
Citation: Szweda, Z.; Skórkowski, A.;
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Abstract: In this work, two methods were used to accelerate the corrosion of concrete. In the first
method, chloride ions were injected into the concrete using the migration method. The moment of
the initiation of the corrosion process was monitored using an electrochemical method of measuring
polarization resistance. In the next step, the corrosion process was accelerated by the electrolysis
process. Changes on the sample surface were also monitored using a camera. In the second method,
the corrosion process of the reinforcing bar was initiated by the use of the electrolysis process only.
Here, changes occurring on the surfaces of the tested sample were recorded using two web cameras
placed on planes perpendicular to each other. Continuous measurement of the current flowing
through the system was carried out in both cases. It was assumed that in conditions of natural
corrosion, a crack would occur when the sum of the mass loss of the reinforcing bar due to corrosion
reached the same value in tcr(real) (real time) as it reached in the tcr (time of cracking) during the
accelerated corrosion test. The real time value was estimated for C1 concrete with cement CEM I. The
estimated value was tcr(real) = 1.1 years and for C2 concrete with cement CEM III, tcr(real) = 11.2 years.
However, the main difference that was observed during the tests was the nature of the concrete
cracks. In the case of the C1 concrete sample, these occurred along the reinforcing bar, while in
the C2 concrete, the failures occurred on a perpendicular plane transverse to the direction of the
reinforcing bar.

Keywords: accelerated corrosion; concrete cover; corrosion initiation time; time of activation;
mechanical impact; corrosion products; cracking time

1. Introduction

It is assumed that a properly selected thickness of concrete cover provides sufficient
protection for reinforced concrete structures. There are documents regulating the meth-
ods for designing the thickness of concrete cover for reinforced concrete and prestressed
structures, taking into account the type of concrete used and the environmental classes in
which the designed objects will be operated [1,2]. The random distribution of pore spaces
present in the concrete cover is the reason why aggressive substances such as chloride,
carbon dioxide, oxygen, etc., can penetrate through weak points, causing corrosion of
steel bar reinforcements in concrete and ultimately inducing concrete cracking [3]. The
corrosive products have 1.7–6.2 s of their original iron volume and are usually deposited
in the pores of the concrete [4]. Since the volume of pores present at the contact surface
between the reinforcing bar and the concrete is limited, the accumulation of corrosive
products exerts pressure on the surrounding concrete, causing tangential tensile stresses.
When the value of these stresses exceeds the tensile strength of the concrete, cracks will
appear. This may subsequently lead to the destruction of the concrete cover [5,6]. It is
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known, however, that under certain favorable conditions, especially in very wet concrete,
some of the corrosive products can be released from the surface of the reinforcing bars,
thus partially alleviating the tensile stresses around the reinforcing bar [7]. In order to
ensure the stable and safe operation of structures, methods of analyzing and predicting the
durability of reinforced concrete structures should be developed [8–10]. The service life of
structures exposed to aggressive environments may be divided, according to [11], into an
initiation period when, e.g., chlorides penetrate to the level of the reinforcement and their
amounts exceed the chloride threshold. Then, the corrosion initiates and a propagation
period starts. Chloride penetration is the first part of this process and is usually modeled
using Ficks’s second law of diffusion [12,13]. Sometimes, finite element models are used
for more complicated boundary conditions, e.g., when considering the effect of cracks on
chloride ion penetration [14–16]. The propagation period is related to the oxidation of steel
reinforcements and the formation of rust products, followed by the concrete cover cracking.
Usually, cracking of the concrete cover is considered to indicate the end of the service life of
concrete structures affected by steel reinforcement corrosion [17]. Since classical methods
of examining the development of corrosion processes are time consuming [18,19], various
methods of accelerating the corrosion process are used [3,20–23]. These methods usually
use an external electrical field and high corrosion rate values (typically 100 µA/cm2 or
higher). A typical lollypop reinforced concrete test specimen (named after its shape) and
setup was used by Care and Raharinaivo [24] for an accelerated corrosion study using the
impressed current technique. Electrolytes containing both chloride ions and pure water
were used in the tests. The test results indicated that corrosion processes can be better
described by Faraday’s law when using an electrolyte containing chloride ions.

Alternative methods for accelerating the corrosion of steel in concrete have also been
reported in the literature. Since corrosion processes accelerated by an electric field proceed
differently to those occurring in a natural corrosion environment, Yuan et al. [25] proposed
an alternative method of accelerated steel reinforcement corrosion induction using an
artificially modeled climatic environment. It was concluded that the artificially modeled
environment in the climatic chamber better models the natural processes of corrosion
than methods using electric field acceleration. Chunlei et al. [26] proposed a method of
accelerating the corrosion of steel reinforcements by accelerating the diffusion of chloride
ions into concrete using an electric field. This was in order to achieve a critical value of
chloride ion concentration at the surface of the reinforcing steel, causing corrosion initiation,
in a shorter time. In a short two-day test, the LPR linear polarization method and direct
observation of the rod surface (by breaking the sample) were used to assess corrosion states.
Based on the results, the effectiveness of the tested inhibitors was assessed. However, in
this method, the conditions favoring corrosion are accelerated, and the corrosion initiation
process itself is assessed.

All these studies and observations are the starting point for developing theories and
methods for modeling the behavior of reinforced concrete structures under the influence of
the development of corrosion processes [27].

The commonly accepted model assumes a perfectly homogeneous nature of concrete
and a uniform disintegration of corrosive products around the cross-section of the reinforc-
ing bars. It is expected that the mode of failure depends primarily on the cover depth c
and the reinforcing bar spacing s. If c is relatively small in relation to s, cracks inclined at
an angle of 45◦ are likely to occur. When these cracks reach the concrete surface, spalling
of the concrete surface will occur. If rebars are placed too closely together, cracks tend to
develop and progress in the plane of the rebar, causing them to delaminate. Such cracks
may therefore not be visible from the external surface in the initial phase of corrosion [28].

