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Abstract: The aim of this research was the modification of fish collagen films with various amounts of
dialdehyde starch (DAS). Film properties were examined before and after the cross-linking process by
DAS. Prepared biopolymer materials were characterized by Fourier Transform Infrared Spectroscopy
and Atomic Force Microscopy. Moreover, the mechanical, thermal and swelling properties of the films
were evaluated and the contact angle was measured. Research has shown that dialdehyde starch
applied as a cross-linking agent influences collagen film properties. Mechanical testing indicated
a decrease in Young’s Modulus and an increase in breaking force, elongation at break, and tensile
strength parameters. Results for contact angle were significantly higher for collagen films cross-
linked with DAS; thus, the hydrophilicity of samples decreased. Modified samples presented a lower
swelling degree in PBS than native collagen films. However, the highest values for the degree of
swelling among the modified specimens were obtained from the 1% DAS samples, which were 717%
and 702% for 1% and 2% collagen, respectively. Based on AFM images and roughness values, it
was noticed that DAS influenced collagen film surface morphology. The lowest value of Rq was
observed for 2%Coll_2%DAS and was approximately 10 nm. Analyzing thermograms for collagen
samples, it was observed that pure collagen samples were less thermally stable than cross-linked
ones. Dialdehyde starch is a promising cross-linking agent for collagen extracted from fish skin and
may increase its applicability.

Keywords: collagen; dialdehyde starch; cross-linking; biopolymer film

1. Introduction

Among numerous biopolymers, collagen offers many possibilities in biomedical and
cosmetic applications and plays an important role in designing wound-dressing materials
or scaffolds for bone regeneration. It is a valuable biopolymer in tissue engineering and
biomedical materials due to its biodegradability, biocompatibility, non-toxicity, and good
mechanical properties of matured collagen [1,2]. This insoluble fibrous protein consists
of three chains built up from amino acids such as glycine, proline, and hydroxyproline
and forms a helical structure [3,4]. Twenty-nine types of this protein can be distinguished.
Collagen, mainly type I, II, and III, is present in human organisms and can be found in skin
(type I and type III), bone tissue, tendons, or blood vessels [5–9]. For industrial purposes,
usually porcine or bovine collagen is used but a source of collagen rather free from disease
transmission can be extracted from marine organisms [4]. Collagen can be obtained from
fish waste material such as skin, fins, scales, or bones [10,11]. Marine collagen compared
to mammalian collagen is more bioavailable and is characterized by a higher absorption
capability; however, its lower temperature of denaturation poses a challenge in designing
new materials [12]. Presently, collagen is eagerly modified with selected synthetic and
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natural additives or blended with other biopolymers [13–18]. New cross-linking agents are
constantly being researched so that the modification of collagen properties makes it suitable
for various purposes. Collagen can be cross-linked physically by temperature or UV irradi-
ation, enzymatically or chemically. Great emphasis is placed on non-cytotoxic cross-linking
agents allowing the use of collagen materials for biomedical purposes. Many different
substances are widely used for the chemical cross-linking of collagen. Among them, glu-
taraldehyde, genipine, EDC-NHS (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide and
N-hydroxysuccinimide), and chitosan can be distinguished [19]. Also, tannic acid is suitable
for cross-linking processes [20]. Moreover, one of the cross-linking agents can be dialdehyde
starch. This compound is obtained by the oxidation of starch, for example, by periodate.
Oxidation significantly influences starch properties, especially solubility, swelling degree,
and thermal properties. As a result of this process, the formed dialdehyde starch contains
reactive aldehyde groups and due to its cross-linking ability, it is a valuable macromolecule
in biomedical applications [21]. Many research groups used this environmentally friendly
chemical, which is characterized by lower toxicity compared to aldehyde compounds and
compatibility with blood [22]. Valipour et al. indicated in their studies that dialdehyde
starch addition to collagen and chitosan hydrogels influenced swelling ratio and biodegrad-
ability. Prepared hydrogels based on collagen, chitosan, and dialdehyde starch presented
appropriate water vapor transmission for wound-healing materials [22]. Dialdehyde starch
was also used for cross-linking scaffolds made from collagen, chitosan, and silk fibroin [23]
or collagen, chitosan, and hyaluronic acid, resulting in a higher compressive modulus than
those obtained with tannic acid [24], improved mechanical properties, density, porosity and
biocompatibility [25], lower roughness, lower elasticity, and higher resistance to rupture of
samples [26]. Scaffolds consisting of gelatin and chitosan modified with dialdehyde starch
were characterized by increased mechanical strength, zeta potential, swelling properties,
and porosity [27]. Furthermore, Wang et al. studied the fixation effect of dialdehyde starch
on decellularized porcine aortas aiming to replace glutaraldehyde. Modification with
dialdehyde starch increases the tensile strength of samples and improves resistance to
enzymatic degradation and anti-calcification capability [28]. Dialdehyde starch was also
applied to modify biodegradable films and foils obtained from collagen hydrolysate [29–31].
Liu et al. investigated the effects of this biopolymer on the calcification of the collagen
matrix and the results of their studies indicated that dialdehyde starch can improve the
biological and physical properties of collagen [32]. Collagen cryogels were also cross-linked
with dialdehyde starch with improved thermal stability in comparison to pure collagen [33].

