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Abstract: Barium and iridium supported on Zeolite Socony Mobil-5 (ZSM-5) are efficient catalysts
for the selective catalytic reduction of nitric oxide by carbon monoxide (CO-SCR), with enhanced
cyclic stability. The introduction of Ba hindered the oxidation of metallic Ir active species and enabled
Ir to maintain an active metallic state, thereby preventing a decrease in catalytic activity in the
CO-SCR reaction. Moreover, the Ba modification increased the NO adsorption of the catalyst, further
improving the catalytic activity. Owing to the better anti-oxidation ability of Ir0 in IrBa0.2/ZSM-5(27)
than in Ir/ZSM-5(27), IrBa0.2/ZSM-5(27) showed better stability than Ir/ZSM-5(27). Considering that
all samples in the present study were tested to simulate actual flue gases (such as sintering flue gas
and coke oven flue gas), NH3 was introduced into the reaction system to serve as an extra reductant
for NOx. The NOx conversion to N2 (77.1%) was substantially improved using the NH3-CO-SCR
system. The proposed catalysts and reaction systems are promising alternatives for treating flue gas,
which contains considerable amounts of NOx and CO in oxygen-enriched environments.

Keywords: nitrogen oxides; selective catalytic reduction; carbon monoxide; oxygen-enriched; iridium;
cyclic stability

1. Introduction

In recent decades, anthropogenic atmospheric pollutants emitted during fossil fuel
combustion have become a global issue in the context of climate change and air pollution.
After 86% of the coal power in China reached the ultra-low emission policy targets by 2019,
the focus shifted to other industrial sources such as steel plants, biomass-fired generators,
and waste incinerators. Flue gases from these units typically contain considerable amounts
of nitric oxide (NO) and high concentrations of carbon monoxide (CO), which can be
considered a natural reductant for NO emissions [1–3].

The selective catalytic reduction of NO by CO (CO-SCR) is a promising method for
controlling NOx emissions from stationary sources [4,5]. Previous studies on NOx reduction
in vehicular emissions explored possible catalysts under O2-free or O2-deficient condi-
tions [6–10]. Certain studies have reported that catalysts are active under O2-rich conditions
but have been tested under low NO and high CO concentrations (CO:NO>100:1, only for
automotive applications) [11,12] or using He as a balanced gas in the activity evaluation
(inconsistent with actual applications) [13,14]. However, because CO is considerably more
reactive with O2 than with NOx, it is challenging to use the original CO to reduce NOx when
excess O2 exists in the flue gases [3,13,15–18]. It has been proven that Ir-based catalysts can
achieve relatively high NOx conversion in the presence of excess O2 [19–21].

Ir loaded onto SiO2 catalysts can be used for CO-SCR reactions in the presence of
O2, according to previous reports [20,22,23]. Molecular sieves are typical silicon-based
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materials with regular pore structures and have been widely used in many areas [24–29].
Therefore, we deduced that iridium loading onto molecular sieves (ZSM-5, SAPO-34,
SBA-15, and MCM-41) may also obtain high NOx removal efficiency. Because Ir0 sites
are the active sites for the CO-SCR reaction, better anti-oxidation of Ir-based catalysts in
the presence of O2 is vital for the catalytic performance of these catalysts. Haneda et al.
proved that Ba can inhibit the oxidization of Ir metal, which could be the active site for the
CO-SCR reaction [21,30]. We deduced that Ba may also improve the CO-SCR performance
of Ir-based molecular sieve catalysts.

In this study, an IrBa(0.2)/ZSM-5(27) catalyst was developed to obtain a bimetallic
catalyst configuration with enhanced activity for NOx reduction by CO. Ba incorporation
and H2 pretreatment at 500 ◦C improved the cyclic stability of the catalysts and N2 selectiv-
ity in the cyclic tests. The physicochemical properties of the Ba-Ir bimetallic catalyst were
compared with those of the Ir monometallic catalyst to rationalize the functions of the Ba
counterpart in the CO-SCR reaction.