Numerous studies have been focused on the corrosion-induced cracking of con-
crete, leading to the proposition of various cracking models [5]. These models can be
categorized into three main types: empirical (experimental) [29], analytical [30–32], and
numerical [15,33,34]. Empirical models are often developed with corrosion initiation ac-
celerating methods, such as the application of external impressed currents, resulting in
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<0.05 mm cracks. Replicability of the empirical models is very poor, especially when it
comes to predicting the tcr (years, concrete crack appearance time) [35]. In [36], a new pre-
diction model that takes into account the influence of changes in ambient temperature and
humidity, concrete resistivity, chloride ion concentration in concrete, corrosion duration,
water–cement ratio, and cover thickness was proposed.

Analytical models are based primarily on assumptions of mechanics of deformable
bodies. Several simplifying assumptions are applied in a typical analysis. The concrete
encompassing the reinforcing bars is treated as a thick-walled cylinder, and it is regarded as
a brittle, isotropic, linearly elastic material. Corrosive products are assumed to be uniformly
distributed both around and along the reinforcing bars, concrete stresses along the bar axis
are considered negligible, pores and voids at the steel–concrete interface are assumed to be
best represented by a uniform empty band encircling the reinforcing bars, and only stresses
arising from the pressure exerted by the expanding corrosive products are considered in the
model [5]. It is assumed that tcr (corrosion propagation time until the concrete cover cracks)
is directly proportional to wcr (g/mm2, the critical amount of corrosion products causing
tensile stresses greater than the tensile strength of concrete) and inversely proportional to
icorr (corrosion rate of reinforcing steel). The parameter wcr is intricate and influenced by
various factors, including the type of corrosion products formed, their ultimate deposition
locations, the concrete’s porosity, their mobility within the concrete, and material properties
such as the tensile strength and modulus of elasticity [5,37].

Finite element modeling (FEM) is the main method used in numerical modeling of
corrosive products’ expansion [38,39]. Compared to other models, it allows for more
convenient adjustment of material properties and geometric complexities. Still, there are
concerns about validating this model, since they are closely related to the simulated object
and a specific situation in FEM projects [5,27,40,41]. The work in [17] presents a mechanical
model where XFEM-Based Crack Growth Simulation module of Ansys Software is used to
describe the distribution of stresses in the cross-section samples in the corrosion process.
However, there was a problem with determining the cracking time, since in all cases, shorter
times than observed in experimental studies were obtained.

All things considered, there is still a need for more experimental tests to determine the
impact of corrosive products on the mechanical properties of steel-reinforced concrete. This
requires numerous experiments and many different measurements (mechanical, geometric,
electrochemical) on simple structures to analyze the corrosion development, its mechanical
effects, and the final products. It is also important to improve the knowledge of the
relationship between rate of corrosion and cracking [4,42].

In this work, research on the development of corrosion of reinforcing bars was carried
out using an electric field to accelerate the process. Two methods were used to accelerate
corrosion. In the first method, chloride ions were injected into the concrete using the
migration method to initiate the corrosion process, accelerating their penetration by using
an electric field. The moment of initiation of the corrosion process was monitored using
an electrochemical method of measuring polarization resistance. Additionally, when the
corrosion process was detected, the distribution of chloride ion concentrations across the
thickness of the concrete cover was determined. In the next step, the corrosion process
was accelerated using the electrolysis process, by connecting a constant voltage source of
30 V. At the same time, the current flowing through the system was measured. Changes
on the sample surface were monitored with a camera that automatically took pictures at
specific intervals.

In the second method, the corrosion process of the reinforcing bar was accelerated
using the electrolysis process only. The system consisted, analogously to the previous
method, of a reinforcing bar and a rust-resistant steel electrode applied to the external
surface of the sample. The source of chloride ions was the electrolyte in the form of a
3% NaCl solution. Here, changes occurring on the surfaces of the tested sample were
recorded using two web cameras placed on planes perpendicular to each other. Continuous
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measurement of the current flowing through the system was carried out. Each method was
tested for 24 days.

The aim of the research was to find the relationship between the value of the current
flowing in the system, which, according to Faraday’s law, is proportional to the mass of the
corrosion products formed, and the type and width of the cracks in concrete. The research
is preliminary and was conducted with the intention to compare the methods in order to
select the optimal one to be implemented in further research. Since both tests used concrete
of the same composition but with different types of cement, it is also possible to make a
preliminary comparison of the cracking resistance of these concretes.

Significance and Novelty

From the economic standpoint, the correct and precise determination of the durability
of a reinforced concrete structure is essential, since it provides information regarding how
long the structure will be used without additional costs for renovation or even demolition.
The process of concrete cracking due to the corrosion of reinforcing bars is very complex
and depends on many factors such as concrete porosity, concrete composition, type of
cement used, type of steel, and the amount of aggressive factors causing corrosion.

This research project uses an accelerated process of chloride ion penetration into
concrete to induce corrosion processes coupled with the recording of these processes by
the method of linear concrete polarization (LPR). Thanks to this procedure, the value of
the corrosion current velocity occurring in natural conditions for the tested steel–concrete
system was obtained and tcr—the cracking time of concrete in conditions of accelerated
corrosion—was directly determined. Additionally, this method allows for the control
of the concentration of chloride ions in the accelerated corrosion process. Accelerated
corrosion tests are performed to obtain information used in predicting the durability of
structures; however, the results of accelerated tests should not be directly extrapolated
to real predictions of the service life of real structures [43]. Moreover, the real predicted
time of concrete cracking resulting from accumulation of corrosion products was estimated
thanks to the assumption that the crack will occur as a result of the formation of the same
amount of corrosion products that caused the cracking of the tested sample in the simulated
corrosion test.

The literature on changes in concrete strength due to the admixture of chloride ions is
not clear. In some cases, the addition of chloride ions causes slight changes in compressive
strength, as shown in [44]. The results of tests on self-compacting concretes presented
in [45], in the case of concrete containing Portland cement, indicate a minimal decrease in
strength with increasing chloride content. However, in the case of concrete with the addition
of fly ash, the compressive strength increases with the addition of chloride ions. At the
same time, the use of an electric field and chloride ions can also change the microstructure
of concrete by creating ettringite, which, in the initial phase, can contribute to strengthening
the microstructure of concrete, and in the later stage, to bursting and weakening of the
structure, similar to the process of extracting chloride ions from concrete [46].

