr

nρF
(1)

where Ew represents the formula weight of carbon steel (55.85 g/mol), icorr represents the
corrosion density, n represents the chemical valence of ferric ion, ρ represents the density of
carbon steel (7.86 g/cm3), and F represents the Faraday constant [27].

Salt spray tests were conducted on a Salt Spray Test Chamber for 200 h (YWX-015,
Changzhou Guoli Test Equipment Co., Ltd. Changzhou, China) according to the standard
ASTM B117-09 [28]. The saline concentration used in the test was 5 mg/mL, the PH value
of the solution was between 6.5 and 7.2, and the test temperature was 35 ◦C.

3. Results and Discussion
3.1. Characterization of AGO and AGO/WEP Composite Coatings

XRD spectra were used to analyze the chemical structures to demonstrate the modifi-
cation effect, as shown in Figure 2a. The characteristic peak of GO (001) was determined
according to the Bragg equation:

2dsinθ = λ (2)

where d is the interlayer spacing of GO and AGO; θ is the grazing angle; and λ is the X-ray
wavelength. A sharp diffraction peak appeared at 2θ = 10.56◦ in the GO sample, indicating
an interlayer spacing of 0.84 nm. After the loading of 2-aminomalonamide, the diffraction
peaks of AGO55, AGO65, AGO75, and AGO85 shifted to 10.48◦, 8.80◦, 8.98◦, and 9.56◦,
with an interlayer spacing of 0.84, 1.00, 0.98, and 0.92 nm, respectively. The modified AGO
samples successfully grafted the amino group and exhibited a larger interlayer distance,
which was attributed to the reaction between GO and 2-aminomalonamide and the resulting
intercalation between the GO sheets.
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As shown in Figure 2b, Raman spectroscopy was used to characterize the disorder
and defect structures of GO and AGO. Both GO and AGO exhibited a prominent D-band
(1345 cm−1) and G-band (1585 cm−1), along with a weaker 2D band (2693 cm−1). The
presence of the D band indicated the existence of defect and partial disorder structures
caused by sp3 carbon atoms during the oxidation process, while the G band was associated
with the in-plane vibration of sp2 carbon atoms [22,29]. The intensity ratio of the D-band
and G-band (ID/IG) can be used to evaluate the degree of defectiveness and disorderliness
of GO sheets. It is worth noting that the Raman spectra of AGO55, AGO65, AGO75, and
AGO85 were without band shifts compared to that of GO. However, the intensity ratio of
the D-band to G-band (ID/IG) increased from 1.43 (GO) to 1.72 (AGO55), 1.89 (AGO65),
1.82 (AGO75), and 1.76 (AGO85), demonstrating that the structure of AGO was more
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disordered after the grafting of the amino group. AGO65 had the highest ID/IG, indicating
that 65 ◦C was more suitable for the reaction of GO and 2-aminomalonamide, which was
conducive to the grafting of amino groups on the surface of GO.

Figure 2c shows the FT-IR spectra of GO and AGO. The prominent absorption peaks
at 3430, 1725, 1630, and 1100 cm−1 were attributed to −OH, C=O, C-OH, and C−O−C
functionalities, respectively. After the reaction with 2-aminomalonamide, the intensity
of the C=O peak (1725 cm−1) decreased, and the C–N peak (1400 cm−1) appeared in
contrast to the GO spectrum. In addition, the intensity of the C–N peak apparently rose
with increasing temperatures. This suggests that the graft modification of GO with amino
groups was successfully achieved, and the grafting of amino functional groups can be
facilitated by increasing the temperature.

The results indicated that the optimal reaction temperature of GO and 2-aminomalonamide
was 65 ◦C. Consequently, further characterization was conducted on the resulting com-
posites obtained at this temperature. SEM and TEM were employed to observe the
microscopic morphology of GO and AGO65. The surface of GO exhibited a relatively
smooth appearance with prominent undulating folds in Figure 3a. After the grafting
of 2-aminomalonamide from Figure 3b, the surface of the AGO was rougher in compar-
ison to that of GO owing to the heating and ultrasonic treatment in the modification
process, and the N element was detected on the surface of AGO. The rise in surface rough-
ness hindered the agglomeration of AGO and facilitated AGO uniform dispersion in the
epoxy resin coatings. In addition, the increase in shadow area in the TEM image of AGO
indicated an increase in layer thickness (Figure 3c,d). Both the SEM and TEM results
indicated that the amino group was successfully grafted onto the surface of GO after
2-aminomalonamide modification.
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The dispersion of different amounts of AGO in the WEP was conducted by analyzing
the fracture surfaces. All samples were treated with liquid nitrogen prior to the SEM
analysis. As shown in Figure 4a, the fracture surface of the WEP exhibited noticeable
pore defects, which were caused by solvent volatilization during the curing process of the
waterborne epoxy coatings. In this case, the micropores can serve as potential pathways
for corrosive media to infiltrate, leading to the corrosion of the metal substrate [30]. The
defects and pores decreased after the incorporation of AGO into the epoxy resins, and the
fracture surface of the AGO15/WEP composite coating displayed a denser morphology,
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suggesting that the addition of 0.15 wt.% of AGO effectively blocked defects and pores
within the coating to block the penetration of corrosive mediums. However, the continuous
addition of AGO led to the appearance of agglomeration and the uneven distribution of
AGO (Figure 4d), which led to the defects and pores in the AGO30/WEP composite coating.
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3.2. Anti-Corrosive Performance of AGO/WEP Composite Coatings