Based on review of the literature, our hypothesis is as follows: Can we modify fish skin
collagen by DAS? The aim of the study was to prepare biopolymer films made of collagen
extracted from fish skin and cross-linked by DAS with improved thermal stability and
mechanical and swelling properties compared to native collagen. The films were prepared
from two concentrations of collagen with various amounts of DAS. Film properties before
and after cross-linking were characterized by Fourier Transform Infrared Spectroscopy and
Atomic Force Microscopy. Moreover, the mechanical properties of the films were evaluated
and contact angle measurements were performed. Moreover, thermogravimetric analysis
and swelling analysis were performed.

2. Materials and Methods
2.1. Solution and Film Preparation

In this research, collagen from fish skin was used. After the extraction of collagen from
silver carp fish skin, the specimens were freeze-dried. Collagen was extracted from silver
carp fish skin by SanColl Sp. z o.o., Władysławowo, Poland. Freeze-dried collagen was
dissolved in 0.1 M acetic acid (Stanlab; Lublin, Poland) at room temperature to prepare
collagen solutions of two concentrations: 1% and 2% (w/w). The process lasted several
days, during which solutions were shaken and stirred on a magnetic stirrer (500 rpm). A
solution casting method was applied to obtain collagen films (10 × 10 cm polystyrene plate
was used). Dialdehyde starch (Biosynth, Bratislava, Slovakia) solutions were prepared in
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two concentrations, 3 mg/mL and 6 mg/mL, at room temperature. Subsequently, 1, 2,
and 5 mL of DAS was added to 30 g of 1 and 2% collagen solutions so that the addition of
the cross-linking agent based on the biopolymer content in the sample was 1, 2, and 5%,
respectively. Samples were marked as follows: 1%Coll, 1%Coll_1%DAS, 1%Coll_2%DAS,
1%Coll_5%DAS, 2%Coll, 2%Coll_1%DAS, 2%Coll_2%DAS, 2%Coll_5%DAS. After DAS
addition, solutions were stirred for 5 min (500 rpm) and left to dry at room temperature.
Films obtained from the 1% collagen solution were 0.02 mm thick, while those from the
2% collagen solution were 0.04 mm thick. Photos of prepared collagen films with DAS
addition are presented in Table 1.