In the second method, the entire cracking process was recorded, which, after improving
the quality of the recorded image, will allow us to determine the dependence of the mass
of corrosion products generated during the process on the appearance and the propagation
of this crack. Taking that additional information into account supports a more accurate
prediction of corrosion processes.

2. Materials

The research was carried out with two ordinary concrete types of a comparable com-
position, differing only in the type of cement from the Lafarge cement plant in Małogoszcz
(Poland) used. In concrete C1, CEM I 42.5 R cement was used, whilst in the second concrete
(C2), CEM III/A 42.5 N-LH/HSR/NA cement was used. The specimens were prepared and
every test was conducted at the Laboratory of Civil Engineering of the Silesian University
of Technology. Compressive strength, density, and porosity tests were described in [47]
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where, among others, C1 and C2 concretes were used in diffusion tests. Properties and
compressive strength of the analyzed concrete mixtures from all series are presented in
Table 1.

Table 1. Properties and compressive strength of analyzed concrete mixtures from all series.

No. Compressive
Strength [MPa]

Density
[kg/m3]

Porosity
[%]

C1 54.2 2271 12
C2 49.5 2269 7

The detailed chemical composition and basic properties (according to the producer’s
specification) of the cements are given in Table 2, and the detailed compositions of concrete
mixes C1 and C2 are presented in Table 3.

Table 2. Chemical compositions of CEM I 42.5 R(C1) and CEM III/A 42.5 N-LH/HSR/NA(C2).

Constituent
% mass

Concrete SiO2 Al2O3 Fe2O3 CaO MgO K2O Na2O Eq. Na2O SO3 Cl

C1 19.38 4.57 3.59 63.78 1.38 0.58 0.21 0.59 3.26 0.069

C2 29.08 6.30 1.37 48.82 4.36 0.73 0.34 0.82 2.74 0.066

Table 3. Composition of studied concrete mixtures.

Mixture ID. Sand (0–2) *
mm [kg/m3]

Gravel (2–8) *
mm [kg/m3]

Gravel (8–16) *
mm [kg/m3] Type of Cement Cement

[kg/m3] w/c

C1
722 512 2271

CEM I 42.5 R *
681 0.3C2 CEM III/A 42.5

N-LH/HSR/NA *

* CEM I—Portland cement; CEM III—blast cement; CEM III/A (65)—maximum content of nonclinker principal
components (%); R—high-strength early cement grade; N—grade with normal early cement strength; NA—low-
alkali cement; HSR—sulfate-resistant cement; LH—with low heat of hydration.

The molds were of a height of 5 cm, with 10 cm diameter. The chloride ion penetration
was the same for all the samples: vertical from the top of the sample. Ribbed rebars with
ø12 mm, made of B500SP steel, were positioned inside the specimens perpendicular to the
direction of the cylinder axis, at the center of its cross-section. The applied reinforcement
cover was 20 mm wide. The prevention of crevice corrosion on the contact elements of
the rebar ends, which were situated on the sides of the cylindrical specimen, was ensured
through electrical insulation. These elements were connected to a conductor on one side.
Figure 1a shows the specimens prepared for testing, with plastic tanks made of PVC pipes
attached to the upper surface of these elements. The same model of specimens was used
previously [48] to determine the impact of concrete design on the effectiveness of the
electrochemical chloride extraction process. The same model, but without reinforcement,
was used [47,49] to determine the values of the diffusion coefficient of chloride ions. These
models were used in this research because of the intention to model the processes of chloride
ion diffusion in concrete and reinforcement corrosion processes on them in future research.
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Figure 1. (a) Samples prepared for testing from C1 concrete. The experimental setup for accelerating
the migration of chloride ions to concrete through the application of an electric field. (b) Research
view. (c) Schematic image of the study: 1—concrete test specimen, 2—ribbed rebar ø12 mm made
of steel B500S, 3—titanic anode coated with platinum, 4—small plastic tanks with 5—3% NaCl,
6—stainless steel cathode.

3. Test Methods

The original intention of the research was to compare the influence of the cement used
in concrete on crack propagation. That is why samples with different cements were used
in both methods of inducing corrosion. However, the conducted tests were preliminary
in nature and led to obtaining very different results regarding the type of cracking in the
tested methods. Therefore, the new intention of the research was to collect experimental
data related to corrosion initiation and crack propagation time in order to further calibrate
numerical models.

In method 1, a voltage of 18 V was used only in the chloride ion charging stage, while
in the second stage (electrolysis), the same voltage was used as in method 2 (30 V). In
the second method, the electrolysis occurred from the very beginning of the test and the
solution in which the samples were soaked during the test was the source of chloride
ions. These differences are present due to the fact that both methods are used to accelerate
corrosion in the literature, and the aim of the study was to conduct a preliminary analysis
in order to select the best method for further research.

3.1. Accelerated Corrosion Process Method 1
3.1.1. Accelerated Process of Chloride Migration in Concrete

Four samples made of C1 concrete were used in the test. The chloride migration
process was carried out similarly to [46,48,50]. The specimens made of C1 concrete were
immersed in water for 72 h ahead of the tests. The first set of specimens (1) was placed on
top of a large rectangular electrode (anode), constructed from titanium mesh (coated with a
thin layer of platinum) (2) and submerged in tap water at the base of a shallow tank (3). At
the top, plastic containers (4) filled with a 3% NaCl solution up to a height of 7 cm were
placed. A round stainless steel electrode (cathode) (5) with a diameter adjusted to the tank
hole was placed on top of each specimen inside each tank. The test set was supplied with
18 V direct current—Figure 1.

Before subjecting concrete to accelerated chloride migration through an electric field,
polarization tests using the LPR method were conducted on all specimens to ascertain the
corrosion potential of reinforcement in its passive state. The chloride migration process
was halted every 7 days to observe the corrosion progression by measuring the corrosion
potential. Electrochemical measurements were conducted 3 days after discontinuing the
electrical supply to prevent polarization of the tested reinforcement [46,48,50].