EIS was used to investigate the electrochemical behavior and protective performance
of the composite coatings. The Nyquist and Bode plots of the coatings after immersion in a
3.5 wt.% NaCl solution for 24 h are shown in Figure 5. Typically, an impedance modulus at
0.01 Hz (|Z|0.01Hz) is utilized to evaluate the protective efficacy of coatings, with higher
|Z|0.01Hz values signifying enhanced corrosive resistance [31]. The |Z|0.01Hz after 24 h
immersion was 1.03 × 108, 2.67 × 109, 1.17 × 1010, 1.63 × 1010, and 5.01 × 109 ohm·cm−2

for the WEP, GO/WEP, AGO05/WEP, AGO15/WEP, and AGO30/WEP coatings, respec-
tively (Figure 5a). The corrosion resistance of the composite coatings was significantly
improved after the application of GO and AGO in the WEP. Figure 5b shows that the
radius of capacitive arcs first increased and then decreased with an increase in AGO65, and
AGO15/WEP with 0.15 wt.% AGO65 had the largest radius, which was consistent with
the analysis of the fracture surfaces. In addition, the Nyquist diagram of the GO and AGO
coating samples exhibited a larger capacitive loop and only one time constant, suggesting
that the corrosive medium permeated the coatings but did not reach the interface between
the coating and the metal substrate. The ionic resistance (barrier action) of the coatings
controlled the main corrosion process in these samples [32].

The Tafel curves of the WEP, GO/WEP, AGO05/WEP, AGO15/WEP, and AGO30/WEP
coatings are shown in Figure 6, and the electrochemical parameters are summarized in
Table 4. Both the GO/WEP and AGO/WEP composite coatings demonstrated a decrease
in icorr compared to the WEP coating, indicating their enhanced corrosion resistance prop-
erties. Due to the beneficial effect of incorporating AGO in the shielding and anti-corrosion
performance of waterborne epoxy coatings, the AGO15/WEP coating exhibited the lowest
corrosion current density (3.11 × 10−13 A·cm−2). Furthermore, the calculated corrosion
rate of AGO15/WEP was 3.63 × 10−9 mm/year, which was obviously less than that of
WEP (1.79 × 10−6 mm/year).
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Figure 6. Tafel curves of WEP, GO/WEP, and AGO/WEP coatings.

Table 4. Electrochemical parameters for WEP, GO/WEP, and AGO/WEP coatings.

Sample icorr (A·cm−2) vcorr (mm·Year−1) Rp (Ohm·cm−2)

WEP 1.53 × 10−10 1.79 × 10−6 2.94 × 109

GO/WEP 5.29 × 10−12 6.17 × 10−8 8.35 × 1010

AGO05/WEP 1.39 × 10−12 1.64 × 10−8 8.60 × 1011

AGO15/WEP 3.11 × 10−13 3.63 × 10−9 1.29 × 1012

AGO30/WEP 7.32 × 10−12 8.56 × 10−8 1.47 × 1011

During the process of the metal matrix corrosion, the generation of OH− at the coating–
metal interface (2H2O + O2 + 4e− → 4OH−) led to a localized increase in pH at the interface,
resulting in enhanced coating hydrolysis and reduced coating adhesion [33]. Figure 7 shows
the adhesion strength of the composite coatings. The dry and wet adhesion of the WEP
was measured to be 5.62 and 3.48 MPa, respectively. And both the dry and wet adhesion of
the AGO15/WEP coating significantly increased, with a dry adhesion of 6.03 MPa and a
wet adhesion of 5.61 MPa, respectively. Notably, the adhesion loss of 7% for AGO15/WEP
compared to that of 38% for the WEP coating indicated that AGO filled the defects and
pores of WEP and improved the interaction force between the coating and metal substrate.
In addition, the expansion benefit of the corrosive medium in the coating significantly
increased due to the 0.15 wt.% addition of AGO, thus delaying the corrosion process of the
steel substrate.



Materials 2024, 17, 1220 9 of 12

Materials 2024, 17, x FOR PEER REVIEW 9 of 13 
 

 

During the process of the metal matrix corrosion, the generation of OH− at the coat-
ing–metal interface (2H2O + O2 + 4e− → 4OH−) led to a localized increase in pH at the in-
terface, resulting in enhanced coating hydrolysis and reduced coating adhesion [33]. Fig-
ure 7 shows the adhesion strength of the composite coatings. The dry and wet adhesion 
of the WEP was measured to be 5.62 and 3.48 MPa, respectively. And both the dry and 
wet adhesion of the AGO15/WEP coating significantly increased, with a dry adhesion of 
6.03 MPa and a wet adhesion of 5.61 MPa, respectively. Notably, the adhesion loss of 7% 
for AGO15/WEP compared to that of 38% for the WEP coating indicated that AGO filled 
the defects and pores of WEP and improved the interaction force between the coating and 
metal substrate. In addition, the expansion benefit of the corrosive medium in the coating 
significantly increased due to the 0.15 wt.% addition of AGO, thus delaying the corrosion 
process of the steel substrate. 