Table 1. Photos of prepared collagen films (from 1 and 2% w/w solutions) with DAS addition (1, 2
and 5%, respectively).
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2.2. Mechanical Properties

A mechanical testing machine (Z.05, Zwick and Roell, Ulm, Germany) was applied
to determine Young’s Modulus (GPa), elongation at break (%), breaking force (N), and
tensile strength (MPa) parameters of collagen film samples with the speed starting position
equaling 50 mm/min, the speed of the initial force equaling 5 mm/min, and the initial force
0.1 equaling MPa. All mechanical measurements were performed under the same conditions
of temperature and humidity. Data were collected with the TestXpert II 2017 program.
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2.3. FTIR Spectroscopy

A Nicolet iS10 spectrometer equipped with a diamond ATR accessory (Thermo Fisher
Scientific, Waltham, MA, USA) was used to register infrared spectra of prepared films
(resolution: 4 cm−1, wavenumber range: 400–4000 cm−1, 64 scans).

2.4. Swelling and Degradation Test

The swelling degree was calculated for obtained collagen films. For each collagen film,
five square-shaped samples were prepared, weighing about 0.0050 g, and then placed in
50 mL phosphate-buffered saline (PBS) at 37 ◦C. The phosphate-buffered solution was pre-
pared from PBS tablets (make up to 500 mL with distilled water). PBS tablets were bought
from Life Technologies Limited (UK). Samples, gently dried on paper, were weighted after
1 h, 2 h, 4 h, 8 h, 24 h, 48 h, 72 h, 1 week, and 2 weeks. The following equation was used to
calculate the swelling degree:

swelling =
(mt − m0)

m0
× 100% [%]

mt—weight of the material after immersion in PBS [g].
m0—initial weight of the material [g].

2.5. Contact Angle

Contact angle measurements were performed using a goniometer with a drop shape
analyzer system (DSA 10, Krüss, Germany). About 10 measurements for each film were
performed for two liquids, diiodomethane (D) and glycerine (G), at room temperature.
Surface free energy was calculated by the Owen–Wendt method.

2.6. Atomic Force Microscope

Surface morphology and roughness of collagen films were characterized with images
obtained from atomic force microscopy (AFM) by a MultiMode Scanning Probe Microscope
Nanoscope IIIa (Digital Instruments Veeco Metrology Group, Santa Barbara, CA, USA)
with tapping mode at room temperature. Nanoscope software (v6.11, Bruker Optik, Et-
tlingen, Germany) was applied to calculate the roughness parameters for the scanned area
5 µm × 5 µm.

2.7. Thermogravimetric Analysis

Thermogravimetric analyses were performed with a Jupiter STA 449 F5 thermal
analyzer (Netzsch, Selb, Germany) combined with a FT-IR Vertex 70V spectrometer (Bruker
Optik, Ettlingen, Germany) in the temperature range from 20 to 600 ◦C at a heating rate of
20 ◦C/min in a nitrogen atmosphere.