The measurements followed a three-electrode setup, employing a steel rebar as the
working electrode (2). The counter electrode (4), crafted from a stainless steel sheet, was
tailored to fit the test specimens’ shapes. A reference electrode (5) of Cl−/AgCl,Ag composi-
tion was positioned on the cylinder surface, snugly secured to the plastic tank walls affixed
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to the specimen. Subsequently, LPR tests were conducted using the Gamry Reference 600
Potentiostat (6) by Gamry Instruments, Warminster, PA, USA (Figure 2a,b) [47,48,51].
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Figure 2. The applied test stand for polarization tests with the LPR and EIS methods: 1—concrete
test specimen, 2—ribbed rebar ø12 mm made of steel B500S (working electrode), 3—plastic tank,
4—auxiliary electrode, 5—(Cl–/AgCl,Ag) electrode as the reference electrode, 6—Gamry Reference
600 potentiostat with a computer unit and Gamry software: (a) photos of the testing procedure;
(b) scheme of the testing procedure; (c) exemplary specimen from which concrete was collected by
layers with Profile Grinding Kit.

After performing two series of charging by the migration method and consecutive
LPR measurements, the profile of chloride ion concentration in concrete was determined in
one of the tested samples (after 2 weeks of migration). Another chloride ion concentration
profile was determined after two further series of charging by the migration method
(after 4 weeks of migration). The “Profile Grinding Kit” from German Instruments was
employed for this purpose. Concrete was extracted in 4 mm thick layers at 10 consecutive
levels (Figure 2c). Solutions were obtained from the crushed concrete. The concentration
of chloride ions and pH in these solutions were determined using a multi-functional
multimeter from Elmetron.

For a detailed description of the experimental and calculation procedure used to
determine Ct exp, refer to the articles [46–51].

3.1.2. Accelerated Process of Corrosion

After introducing chloride ions into the concrete to initiate corrosion processes, an
electric field was applied to expedite the speed of these processes. The accelerated corrosion
test utilized a potentiostat (Silesian University of Technology, Gliwice, Poland), designed to
induce corrosion in the reinforcement rebar. In this setup, the reinforcing bar (1) served
as the anode, while the cathode was composed of rust-resistant perforated steel sheet (2).
Both electrodes were connected to the power supply (potentiostat) (3) using insulated
wires. The potentiostat unit (3) facilitated the automatic recording of fundamental electrical
parameters, including current (I) and voltage (U), at a preset frequency of 60 s. A constant
voltage of 30 V was maintained throughout the entire testing period. The concrete sample
(4) was immersed in tap water (5) to ensure electrical contact for all electrodes in the system.
Throughout the study, changes in the sample’s surface were documented using a camera
(6), capturing images at 3-day intervals—Figure 3.
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Figure 3. (a) Stand for testing accelerated corrosion of the reinforcement with the use of an electric field:
1—reinforcing bar, 2—rust-resistant perforated steel sheet, 3—power supply (potentiostat), 4—sample,
5—tap water, 6—photo camera: (b) potentiostat; (c) scheme of stand for testing accelerated corrosion.

The employment of direct current markedly expedites the experimental timeline. The
applied voltage induces a substantial shift in the potential of the steel electrode, with iron
consumption emerging as the predominant process:

Fe − 2e− = Fe2+. (1)

Taking into account the dominant process, the determination of the mass of oxidizing
iron ions was derived through the application of Faraday’s law [52]:

∆m(t) =
∫ t

0
kIdt, k =

M
zF

(2)

where ∆m(t) is the mass of iron ions transported from the steel rebar into the concrete
microstructure after an electrolysis duration of time ‘t’, where ‘k’ denotes the electrochemical
equivalent. It is noteworthy that the current intensity is not specifically associated with
the charge flow within the corrosion microcells; rather, it signifies the total intensity of the
external current denoted by ‘I’. The variables ‘M’ and ‘F’ represent the molar mass of iron
(56 g/mol) and the Faraday constant (F = 9.6485 × 104 C/mol), respectively. Additionally,
‘z’ indicates the number of electrons involved in the oxidation reaction, with values of 2
or 3.

The indiscriminate calculation of the coefficient k equal to k = 1.93 × 10−4 g/C and
including it in Formula (4) may lead to large discrepancies between the actual mass of iron
ions transferred to concrete microstructure measured gravimetrically and that calculated
from the formula [53]. This is because electrolysis does not take place in a pure solution,
and other ions present in the liquid, besides iron, take part in the process of transferring the
electric charge. Auyeung et al. [54] discovered disparities between theoretical and observed
corrosion mass loss. These differences can be attributed to multiple factors, including
the requirement of electrical energy to initiate corrosion, the resistivity of concrete, the
composition of the reinforcement bar, and the electrical properties of minerals present in
the concrete.

3.1.3. Measurement of the Crack Opening Width Using the Optical Method

The surface of the sample was covered with white paint and a pattern of small black
dots before the tests. During the experiment, photos of the sample surface were taken at
intervals of 3 days. Then, the obtained images were analyzed using the Gom correlate
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program, which was used to measure the width of the crack opening. In this method, a grid
of analyzed points is created, dividing the analyzed area. The first photo is taken before
any deformations occur, then a series of subsequent photos show the samples subjected
to a load of corrosive products. Those products cause tensile stresses in the cover when
their volume increases and subsequently cause its cracking. A series of photos shows the
consecutive stages of deformation caused by the acting load through the set of displacement
values of marked points on the surface of the analyzed sample. The system reads changes
in the position of points by registering their coordinates.

3.2. Accelerated Corrosion Process Method 2

One sample made of C2 concrete was used for testing. A concrete sample (1) made of
C2 concrete containing a metal reinforcing bar (2) was placed on a titanium mesh (3) in a
container (4) with a mixture of water and salt (3% NaCl salt concentration) (5) in a way that
prevented it from coming into contact with the bar. Electric wires (6) were connected to the
end of the titanium mesh covered with a layer of platinum and to the metal reinforcing
bar, connected to a power source (potentiometer) (7) with a voltage of 30 V. The electrolysis
carried out in this way was intended to lead to a faster corrosion process of the reinforcing
bar, resulting in the cracking of the sample. The entire experiment lasted about 3 weeks,
and the sample monitoring process was carried out using two webcams (one placed in a
top view (8) and the other directed at the place of the expected sample crack (9)). The OBS
program was used to operate the cameras, allowing for a transmission of views from both
cameras on one screen. The sample was illuminated with a lamp to maintain a constant
light level at all times. Due to the duration of the experiment, it was necessary to supervise
the whole experimental setup every day in order to replenish the water that had evaporated
and check the recording process to determine whether any errors occurred.