 
Figure 7. The adhesion of WEP, GO/WEP, and AGO/WEP coatings. 

The salt spray test further evaluated the anti-corrosion performance of the composite 
coatings. Figure 8a illustrates the presence of significant corrosion products and numer-
ous bubbles surrounding the scratches and beneath the coating, indicating the poor 
shielding action and corrosion resistance of the WEP. By incorporating 0.15 wt.% of GO 
into the system, the corrosion products around the scratches were considerably reduced; 
however, an abundance of bubbles persisted, as shown in Figure 8b. Notably, the corro-
sion degree of the plate decreased first and then increased with the addition of AGO from 
0.05 to 0.30 wt.%. And Figure 8d demonstrates the remarkable absence of corrosion prod-
ucts and bubbles at the surface of AGO15/WEP, which was attributed to the uniform dis-
persion of AGO throughout the coating, highlighting its effective shielding action and cor-
rosion resistance. However, the addition of excess AGO into AGO30/WEP resulted in a 
gradual increase in corrosion products and bubbles, primarily due to the uneven distri-
bution of AGO. 

Figure 7. The adhesion of WEP, GO/WEP, and AGO/WEP coatings.

The salt spray test further evaluated the anti-corrosion performance of the composite
coatings. Figure 8a illustrates the presence of significant corrosion products and numerous
bubbles surrounding the scratches and beneath the coating, indicating the poor shielding
action and corrosion resistance of the WEP. By incorporating 0.15 wt.% of GO into the
system, the corrosion products around the scratches were considerably reduced; however,
an abundance of bubbles persisted, as shown in Figure 8b. Notably, the corrosion degree of
the plate decreased first and then increased with the addition of AGO from 0.05 to 0.30 wt.%.
And Figure 8d demonstrates the remarkable absence of corrosion products and bubbles
at the surface of AGO15/WEP, which was attributed to the uniform dispersion of AGO
throughout the coating, highlighting its effective shielding action and corrosion resistance.
However, the addition of excess AGO into AGO30/WEP resulted in a gradual increase in
corrosion products and bubbles, primarily due to the uneven distribution of AGO.
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3.3. Corrosion Protective Mechanism

The corrosion protection mechanisms of WEP, GO/WEP, AGO15/WEP, and AGO30/WEP
composite coatings are proposed in Figure 9. The redox reaction caused by the corrosive
mediums (H2O, O2, and Cl−) was the main cause of the corrosion and degradation of the
metal substrate. These corrosive media can penetrate the coating through cracks and pores,
eventually reaching the interface between the coating and the metal substrate [34]. Due
to the limited barrier capacity of the WEP coating, corrosive media quickly reached the
surface of the metal substrate and caused the metal corrosion (Figure 9a). The corrosion
abated with the introduction of GO into the WEP. However, the corrosion protection of the
GO/WEP remained underutilized due to the inevitable aggregation of GO (Figure 9b). The
AGO15/WEP composite coating yielded optimum corrosion protection performance due
to two main reasons: one is that AGO filled the defects and pores in the waterborne epoxy
coatings to block the penetration of corrosive media; the other was that the modification
of 2-aminomalonamide enhanced the dispersibility of AGO and improved the “maze
effect” of the coating, thus delaying the corrosion process of the underlying carbon steel
substrate (Figure 9c). It is worth noting that excessive AGO addition led to a reduction in
the corrosion-protective properties, because AGO aggregation within the coatings resulted
in increased defects and pores in the coating (Figure 9d).
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(c) AGO15/WEP, and (d) AGO30/WEP coatings.

4. Conclusions

In conclusion, an efficacious method is provided to enhance the anti-corrosion per-
formance of WEP by using the economical industrial byproduct kish graphite as a raw
material. The addition of 0.15 wt.% of AGO into WEP resulted in a significant improve-
ment in corrosion protection. After immersion in a 3.5 wt.% NaCl solution, the |Z|0.01Hz
was 1.63 × 1010 ohm·cm−2, which was about two orders higher than that of the WEP
(1.03 × 108 ohm·cm−2), and the adhesion loss decreased from 38% to 7%. The surface of
AGO15/WEP exhibited minimal corrosion products or bubbles after 200 h of salt spray tests.
The mechanism of corrosion resistance revealed that AGO could effectively fill micropores
owing to its superior dispersibility, preventing the penetration of corrosive media, thus
ultimately enhancing corrosion resistance. This research could provide a novel approach
for the KFG and graphene composites in anti-corrosion applications. KFG was used as a
raw material to prepare GO for improving the anti-corrosion performance of the coating,
which has a market application prospect in the corrosion protection of steel. In following
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research, we will further evaluate the influence of long cycles and environmental factors
(temperature, humidity, salt concentration, etc.) on the corrosion resistance of the material.
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