3. Results
3.1. FTIR Spectroscopy

The chemical structure of prepared collagen films was investigated by FTIR spec-
troscopy. Spectra of native collagen films and collagen films with DAS addition are
presented in Figures 1 and 2, respectively. The following characteristic bands for col-
lagen were found on the spectra: Amide A bands at about 3300 cm−1, Amide B bands
at about 3080 cm−1, asymmetrical stretch of –CH2 bands at about 2930 cm−1, Amide I at
about 1630 cm−1, Amide II at about 1540 cm−1, bend of –CH2 bands at about 1450 cm−1,
symmetrical stretch of COO– at 1379–1397 cm−1, bands corresponding to in-plane OH
(phenol) bending at 1337–1338 cm−1, Amide III band at 1235–1237 cm−1, and stretch of
C–O and asymmetrical and symmetrical stretch of C–O–C bands at 1080 and 1030 cm−1,
respectively [34–37]. Wavenumbers for the mentioned IR characteristic bands for collagen
samples are presented in Table 2. For non-cross-linked and DAS-cross-linked collagen sam-
ples, wavenumbers for characteristic bands remained almost at the same positions; thus,
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it might indicate that the collagen secondary structure was not influenced; however, changes
can be observed in characteristic band intensities [38]. Based on the assessment of the
Amide I band, which allows for protein secondary structure analysis [39–41], changes in its
intensity for cross-linked samples might reflect created interactions between a cross-linking
agent and the collagen matrix [38]. Moreover, it can be also observed that all 1% and 2%
collagen films with cross-linking agents showed alternations of the band corresponding to a
symmetrical stretch of COO– to lower wavenumbers, which also might be associated with
carboxyl groups’ involvement in new interactions. Furthermore, only 5% DAS addition to
1% collagen films caused a small shift of the Amide II band (which provides information
regarding the conformation of proteins) to a higher wavenumber [41]. Moreover, it can be
noticed that the increased intensity of the band at 1030 cm−1 might be correlated with DAS
compound addition (the highest intensity was for 5% DAS addition), which is a charac-
teristic band for dialdehyde starch corresponding to C–O stretching vibrations [41], while
for 2% collagen samples with 5% DAS addition, bands at 1030 cm−1 presented slightly
different shapes and were wider.
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Figure 2. FTIR spectra for collagen films obtained from 2% solution with DAS addition (experiment
conditions: resolution = 4 cm−1; wavenumber range = 400–4000 cm−1; 64 scans).

Table 2. Wavenumbers of characteristic bands for collagen films.

Characteristic
Bands [cm−1] Amide A Amide B

CH2
Asymmet-
ric Stretch

Amide I Amide II CH2
Bend

COO−

Symmet-
ric Stretch

in-Plane
OH

(Phenol)
Bending

Amide III

C–O
Stretch/
C–O–C

Asymmet-
ric Stretch

C–O
Stretch/
C–O–C

Symmet-
ric Stretch

1%Coll 3297 3077 2931 1632 1541 1449 1397 1338 1235 1080 1030
1%Coll_1%DAS 3295 3080 2933 1629 1541 1451 1382 1337 1236 1080 1031
1%Coll_2%DAS 3296 3078 2934 1629 1544 1451 1385 1337 1237 1080 1031
1%Coll_5%DAS 3296 3081 2932 1629 1548 1452 1386 1337 1237 1080 1031

2%Coll 3293 3076 2936 1629 1544 1448 1397 1337 1235 1080 1030
2%Coll_1%DAS 3295 3075 2933 1629 1544 1451 1386 1338 1236 1081 1031
2%Coll_2%DAS 3291 3075 2935 1629 1544 1451 1380 1338 1236 1080 1031
2%Coll_5%DAS 3295 3080 2934 1629 1544 1452 1379 1338 1236 1081 1031

3.2. Mechanical Analysis

DAS addition to collagen films influenced the mechanical parameters of collagen films.
Results for the Young’s Modulus, tensile strength, breaking force, and elongation at break
parameters are presented in Figures 3–6. Mechanical testing indicated that DAS incorpo-
ration into collagen films caused a decrease in the Young’s Modulus parameter and the
lower values were observed for all 2% collagen film samples with a cross-linking agent.
Moreover, increased tensile strength values were observed for samples 1%Coll_1%DAS and
2%Coll_2%DAS. Higher values of breaking force parameters were obtained for DAS-modified
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films; furthermore, 2% collagen samples indicate higher values than 1% with the highest
value obtained for the 2%Coll_2%DAS sample. The addition of a cross-linking agent re-
sulted in higher values of the elongation at break parameter; again, the highest values were
observed for 1%Coll_1%DAS and 2%Coll_2%DAS, which indicate that these samples were
the most flexible.
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Figure 6. Elongation at break for collagen films with DAS addition (experiment conditions: the speed
starting position equaled 50 mm/min, the speed of the initial force 5 mm/min, and the initial force
0.1 MPa).