During the experiment, the measurement system recorded changes in the electric
current flowing between electrodes 2 and 3—Figure 4.
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Figure 4. Experimental setup for accelerated corrosion process method 2. (a) View of the tested
sample; (b) stand for testing accelerated corrosion of the reinforcement with the use of an electric
field: 1—sample, 2—reinforcing bar, 3—rust-resistant perforated steel sheet, 4—container, 5—3%
NaCl salt concentration, 6—electric wires, 7—power supply (potentiostat), 8—webcam placed in
a top view of the sample, 9—webcam placed directed at the place of the expected sample crack;
(c) scheme of stand for testing accelerated corrosion.

4. Results and Discussion
4.1. Results of the Accelerated Corrosion Process—Method 1
4.1.1. Result of the Accelerated Process of Chloride Migration in Concrete

Chloride concentration and pH levels were assessed in pore solutions made of ten
4 mm layers of grinded concrete. The results of tests conducted on two samples, namely
C1.1 after 14 days and C1.2 after 28 days of chloride ion migration in concrete, are depicted
in Figure 5. This figure illustrates the distribution of chloride concentrations and pH values
with respect to the depth of the reinforcement cover.
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Figure 5. Test results obtained for the reinforced concrete sample C1.1 after 14 days and C1.2 after
28 days of chloride ion migration: (a) chloride concentration profiles; (b) pH value distribution; and
(c) distributions in the x direction of the thickness of the concrete cover, the values of the concentration
ratios of chloride and hydroxide ions—the Hausman criterion.

As depicted in Figure 5a, the chloride concentration in the C1.1 concrete sample,
near the reinforcing bars, was approximately 1.4% of the cement’s weight after 14 days of
migration. Similarly, in the C1.2 concrete sample, near the reinforcing bars, the chloride
concentration exceeded approximately 1.4% of the weight of cement after 28 days of
migration. Notably, the concentration of chloride ions surpassed the critical value across
the entire depth of the concrete cover in both C1.1 and C1.2 samples.

In accordance with the standard criterion [2], the likelihood of reinforcement corrosion
appeared to be imminent in both cases. The measurements of reinforcement polarization
substantiated this presumption, revealing elevated corrosion current values after 7 days,
which persisted and were further validated after 14 days of chloride migration into the
concrete across all tested samples. Subsequent assessments of the corrosion current, con-
ducted after 21 and 28 days of migration, continued to affirm the sustained presence of the
corrosion process at a moderate level in samples C1.3 and C1.4.

By analyzing the carbonation of concrete based on the pH value, it can be concluded
that the steel in concrete is not exposed to corrosion (Figure 5b). Considering the added pres-
ence of hydroxide ions (Figure 5b), an evaluation using the Hausmann criterion (Figure 5c)
reveals that, based on the corrosion current measurements in samples C1.1 and C1.2, the
migration process of chloride ions appears secure and should not escalate to a state of
corrosion risk. However, this assumption was not substantiated by corrosion measure-
ments. A markedly different interpretation arises when examining the results concerning
the corrosion risk limit value for the ratio [Cl−]/[OH−] ≤ 0.1. For the set of results the
graphs are based on, refer to the dataset [55].

As a result of LPR tests, polarization curves (Figure 6), where the horizontal axis
shows the relationship between the current signal and the vertical axis shows potential, are
obtained. The polarization process starts from the negative direction, i.e., from reducing the
potential value, thanks to which a cathodic reaction polarization curve is obtained, which is
equivalent to the kinetics of the reduction reaction. Then, reinforcement is polarized in the
positive direction, obtaining an anodic polarization curve, which is equivalent to oxidation
reaction kinetics. The outcomes of these tests yield the values of corrosive current densities,
providing a distinct measure of the corrosion rate for the reinforcement. The corrosion
current (icorr (µA)) can be calculated using the polarization resistance (Rp(kΩ)) obtained
through LPR measurement, as per to the Stern–Geary equations [56]:

Rp =
dE
di

∣∣∣∣
i→0, E→Ecorr

, icorr =
babc

2.303Rp(ba + bc)
, (3)

where ba and bc are constants of anodic and cathodic reactions, respectively, coefficients of
rectilinear slope for segments of polarization curves—anodic ba and cathodic bc. For the set
of results the graphs are based on, refer to the dataset [55].
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Figure 6. Potentiodynamic polarization curves for steel reinforcement in concrete C1 obtained for
selected specimens: (a) C1.1, (b) C1.2, (c) C1.3, and (d) C1.4; M0 before chloride migration, M1 after
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The corrosion current density clearly determines the corrosion intensity of steel, since,
according to Faraday’s law, the mass of losses (∆m

(
tcr(real)

)
D
(
mg

)
) is proportional to the

flowing current (Icorr(real)(µA/cm2)):

D∆m
(
tcr(real)

)
= kicorr(real)t,Icorr(real) =

icorr(real)

S
, (4)

where k is electrochemical equivalent, t is time, and S is the surface area of the reinforcing
bar. The mentioned correlation illustrates the connection between the corrosion current
density and the linear corrosion rate (Vr (mm/year), expressed as follows:

Vr = 0.01159·Icorr(real). (5)

The corrosion rate (Vr (mm/year) is derived by calculating the average cross-section
loss around the circumference of the bar, measured in mm, for each operational year of
the structure.

LPR research was carried out on four research elements. Two elements (C1.1 and
C1.2) were excluded from corrosion tests after 2 weeks of migration and used for the
determination of the chloride ion concentration distribution in the cross-section of their
concrete covers. These samples were destroyed during this test. The remaining two
samples (C1.3 and C1.4) were tested for 28 weeks of migration. Comparisons of the results
obtained from the analysis of polarization curves for selected samples (C1.1, C1.2, C1.3,
C1.4) measured before (M0) and after 7 (M1), 14 (M2), 21 (M3), and 28 (M4) days of chloride
migration are shown in Appendix A (Table A1).