2. Materials and Methods
2.1. Catalyst Preparation

All catalysts were prepared by impregnating zeolites with an aqueous solution of Ir
and Ba precursors. The precursor of Ir used in this work is hexachloroiridium acid hydrate,
while the precursor of Ba is barium nitrate. A total of 5 g of hexachloroiridium acid hydrate
was dissolved in 200 mL of deionized water to form a solution in which the concentration
of Ir was 0.008 g/mL. A total of 0.5 g barium nitrate was dissolved in 50 mL of deionized
water to form a transparent solution. Both of these chemical reagents were purchased
from Shanghai Aladdin Biochemical Technology Co., Ltd., Shanghai, China. H-ZSM-5 and
SAPO-34 were purchased from Tianjin Nankai University Catalyst Co., Ltd., Tianjin, China.
The Si/Al ratios of H-ZSM-5 and SAPO-34 were 27 and 0.5, respectively. Pure silica SBA-15
and MCM-41 molecular sieves were purchased from XFNANO Material Technology Co.,
Ltd., Nanjing, China.

In the preparation progress of Ir/ZSM-5 with a 0.5% Ir loading amount, 5 g of H-ZSM-5
was added to 50 mL of deionized water under stirring, and then 3.12 mL of hexachloroirid-
ium acid solution (0.008 g/mL) was added to the above-mentioned solution. After stirring
at room temperature for 6 h, the mixture was dried at 100 ◦C for 8 h. The sample, after
drying, was calcined in an air atmosphere at 500 ◦C for 4 h, and the obtained powder
was labeled as Ir/ZSM-5(27). The preparation method of Ir/SAPO-34, Ir/SBA-15, and
Ir/MCM-41 was similar to that of Ir/ZSM-5(27); only the carrier of catalysts needed to
change. Furthermore, Ir/ZSM-5 catalysts with other loading amounts were prepared using
similar methods; only the addition amount of hexachloroiridium acid solution changed.
The preparation method of Ba-modified Ir/ZSM-5(27) catalysts was the same as with
Ir/ZSM-5(27); only barium nitrate solution needed to be added at the same time as hex-
achloroiridium acid was added to the solution. The molar ratio of Ba:Ir was set at 0.1,
0.2, 0.4 and 1.0. The prepared catalysts were labeled as IrBa0.1/ZSM-5, IrBa0.2/ZSM-5,
IrBa0.4/ZSM-5, and IrBa1/ZSM-5, respectively.

2.2. CO-SCR Performance Evaluation

Selective catalytic reduction of NO with CO was carried out in a fixed-bed quartz
reactor by using catalysts of 40–60 mesh (Scheme 1). The catalyst was placed in the middle
position of the quartz reaction tube, and a thermocouple was placed above the catalyst
to measure the reaction temperature during the activity test. The typical composition
of the inlet gas was 600 ppm NO, 3000 ppm CO, 5 vol.% O2, and balanced with N2. A
total of 2.3 mL of catalysts was used during the activity test, and the total gas flow was
set at 1500 mL/min. The reaction temperature was tested from 180 ◦C to 500 ◦C; each
reaction temperature was maintained for 30 min to reach a steady state. A total of 1.25 g
of catalyst was used in each test, and the gas hourly space velocity (GHSV) corresponded
to 40,000 h−1. The outlet concentrations of NO and NO2 were monitored by a flue gas
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analyzer (Testo 350, Testo Inc., Lenzkirch, Germany). The catalytic activity was evaluated
in terms of NO conversion and NOx conversion, as follows:

NO conversion =
[inlet NO]− [outlet NO]

[inlet NO]
×100%

NOx conversion =
[inlet NOx]− [outlet NOx]

[inlet NOx]
×100%
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Scheme 1. The catalytic performance testing equipment.