3.3. Contact Angle and Surface Energy

The results for contact angle analysis are presented in Table 3. Images of drops during
contact angle measurements for collagen films with DAS addition are presented in Table 4.
The cross-linking agent had an effect on the contact angle of collagen films. The contact
angle was significantly higher for modified films than unmodified ones. DAS addition to
collagen films caused a decrease in the hydrophilicity and surface free energy. In particular,
the calculated polar surface energy might suggest a more hydrophobic character of obtained
samples and their lower wettability.

Table 3. Contact angle and surface energy results for collagen films with DAS addition.

Sample Θ Glycerine
[◦]

Θ Diodomethane
[◦]

IFT (s)
[mJ/m2]

IFT (s, D)
[mJ/m2]

IFT (s, P)
[mJ/m2]

1%Coll 58.7 36.8 44.01 33.33 10.68
1%Coll_1%DAS 90.4 39.9 40.38 40.29 0.09
1%Coll_2%DAS 94.4 40.8 40.95 40.94 0.01
1%Coll_5%DAS 86.4 45.3 36.5 35.69 0.81

2%Coll 61.3 38.5 42.62 33.04 9.58
2%Coll_1%DAS 91.1 48.5 35.21 34.91 0.30
2%Coll_2%DAS 102.3 46.4 40.03 39.58 0.44
2%Coll_5%DAS 88.6 45.8 36.48 35.99 0.49

Table 4. Images of drop (G—glycerine, D—diodomethane) during contact angle measurements for
collagen films with DAS addition.

1%Coll 1%Coll_1%DAS 1%Coll_2%DAS 1%Coll_5%DAS

G
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3.4. Swelling and Degradation Analysis

Results of swelling analysis for both 1% and 2% collagen films modified with DAS
are presented in Figures 7 and 8. Both pure collagen films fell apart after four hours of
immersion in PBS solution. The addition of DAS had an impact on the swelling degree and
stability of obtained materials, as one can observe that DAS incorporated into collagen films
reduced swelling degree for all samples in comparison to native collagen film, meaning
that samples with DAS immersed in PBS solution were more stable for a longer time.
Analysis showed that the higher the DAS content in collagen films, the lower the degree
of swelling and the slower the film degradation. The lowest swelling degree and the
slowest degradation were observed for both samples with the highest addition of DAS, i.e.,
5%. For 2% collagen with 5% DAS addition, after three days, degradation of the sample
was observed, while for 1% collagen with 5% DAS addition, the same was observed after
fourteen days.
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3.5. Atomic Force Microscopy (AFM)

Surface morphology of non-cross-linked and DAS-cross-linked collagen samples was
investigated with Atomic Force Microscopy. Roughness values are presented in Table 5.
AFM images of collagen films with additives are presented in Table 6. There were slight
differences in roughness parameters between collagen films. However, the lowest values
of the Rq parameter were noticed for 2% collagen films with 2% and 5% DAS addition
and were approximately 10 nm, while the highest were observed for 1% collagen films
and 1% collagen samples with 1% DAS addition (16.79 and 17.92, respectively); thus, the
latter were characterized by the highest roughness. The 1% collagen films presented higher
roughness than 2% collagen films; it can be observed that cross-linking agent addition
modified collagen film surface morphology: 1% addition of DAS in both cases caused an
increase in the Rq parameter, while 2% and 5% DAS addition caused lower roughness
of materials.

Table 5. Rq and Ra values for collagen films with DAS addition (scanned area 5 µm × 5 µm).