During the entire research period, a total of 16 polarization curves were obtained, the
shapes of which are shown in Figure 6.
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Figure 7a shows a comparison of the results of successive measurements depicting the
corrosion current density icorr of steel reinforcement in concrete across four test elements
constructed with C1 concrete. In Figure 7b, a similar comparison is shown, focusing on
successive measurements of the corrosion potential Ecorr of steel reinforcement in concrete
from four elements composed of the tested concretes. Considering the conditions out-
lined in [29,30], the initial reference measurement conducted prior to migration indicated
that both corrosion potential (Ecorr = 28.92 < 443 mV) and corrosion current intensity
(icorr = 0.05 < 0.3 µA) suggested a passive state of all test elements. Subsequent measure-
ments, taken after 7 days of accelerated chloride ion migration under the influence of an
electric field and 3 days post-system deactivation, signaled the initiation of corrosion in
all four specimens, as evidenced by alterations in corrosion potential values and corrosion
current intensity. Notably, there was a discernible increase in the average corrosion current
intensity (∆icorr = 9.57 µA), indicative of a moderate corrosion level. Additionally, the
average corrosion potential exhibited a substantial rise, amounting to ∆Ecorr = 551.84 mV,
suggesting a 95% corrosion rate. Following an additional 7-day exposure to chloride ions,
a slight decrease in corrosion current intensity was observed ∆icorr = 2.32 µA, while the cor-
rosion potential showed an increase ∆Ecorr = 77.50 mV. Subsequently, after another 7 days
of chloride ion charging (with an additional 3-day period for restraining rebars), a control
polarization measurement was conducted. The values obtained from this measurement
indicated the presence of corrosion in all the specimens. It can be observed that an increase
in corrosion current density for M1 is followed by a decrease for M2, and then the current
increases again for M3 and M4. This phenomenon is hard to explain but may perhaps
be attributed to a situation where the corrosion products at a given time of measurement
(measurement of M2) seal the steel–concrete contact zone, while subsequent measurements
of the current are again higher due to diffusion of the corrosion products into the concrete
cover. For this reason, several measurements were conducted at certain intervals, as only
one measurement would be unreliable.
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Figure 7. Distribution (a) of corrosion current densities and (b) corrosion potential obtained for the
selected specimens C1.1, C1.2, C1.3, and C1.4: M0—before chloride migration, M1—after 7 days,
M2—after 14 days, M3—after 21 days, and M4—after 28 days of migration.

4.1.2. Result of the Accelerated Process of Corrosion

The measurement results were graphically depicted to illustrate the progression of
changes in current across the analyzed samples. These measurements are presented in
Figure 8, showing the changes observed during the test in concrete C1 (Figure 8a) and
concrete C2 (Figure 8b). The graph shows characteristic points where sudden changes in
current intensity occurred (usually a sudden increase). These points may suggest the time
at which the cracking of the sample occurred. For the set of results the graphs are based on,
refer to the dataset [55].
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Figure 8. Results of the measurement of current I carried out during the test (a) in concrete C1, (b) in
concrete C2.

Figure 9 shows photos of samples taken close to the times when the current’s increase
occurred.

Figure 10 below shows photos taken at characteristic moments (P4, P6, P7) of the
surface of the sample made of C1 concrete, analyzed using the GOM Correlate Pro program
from Zeiss. The photos show the formation of vertical cracks.

Figure 11 presents camera shots recorded at characteristic moments (P8, P9, P10, P11,
P12, P13) of changes in the current flowing through the sample made of C2 concrete. A
particularly visible change in the current intensity occurred at the P12 time mark (after
approximately 500 h), which corresponds with the formation of a horizontal crack in the
sample, as shown in Figure 11e. It is worth noting that the cracks formed in the C1 concrete
samples were vertical.

Table 4 contains the estimated amounts of bar mass loss calculated using the Faraday
Equation (4) at characteristic moments (P1, P2, P3, P4, P5, P6, P7) of changes in the current
in the C1 concrete sample and at characteristic moments (P8, P9, P10, P11, P12, P13) of
changes in the current in the C2 concrete sample.

Table 4. Bar mass loss ∆m [g] based on Formula (6) and crack wcr [mm] after electrolysis time.

P1 (72 h) P2 (144 h) P3 (150 h) P4 (240 h) P5 (288 h) P6 (312 h) P7 (576 h)

1.19 (0.0) 2.27 (0.11) 2.38 (0.16) 3.93 (0.89) 4.71 (1.27) 5.12 (1.45) 10.32 (3.55)
P8 (50 h) P19 (94 h) P10 (152 h) P11 (328 h) P12 (500 h) P13 (576 h) -
3.83 (0.0) 8.14 (0.0) 14.27 (0.0) 24.28 (0.0) 44.82 (4.5) 72.95 (11.84) -
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Figure 9. Photos of the surface of the C1 concrete sample taken in the following hours from the
beginning of the test: (a) P1 after 72 h, (b) P3 after 96 h, (c) P4 after 96 h, (d) P5 after 96 h, (e) P6 after
96 h, (f) P7 after 96 h.
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Figure 10. Photos of the surface of the C1 concrete sample taken in the following hours from the begin-
ning of the test analyzed using the GOM Correlate Pro program from Zeiss: (a) principal deformation
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map—P4 after 240 h, (b) principal deformation map—P5 after 288 h, (c) principal deformation map—
P7 after 576 h, (d) crack width—P4 after 240 h, (e) crack width—P5 after 288 h, (f) crack width—P7
after 576 h.
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Figure 11. Camera shots recorded at characteristic moments of changes in the current flowing 
through the sample made of C2 concrete: (a) P8 after 50 h, (b) P9 after 94 h, (c) P10 after 152 h, (d) 
P11 after 328 h, (e) P12 after 500 h, (f) P13 after 576 h. 
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Figure 11. Camera shots recorded at characteristic moments of changes in the current flowing through
the sample made of C2 concrete: (a) P8 after 50 h, (b) P9 after 94 h, (c) P10 after 152 h, (d) P11 after
328 h, (e) P12 after 500 h, (f) P13 after 576 h.
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In the first method, characteristic points were selected based on photographs taken
at certain intervals, apart from point P3, which was selected based on the analysis of the
current intensity graph. Abrupt shift in this graph may indicate the point at which cracking
begins at the point of contact between the reinforcing bar and the concrete. However, as
can be seen in point P4, the crack is slightly visible on the surface of the concrete sample.
Thanks to the image analysis performed with the GOM Correlate Pro program from Zeiss,
this crack can be determined to be 0.16 mm.