2.3. Catalyst Characterization

Transmission electron microscope (TEM) images were acquired on a FEI Tecnai G2
F20 S-TWIN (Hillsboro, OR, USA) instrument. The energy-dispersive X-ray spectroscopy
elemental mapping (EDX-mapping) was acquired by an Oxford X-MAX 80T (Oxfordshire,
UK) instrument. All images were acquired from the unreduced catalysts.

The crystal structures of the as-made catalysts were measured by powder X-ray
diffraction (XRD) on an X-pert Powder (PANalytical B.V., Almelo, The Netherland). X-ray
photoelectron spectroscopy (XPS, Thermo ESCALAB 250, Waltham, MA, USA) was used to
investigate the surface properties of the samples with Al Kα radiation (hν = 1486.6 eV). The
shift of the binding energy due to relative surface charging was corrected using the C 1s
level at 284.8 eV as an internal standard. The specific surface areas were determined by the
Brunauer–Emmett–Teller (BET) method on a nitrogen adsorption apparatus (ASAP 2020,
Altanta, GA, USA). All the samples were degassed at 300 ◦C prior to measurements. The
data were collected in relative pressure (P/P0) ranging from 0.05 to 0.30.

Temperature-programmed reduction of H2 (H2-TPR) was performed on a TP-5079
(Xianquan, Tianjin, China) using 50 mg samples. Prior to TPR experiments, catalysts
were pretreated under a flow of 5 vol.% O2/He at 400 ◦C for 1 h and then cooled to
room temperature. Reduction was carried out by heating the sample in 6 vol.% H2/N2
at a heating rate of 10 ◦C/min. The consumption of H2 was detected by a TCD detector.
Temperature programmed desorption of NO (NO-TPD) was conducted on a similar TP-
5079 setup. Catalysts were saturated with NO/He (1000 ppm NO) after pretreatment in He
gas flow at 400 ◦C. Desorption was carried out by heating the sample in He gas flow from
70 ◦C to 800 ◦C (Hiden Analytical QGA, Warrington, UK).

3. Results and Discussion
3.1. The Influence of Catalyst Carrier and Ir Loading Amount on Catalytic Performance

The carrier plays a vital role in catalytic performance. Four types of zeolites were
selected as typical supports for loading the Ir catalysts: ZSM-5 (Si/Al = 27), SAPO-34
(Si/Al = 0.5), SBA-15 (Si), and MCM-41 (Si). The NO and NOx conversions over the
prepared catalysts are shown in Figure 1a,b. The catalysts used in this part were not
pretreated with H2. Among the selected zeolite types, Ir/ZSM-5(27) exhibited the best NO
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and NOx conversion (70.3% and 26.8%, respectively) at 322 ◦C. The catalytic activity of
Ir/SBA-15 was slightly lower than that of Ir/ZSM-5(27); 65.3% NO conversion and 24.8%
NOx conversion were achieved using this catalyst. Moreover, the NO and NOx conversions
of Ir/SAPO-34 and Ir/MCM-41 were lower than those of Ir/ZSM-5(27). A considerably
better catalytic activity was obtained for Ir/ZSM-5(27) at low temperatures; thus, ZSM-5
was selected as the catalyst carrier for Ir in subsequent experiments.
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conversion on Ir/ZSM-5(27) with different Ir loading amounts.

Figure 1c,d shows the catalytic activity of unreduced Ir/ZSM-5(27) with different
Ir loading amounts; the highest NO conversion was obtained when the Ir loading was
increased to 2%. However, only 65.8% NO and 27.0% NOx conversions were obtained using
0.2% Ir/ZSM-5(27). Furthermore, the catalytic activity of 0.5% Ir/ZSM-5(27) at low temper-
atures was better than those of 0.2% Ir/ZSM-5(27) and 1% Ir/ZSM-5(27). Considering the
high cost of Ir, the loading amount of Ir was set to 0.5% for subsequent investigations.