In the second method, characteristic points were selected based on abrupt shifts
appearing on the current intensity diagram. Thanks to the continuous image recording, it
was possible to obtain an image of the sample at each point. Unfortunately, the quality of
these frames and the convex shape of the plane on which the crack occurred do not allow
the use of a graphics program to precisely determine the width of the initial crack.

The observations indicate that the location and type of concrete cracks depend not only
on the thickness of the concrete cover, but also on the type of cement, the concentration of
chloride ions in the concrete [57], as well as the change in the concrete’s microstructure that
results from the action of an electric field [58], similarly to the long extraction process [59].

It can also be assumed that the value of the time after which cracks may occur is
influenced not only by the strength of the concrete, but also by the type of cement used in
the tested concrete. However, to confirm this statement, tests of concretes with different
cements and the same test methods should be performed.

The tests show that the use of the CEM III cement may contribute to a significant delay
in the occurrence of cracking in concrete. Nevertheless, after its occurrence, the propagation
of the crack width is faster than in the concrete made with the CEM I cement. Moreover,
the tests indicate that the use of the CEM III cement in concrete may also have an impact
on the location of the crack in the concrete element.

Figure 12 shows the structure degradation pattern of concrete samples C1 (in P1, . . .,
P7) and C2 (in P8, . . ., P13) depicted as a mass loss over time, where tin is the initiation time
of reinforcement corrosion, t0 is the activation time of the mechanical impact of corrosion
products, and tcr is the cracking time. It should be noted that the mass loss estimated from
Formula (2) is very approximate. Research has shown that the weight loss calculated using
this formula is not confirmed by gravimetric tests. The discrepancies in these measurements
range from 2% [60] to 5%, 25%, 35% [21,27], and even to 54% [52]. These inaccuracies may
result from the fact that in this case, the electrolysis process takes place in concrete, not a
solution, and the value of the measured current may be influenced not only by the content
of chloride ions in the solution but also by the chemical composition of the concrete material.
In concrete containing CEM III cement, even in the initial period of the test, a value six
times higher of the measured current can be observed in points P3 and P10—Figure 11. In
the subsequent stages of the test, the value of this intensity increases even faster, reaching,
in the final stage, a value seven times higher in points P7 and P13—Figure 11. According to
Formula (2), it can be concluded that the mass loss of the reinforcing bar is greater in the
sample made of C2 concrete than in the sample made of C1 concrete. For the set of results
the graphs are based on, refer to the dataset [55].

In the case of the C1 concrete sample tested using method 1, precise determination of t0
is possible, since the corrosion processes were induced and detected using the polarization
method, before being exposed to an accelerated corrosion process. However, in the case
of the second method, it is not possible to isolate the time tin after which the corrosion
processes are initiated.

Figure 13 shows a diagram of the degradation of the structure over time, expressed as
∆m, the loss of reinforcing bar mass due to corrosion, and wcr, the width of the concrete
crack opening: (a) C1 concrete samples (in P1, . . ., P7); (a) C2 concrete samples (in P8,
. . ., P13). A clear relationship can be observed between the progressive loss of mass of
reinforcing bars over time and the crack opening width in both C1 and C2 concretes. For
the set of results the graphs are based on, refer to the dataset [55].



Materials 2024, 17, 1398 17 of 21Materials 2024, 17, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 12. Schematic representation depicting degradation of the structure over time of the C1 (at 
P1, …, P7) concrete sample and C2 (at P8, …, P13) concrete sample, where 𝑡௜௡ is the reinforcement 
corrosion initiation time, 𝑡଴ is the time of activation of mechanical impact by corrosion products, 
and 𝑡௖௥ is the cracking time. 

In the case of the C1 concrete sample tested using method 1, precise determination 
of 𝑡଴ is possible, since the corrosion processes were induced and detected using the po-
larization method, before being exposed to an accelerated corrosion process. However, 
in the case of the second method, it is not possible to isolate the time 𝑡௜௡ after which the 
corrosion processes are initiated. 

Figure 13 shows a diagram of the degradation of the structure over time, expressed 
as Δm, the loss of reinforcing bar mass due to corrosion, and 𝑤௖௥, the width of the con-
crete crack opening: (a) C1 concrete samples (in P1, …, P7); (a) C2 concrete samples (in 
P8, …, P13). A clear relationship can be observed between the progressive loss of mass of 
reinforcing bars over time and the crack opening width in both C1 and C2 concretes. For 
the set of results the graphs are based on, refer to the dataset [55]. 

(a) (b) 

Figure 13. Scheme of structure degradation over time, taken in the following hours from the be-
ginning of the test, expressed as Δm—the loss of reinforcing bar mass due to corrosion and wcr—
the width of the concrete crack opening: (a) C1 concrete samples (in P1, …, P7), (b) C2 concrete 
samples (in P8, …, P13). 

The 𝑡௖௥ time value determined in the tests (defined as the beginning of concrete 
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mula (4) was used, assuming the real corrosion rate of 𝐼௖௢௥௥(௥௘௔௟) = 10.47 µA/cm2 (the 
maximum value of the corrosion current estimated in point 4.1 by the LPR linear polari-
zation measurement method).  

Figure 12. Schematic representation depicting degradation of the structure over time of the C1 (at
P1, . . ., P7) concrete sample and C2 (at P8, . . ., P13) concrete sample, where tin is the reinforcement
corrosion initiation time, t0 is the time of activation of mechanical impact by corrosion products, and
tcr is the cracking time.
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Figure 13. Scheme of structure degradation over time, taken in the following hours from the beginning
of the test, expressed as ∆m—the loss of reinforcing bar mass due to corrosion and wcr—the width of
the concrete crack opening: (a) C1 concrete samples (in P1, . . ., P7), (b) C2 concrete samples (in P8,
. . ., P13).