3.2. Optimization of Reduction Pretreatment

Ir-based catalysts become active in the CO-SCR reaction upon H2 pretreatment, which
can improve the surface enrichment and ordering of Ir atoms [12,13]. Therefore, the
effects of H2 pretreatment on the catalyst performance were studied using Ir/ZSM-5(27)
samples with and without pretreatment in flowing H2/N2 gas, and their NO and NOx
conversions are shown in Figure 2. The pretreatment with H2 at 500 ◦C improved the NO
conversion of Ir/ZSM-5(27) in a temperature range of 190–280 ◦C. More importantly, NOx
conversion by the catalyst improved substantially. The NOx conversion of the catalyst
without H2 pretreatment was calculated as 0.1% at 224 ◦C. After pretreatment with H2/N2
gases at 500 ◦C, the NOx conversion of the catalyst increased to 39.5% and 36.3% at 246 ◦C
and 328 ◦C, respectively. This change is attributed to the different Ir valence states in
the catalysts, which were further explored using various characterization techniques, as
described in the following section. Notably, the NOx conversion of the catalyst increases
with increasing pretreatment temperatures. Furthermore, the NOx conversion was lower
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than the NO conversion owing to the transformation of NO to NO2, particularly in the
temperature range from 270 ◦C to 400 ◦C.
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Previous studies [12,21,31,32] have shown that Ir0 species, rather than their oxidized
IrO2 form, are the active sites for NO reduction with CO. The highly dispersed Ir on
the ZSM-5 surface was easily reduced during the pretreatment process, resulting in a
considerable fraction of the catalytically active zero-valent Ir species being exposed to the
small Ir particles, thereby enhancing the catalytic activity of the catalyst.

3.3. Influence of Ba Addition

Previous reports have demonstrated that Ba could serve as a promoter to increase
NOx conversion in the CO-SCR reaction because Ba could inhibit the oxidation of Ir0

sites [21,30,33,34]. Therefore, the influence of the Ba addition on the catalytic activity of
Ir/ZSM-5(27) was investigated. Figure 3a shows the NO conversion of the Ba-modified
Ir/ZSM-5(27) catalyst, where the NO conversion increased slightly at low temperatures
(<300 ◦C) when the molar ratio of Ba to Ir was 0.1 and 0.2. However, the NO conversion
decreased dramatically when the molar ratio of Ba to Ir was <0.2. The NO conversion did
not change after the Ba modification. This result demonstrates that Ba modification mainly
influences the catalytic activity at low temperatures (<300 ◦C) while having a negligible
effect on the NO conversion of these catalysts at high temperatures (>300 ◦C). Figure 3b
shows that 47.1% NOx conversion was obtained for IrBa0.2/ZSM-5(27) at 247 ◦C, which
is obviously higher than that of Ir/ZSM-5(27) (only 39.0%). The above results show that
Ba addition can improve catalytic activity at low temperatures but has little effect at high
temperatures. It should also be noted that IrBa0.2/ZSM-5(27) showed a relatively higher
NO conversion in the presence of O2 with a low Ir loading amount (Table 1).
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Table 1. The NO conversion of different catalysts in the presence of O2.

Catalysts Reaction Conditions Ir Loading
Amount (%)

NO Conversion
(%) References

IrRu/Al2O3
50 ppm NO, 7000 ppm

CO, 5% O2
1.9% 88% [12]

BaIrRu/Al2O3
50 ppm NO, 7000 ppm

CO, 5% O2
1.9% 90% [34]

IrW-WO3/KIT-6 1000 ppm NO, 4000
ppm CO, 5% O2

1.0% <60% [5]

Ir/WO3

500 ppm NO, 3000 ppm
CO, 5% O2, 2 ppm SO2,

1% H2O
5.0% 25% [31]

Ir/Al2O3

500 ppm NO, 1000 ppm
CO, 300 ppm C3H6,
0.5% O2, 5% H2O

1.0% nearly 80% [35]