The tcr time value determined in the tests (defined as the beginning of concrete cracking)
applies to the accelerated test. In order to estimate the real time tcr(real), Formula (4) was
used, assuming the real corrosion rate of Icorr(real) = 10.47 µA/cm2 (the maximum value of the
corrosion current estimated in point 4.1 by the LPR linear polarization measurement method).

It was assumed that under conditions of natural corrosion, cracking will occur after tcr(real) ,
the time when delta ∆m

(
tcr(real)

)
, the sum of the mass loss of the reinforcing bar due to

natural corrosion, reaches the same value as ∆m(tcr), the sum of the mass loss of the bar
obtained in tcr, the cracking time during the accelerated corrosion test:

∆m(tcr) = ∆m
(
tcr(real)

)
. (6)

In order to determine the value of the sum of the mass loss of the reinforcing bar,
Formula (4) was used, and after taking into account the above assumption (5), the following
quotient was obtained:

k·Icr·tcr = k·S·Icorr(real)tcr(real)
(7)
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The actual tcr(real) value was estimated from the following formula:

tcr(real) =
Icr·tcr

S·Icorr(real)
(8)

where Icr (A) is the total intensity of the external current flowing, determined during
tcr (year), and S (22.7 cm2) is the surface area of the reinforcing bar.

In order to estimate the real time tcr(real), Formula (4) was used, assuming the real
corrosion rate of Icorr(real) = 10.47 µA/cm2 (the maximum value of the corrosion current
estimated in point 4.1 by the LPR linear polarization measurement method). However,
Icrtcr = 360.66 A·s was determined by calculating the area under the curve determined
during the accelerated corrosion test (Figure 8a) after the time at which the sample cracked,
tcr = 144 h for C1 concrete. Similarly, for C2 concrete, (Icrtcr = 83711.40 A·s) was deter-
mined by calculating the area under the curve determined during the accelerated corrosion
test (Figure 8b) after the time at which the sample cracked, tcr = 328 h. For C1 concrete,
the estimated value was tcr(real) = 1.1 years, and for C2 concrete, tcr(real)= 11.2 years. It
should be noted, however, that in the case of C2 concrete, the time tcr consists of the sum of
time tin, the reinforcement corrosion initiation, and t0, the time of activation of mechanical
impact by corrosion products, which cannot be separated in the research method used.

5. Conclusions

Based on the conducted tests, the following conclusions can be drawn:

• Preliminary tests carried out using the accelerated electric field penetration of chloride
ions into concrete to initiate corrosion and electrolysis to accelerate corrosion (first
method in this work) allow for the estimation of the real time tcr(real) for the formation
of concrete cracks.

• Based on the tests of the accelerated corrosion process (the second method in this
study), it can be inferred that it is possible to estimate the real time tcr(real) for the
formation of concrete cracks. However, it should be remembered that this time consists
of the sum of tin, the time after which corrosion can be initiated, and t0, the time of
mechanical impact on the cover concrete.

By comparing the research methods used in these studies, it can be concluded that:

• The first method used, although more labor-intensive, allows for better control of
the concentration of chloride ions contained in concrete, which can have a significant
impact on the change in the mechanical properties of concrete.

• In the first method, more precise determination of the value of the corrosion current
occurring in the natural corrosion process, depending on the concentration of chloride
ions in the concrete and the type of materials used, is possible.

• Lack of continuous image measurement during the examination of the first method
and the fact that the obtained images do not necessarily coincide with the time read
from the current intensity graph based on the disturbances occurring in this graph
were disadvantageous for this method.

• However, in the second method, a continuous image was obtained thanks to the use
of a camera, but the quality of the obtained images is not sufficient for image analysis
with the Gom correlate program. It is necessary to improve the method of recording
image changes during the test by using better-quality cameras.
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Appendix A

Table A1. Comparison of results derived from analyzing polarization curves for selected specimens
(C1.1, C1.2, C1.3, C1.4) measured before (M0) and after 7 (M1), 14 (M2), 21 (M3), and 28 (M4) days of
chloride migration.

Measure
No.

Time
Days

Ecorr
mV

ba
mV

bc
mV

Rp
kΩ

RpA
kΩcm2

Icorr
µA/cm2

Vr
mm/Year

C1.1-M0 0 −9.3 667 21.3 10.08 229.22 0.04 0.00
C1.1-M1 7 −592 125 130 0.13 2.91 9.51 0.10
C1.1-M2 14 −667 75 154 0.14 3.21 6.83 0.08
C1.2-M0 0 −59.1 657 25.8 12.75 289.54 0.04 0.00
C1.2-M1 7 −578 113 141 0.13 2.89 9.43 0.10
C1.2-M2 14 −650 90 155 0.16 3.66 6.75 0.07
C1.3-M0 0 −9.4 502 56 11.38 258.78 0.08 0.00
C1.3-M1 7 −570 112 143 0.13 3.00 9.09 0.11
C1.3-M2 14 −668 86 167 0.14 3.23 7.63 0.09
C1.3-M3 21 −686 87 170 0.15 3.39 7.38 0.09
C1.3-M4 28 −624 81 174 0.15 3.46 6.94 0.08
C1.4-M0 0 −37.9 173 109 1.63 45.26 0.64 0.00
C1.4-M1 7 −583 667 21 7.58 172.28 0.05 0.12
C1.4-M2 14 −648 125 134 0.12 2.68 10.47 0.09
C1.4-M3 21 −675 99 149 0.14 3.23 8.00 0.09
C1.4-M4 28 −630 100 146 0.15 3.32 7.76 0.10
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46. Szweda, Z.; Mazurkiewicz, J.; Konečný, P.; Ponikiewski, T. Effect of Imperial Smelting Process Slag Addition in Self Compacting

Concrete Concrete on the Efficiency of Electrochemical Chloride Extraction. Materials 2023, 16, 5159. [CrossRef] [PubMed]
47. Perkowski, Z.; Szweda, Z. The “Skin Effect” Assessment of Chloride Ingress into Concrete Based on the Identification of Effective

and Apparent Diffusivity. Appl. Sci. 2022, 12, 1730. [CrossRef]
48. Szweda, Z. Evaluating the Impact of Concrete Design on the Effectiveness of the Electrochemical Chloride Extraction Process.

Materials 2023, 16, 666. [CrossRef]
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