IrBa0.2/ZSM-5 600 ppm NO, 3000 ppm
CO, 5% O2

0.5% 68% This work

3.4. The Stability of Catalysts and the Influence of Other Components on CO-SCR
Catalytic Performance

Cyclic stability is vital for catalysts used in industrial applications. Therefore, the
cycling performance of Ir/ZSM-5(27) was evaluated (results shown in Figure 4a). After
three cyclic tests, the activity of the Ir/ZSM-5(27) sample significantly decreased in the
temperature range of 190–370 ◦C, and the highest NOx conversion decreased from 39.0%
(at 246 ◦C) to 21.4% (at 368 ◦C). The Ir/ZSM-5(27) catalyst exhibited poor cyclic stability,
which requires further improvement before industrial application. After three cyclic tests,
the deactivated Ir/ZSM-5(27) catalyst was then regenerated with H2, and the activity of the
regenerated catalyst was basically recovered to its original activity, with NO conversions of
38.9% at 244 ◦C and 35.2% at 325 ◦C (that at 285 ◦C slightly decreased). These results suggest
that the deactivation of the Ir catalysts was mainly caused by the loss of Ir0 (oxidized to
IrO2) during the reaction, thereby diminishing the de-NOx ability after three cyclic tests
and allowing easy recovery by H2 treatment.

As proposed, the addition of Ba hindered the oxidation of the active species, thus
preventing a decrease in catalytic activity. Therefore, Ba was used as a promoter to im-
prove the catalyst’s cycling performance. As shown in Figure 4b, NOx conversion at low
temperatures (<280 ◦C) decreased for IrBa0.2/ZSM-5(27) after the first test. However, the
NOx conversion of this catalyst at high temperatures (>280 ◦C) was increased after the
first test, and nearly 40.0% NOx conversion (320–330 ◦C) was achieved during the cyclic
performance test. The above results showed that the IrBa0.2/ZSM-5(27) catalyst could
maintain more than 40.0% NOx conversion at approximately 320 ◦C after five times cycle
use, indicating that Ba addition markedly improved the cyclic stability of the catalyst and
prevented a decrease in catalytic activity.

A long-term stability test of IrBa0.2/ZSM-5(27) was performed at 320 ◦C for 36 h
(Figure 4c). The NOx conversion was maintained above 38.0% throughout the test, demon-
strating that this catalyst possesses robust resistance to O2 during the CO-SCR reaction.
Long-term stability is vital for the practical use of catalysts. Furthermore, the effect of H2O
on the CO-SCR activity of IrBa0.2/ZSM-5(27) was investigated (Figure 4d). Obviously,
the NOx conversion at low temperatures increased after 5% H2O was introduced into
the inlet gas, which is consistent with a previous report [36,37] because H2O can react
with CO via a water–gas shift reaction to generate H2, which can be used to reduce the
high-valence Ir species. However, NOx conversion decreased at low temperatures and
increased at high temperatures after adding SO2. The inhibitory effect of SO2 on the cat-
alytic performance at low temperatures is due to the presence of SO2, which can inhibit the
conversion of CO, resulting in the ignition temperature of the CO-SCR reaction shifting to
a high temperature [38].
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Figure 4. Cyclic performance and stability. (a) NOx conversion of Ir/ZSM-5(27), (b) NOx conversion
of IrBa0.2/ZSM-5(27), (c) stability test of IrBa0.2/ZSM-5(27) at 320 ◦C, (d) the influence of H2O
and SO2 on CO-SCR catalytic performance of IrBa0.2/ZSM-5. Feed composition: 600 ppm NO,
3000 ppm CO, 5 vol.% O2, 5 vol.% H2O (when used), 50 ppm SO2 (when used) balanced with N2,
GHSV = 40,000 h−1.

3.5. NH3-CO-SCR Performance on the Ba-Modified Catalyst

Although IrBa0.2/ZSM-5(27) achieved 47.1% NOx conversion in the presence of O2
(Figure 3b), this was far from the requirement for practical applications. Thus, 300 ppm NH3
was introduced into the reaction system. It was found that 77.1% NOx conversion (240 ◦C)
was achieved on this catalyst (Figure 5b). This demonstrates that the addition of NH3 can
significantly improve NOx conversion via the NH3-SCR process. Furthermore, the NOx
conversion was close to the NO conversion at low temperatures (<280 ◦C) (Figure 5a,b),
which was due to the addition of NH3 inhibiting the oxidization of NO to NO2 in the
presence of excess O2. Notably, both NO and NOx conversions significantly improved after
Ba modification, proving that Ba modification is an effective measure for improving the
catalytic activity of Ir/ZSM-5(27).

3.6. Physical Properties of as-Made Catalysts

As shown in Figure 6a, a broad peak around 20–30◦ appeared in the XRD patterns
of Ir/SBA-15 and Ir/MCM-41, corresponding to the diffraction peak of amorphous silica.
Notably, no peaks corresponding to Ir species were observed in the XRD patterns of Ir/SBA-
15, Ir/MCM-41, and Ir/SAPO-34. Furthermore, the characteristic peaks of the MFI skeleton
structure belonging to ZSM-5 were observed in the Ir/ZSM-5(27) and IrBa0.2/ZSM-5(27)
spectra (Figure 6b), whereas the peaks of the Ir and Ba species were not observed in the
IrBa0.2/ZSM-5(27) spectra [39–41]. This suggests that the Ir and Ba species were highly
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dispersed on the carrier, which could be attributed to the low loading of Ir and Ba during
the preparation of this catalyst.
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Figure 6. (a) The X-ray diffraction (XRD) patterns of Ir/SAPO-34, Ir/MCM-41 and Ir/SBA-15. (b) The
X-ray diffraction (XRD) patterns of ZSM-5, Ir/ZSM-5(27) and IrBa0.2/ZSM-5(27).

Figure 7 shows the transmission electronic microscope (TEM) images of different
samples. Because the relative molecular mass of Ir is heavier than that of Al and Si, the
black dots in the TEM images correspond to the Ir species. As shown in Figure 7a,b, the
Ir species in Ir/ZSM-5(27) mainly existed as large particles, and the diameters of most
particles were close to 10 nm. However, the particle size of the Ir species in Ir/MCM-41
was only approximately 2 nm, which suggests the Ir species have better dispersion on
MCM-41 than on ZSM-5 (Figure 7c,d). Moreover, a high dispersion of Ir species was also
obtained in SAPO-34, and most of the Ir species existed in the form of small particles
(Figure 7e,f). Furthermore, some large particles (>20 nm) were observed for Ir/SAPO-34
(Figure 7e). The Ir/SBA-15 catalyst exhibited regular mesoporous channels with a pore
diameter of approximately 7 nm (Figure 7g). Some Ir nanoparticles were located in the
channels of SBA-15, which is because these channels of SBA-15 are large enough to permit
Ir species to enter the inner space of SBA-15. The particle size of the Ir species in Ir/SBA-15
was approximately 6 nm, as shown in Figure 7h. The particle size of the metal species
decreased when Ba was also present in the catalyst, which means that Ba modification
could decrease the agglomeration of Ir and result in better dispersion of the Ir species
on ZSM-5 (Figure 7i,j). The different particle sizes of the Ir species on different carriers
may result in different chemical properties of these catalysts, and Ba modification could
also influence the chemical properties of Ir/ZSM-5(27). Energy-dispersive X-ray (EDX)
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spectroscopic elemental mapping was used to investigate the elemental distribution of
IrBa0.2/ZSM-5(27) (Figure 7k). It is clear that both Ir and Ba were highly distributed on the
surface of ZSM-5(27).
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Ir/SBA-15 showed typical type IV isotherms with an H1 hysteresis loop, indicating
the presence of mesoporous structures in the catalyst (Figure 8a). Ir/SAPO-34 shows
typical I isotherms, demonstrating that this catalyst is a microporous material. Furthermore,
Ir/ZSM-5(27) and Ba-modified Ir/ZSM-5(27) showed typical I isotherms (Figure 8b), which
also suggests the existence of micropores in these catalysts.
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The specific surface areas of Ir/SAPO-34 and Ir/MCM-41 were larger than that of
Ir/ZSM-5(27), whereas the NO conversion of these two catalysts was worse than that of
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the Ir/ZSM-5(27) (Table 2). This result proved that the specific surface area of the catalyst
had little effect on the catalytic performance of Ir-based catalysts. Furthermore, the specific
surface area of ZSM-5 decreased after loading with Ir and Ba, possibly because some
of these species entered the internal pores of ZSM-5. Although the BET surface area of
IrBa0.2/ZSM-5(27) is smaller than that of Ir/ZSM-5, the catalytic activity of IrBa0.2/ZSM-
5(27) was higher than that of Ir/ZSM-5. This result further demonstrates that there is
no clear relationship between the specific surface area and the catalytic activity of these
catalysts. Based on the above results, it is reasonable to deduce that the chemical properties
(such as the NO adsorption ability and chemical valence of Ir) may play an important role
in the catalytic performance.

Table 2. The texture properties of as-made catalysts.

Sample
Specific Surface Area (m2/g) Pore Volume (cm3/g)

Smicro Stotal Vmicro Vtotal

Ir/SAPO-34 658.2 679.3 0.26 0.29
Ir/MCM-41 - 535.9 - 0.39
Ir/SBA-15 - 372.2 - 0.91

Ir/ZSM-5(27) 362.1 415.9 0.15 0.25
IrBa0.1/ZSM-5(27) 197.4 251.8 0.10 0.20
IrBa0.2/ZSM-5(27) 291.0 370.4 0.14 0.27
IrBa0.4/ZSM-5(27) 234.8 301.6 0.12 0.24
IrBa1.0/ZSM-5(27) 247.1 323.9 0.12 0.27

3.7. Adsorption and Redox Properties of as-Made Catalysts

Temperature-programmed desorption of NO (NO-TPD) tests were conducted on two
samples to investigate the NO adsorption and desorption performances of Ir/ZSM-5(27)
and IrBa0.2/ZSM-5(27). As shown in Figure 9a, the NO-TPD spectrum of Ir/ZSM-5(27) has
a clear desorption peak between 100 ◦C and 300 ◦C (peaking at 244 ◦C), which might be
due to weak adsorption species (nitrite and NO) because NO was the predominant species
detected using mass spectrometry [42,43]. The Ba-modified catalysts’ desorption peaks
became more pronounced, suggesting that Ba modification substantially increased the NO
adsorption/desorption on Ir/ZSM-5(27). NO can adsorb on two different active sites of the
Ir crystal. The NO adsorbed on the hollow sites was unstable and could further dissociate
into N and O at low temperatures (even at room temperature), whereas the NO adsorbed on
the atop sites was stable at low temperatures [44,45]. IrBa0.2/ZSM-5(27) and IrBa1.0/ZSM-
5(27) may provide more atop sites, leading to greater desorption on these two catalysts
than on IrBa0.4/ZSM-5(27). Moreover, the desorption peak area of IrBa0.2/ZSM-5(27) was
markedly larger than the other samples, which may further improve its catalytic activity.
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The H2 temperature-programmed reduction (H2-TPR) profiles of Ir/ZSM-5(27) and
IrBa0.2/ZSM-5(27) were tested from 100 ◦C to 550 ◦C with a ramping rate of 10 ◦C/min.
As shown in Figure 9b, the H2-TPR spectrum of Ir/ZSM-5(27) has a pronounced reduction
peak of 210 ◦C with a shoulder at 184 ◦C, which can be attributed to the reduction of
IrO2 to metallic Ir0 [15,25,26]. With Ba modification, the reduction peak at 210 ◦C shifted
backward slightly to 216 ◦C. The slight shift of this peak to higher temperatures suggests
an interaction between the Ir and Ba species, where a more stable Ir0 could be created by
introducing Ba.

Furthermore, the overall H2 consumption of the catalyst decreases after the introduc-
tion of Ba. Ba can act as an oxidation inhibitor and stabilize the catalytically active Ir species,
enhancing activity and durability [27,28]. Therefore, the decrease in H2 consumption (in
the H2-TPR results) suggested the presence of less IrO2 and more Ir0 in IrBa0.2/ZSM-5(27)
than in Ir/ZSM-5(27).

3.8. X-ray Photoelectron Spectroscopy (XPS) of as-Made Catalysts

The Ir 4f signals of the Ir loaded onto different carriers are shown in Figure 10a. The
binding energies (BEs) at 61.1 and 64.1 eV were attributed to Ir0, and those at 62.1 and
65.1 eV to electron-deficient iridium species (Irδ+) [46,47], indicating that Ir0 and oxidized
Irδ+ coexisted in samples. Peak fitting and area analysis revealed contributions of 12.8%
Ir0 and 87.2% Irδ+ for Ir/SAPO-34 and 12.1% Ir0 and 87.9% Irδ+ for Ir/MCM-41 (Table 3).
Notably, the peak intensity of Ir/SBA-15 was very weak. This result indicates that most of
the Ir species were located in the inner channels of SBA-15, as confirmed by the TEM image
of Ir/SBA-15 (Figure 7g).
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Table 3. Surface element states on different catalysts.

Samples Ir0/(Ir0 + Irδ+)

Ir/SAPO-34 12.8%
Ir/MCM-41 12.1%
Ir/SBA-15 -

Ir/ZSM-5(27) 15.8%
IrBa0.2/ZSM-5(27) 23.8%

The Ir 4f spectra of Ir/ZSM-5(27) and IrBa0.2/ZSM-5(27) were also recorded, and
the results are shown in Figure 10b. The proportion of Ir0 in Ir/ZSM-5(27) was 15.8%,
which was higher than that in Ir/SAPO-34 and Ir/MCM-41. Because Ir0 sites are the active
sites for the CO-SCR reaction, a higher proportion of Ir0 in Ir/ZSM-5(27) improves the
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NOx removal efficiency. Furthermore, the proportion of Ir0 increased to 23.8% after Ba
modification, indicating that Ba modification was beneficial for the formation of metallic
species (Ir0) in an oxidizing atmosphere. This result is consistent with the H2-TPR results,
which also indicated a higher Ir0 distribution on the surface of IrBa0.2/ZSM-5(27) than on
the other catalysts.

Considering that the Ir species in the metallic Ir0 form act as active sites in the CO-SCR
reaction, Ba enhances the oxidation resistance of Ir0, which enables Ir to maintain its active
metallic state, thereby significantly improving the catalytic activity and cyclic stability of
Ir-based catalysts in the CO-SCR reaction when O2 is present.

4. Conclusions

The catalytic activity and cyclic stability of the bimetallic Ba-Ir catalyst supported
on the ZSM-5 zeolite were studied for possible industrial applications in the selective
catalytic reduction of NO by CO in oxygen-enriched environments. The catalyst carrier can
influence the form of the Ir species and result in differences in the proportion of metallic Ir0

in these catalysts. The metallic Ir0 species were verified to be the active sites for CO-SCR,
and H2 pretreatment resulted in more Ir0 species serving as active sites for CO-SCR. The
activity of the Ir/ZSM-5 catalyst decreased by 17.6% in the three cyclic tests because of
the oxidation of Ir0, which was recovered by H2 regeneration. Ba acts as an oxidation
inhibitor and stabilizes the catalytically active Ir0 species, tailoring the Ir valence states on
the catalysts and resulting in enhanced activity and high durability in the CO-SCR reaction
in oxygen-enriched environments. NOx conversion was further improved to 77.1% by the
addition of NH3 (NH3-CO-SCR). Therefore, the proposed catalyst is a promising alternative
for stationary industrial applications in oxygen-enriched environments, such as flue gas
treatment systems for steel plants, biomass-fired generators, and waste incinerators.
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