Rq [nm] Ra [nm]

1%Coll 16.79 ± 0.50 13.57 ± 0.75
1%Coll_1%DAS 17.92 ± 3.61 14.46 ± 2.93
1%Coll_2%DAS 11.98 ± 2.84 9.65 ± 2.15
1%Coll_5%DAS 13.70 ± 2.81 11.09 ± 2.06

2%Coll 13.45 ± 3.25 10.92 ± 2.55
2%Coll_1%DAS 15.80 ± 0.18 12.51 ± 0.04
2%Coll_2%DAS 10.31 ± 2.91 8.25 ± 2.29
2%Coll_5%DAS 10.65 ± 3.04 8.60 ± 2.53

Table 6. AFM images of the surface of collagen film with DAS (scanned area: 5 µm × 5 µm).
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material degradation. There were no significant differences in thermograms for all obtained
samples; however, it can be noticed that the pure collagen sample was less thermally stable
than the cross-linked collagen samples.
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4. Discussion

Research has shown that dialdehyde starch applied as a cross-linking agent influences
collagen film properties. Prepared films were smooth and homogenous.

4.1. FTIR Spectroscopy

Registered FTIR spectra presented characteristic bands for collagen. There were no
significant changes in wavenumbers of characteristic bands of collagen samples after
cross-linking, which might indicate that the collagen secondary structure was not affected;
however, changes could be observed in characteristic band intensities. Alterations of a
band corresponding to a symmetrical stretch of COO− were observed. This might be
related to interactions between the cross-linking agent and collagen. DAS’s mechanism of
cross-linking is related to the reaction of the aldehyde groups of DAS with amine groups
on the collagen fibril surface (Schiff base formation) [32]. Liu et al. noticed that DAS
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concentrations from 0 to 0.0111 mg mL−1 significantly increased the cross-linking degree,
which corresponds to a DAS/collagen weight ratio of 1:120. This DAS concentration
was a limit value, above which dialdehyde starch concentration did not affect the cross-
linking level [32].

4.2. Mechanical Testing

The cross-linking process influenced the mechanical parameters of collagen films.
After mechanical testing, it was noticed that DAS incorporation into collagen films caused
a decrease in Young’s Modulus and an increase in breaking force and elongation at break
parameters, which might be associated with higher flexibility of samples. Tensile strength
was the highest for the 1% collagen film with 1% cross-linking agent addition and for the
2% collagen sample with 2% DAS addition. Węgrzynowska-Drzymalska et al. examined
the influence of dialdehyde starch nanocrystals on chitosan, gelatin, and a mixture of these
two natural polymers’ mechanical properties. The tensile strength values were higher for
all samples modified with DAS, which partially corresponds to our research [42]. Tang et al.
found that after DAS addition to chitosan, the tensile strength increased with the increase
in the DAS content, and a similar tendency has been observed for elongation at break [43].
Spence et al. showed that materials made of zein and dialdehyde starch presented differ-
ent mechanical properties depending on the oxidation degree. It was observed that the
increased oxidation degree of starch contributed to increase the tensile strength, Young’s
modulus, and percentage elongation of obtained materials [44]. Research by Bajer et al.
indicated that composite materials made of native starch and dialdehyde starch presented
lower stress at break and elastic moduli and higher elongation at break in comparison to
materials made of starch, indicating greater flexibility of obtained films with DAS addition
caused by created interaction between dialdehyde starch, starch, and glycerol [45].

4.3. Contact Angle and Surface Energy

The results for contact angle were significantly higher for collagen films cross-linked
with DAS; thus, samples were characterized by lower hydrophilicity or a more hydrophobic
character and lower wettability. Selected physicochemical properties of gelatin/DAS films
were evaluated by Nguyet et al. They also indicated that the higher the aldehyde content
in films modified with DAS, the lower the hydrophilicity of the samples [46]. Bajer et al.
conducted contact angle measurements of native starch and dialdehyde starch blends,
which resulted in confirmation of the hydrophobic influence of dialdehyde starch on
studied materials [45].

4.4. Swelling and Degradation Analysis

Modified samples presented a lower swelling degree in PBS solution than native
collagen films, which degraded after four hours of immersion in PBS solution. The higher
the DAS concentration in collagen films, the lower the swelling degree and the slower the
film degradation. The lowest one was observed for 1 and 2% collagen samples with 5%
DAS addition, for which degradation of the samples was observed after 14 and 3 days,
respectively. Tang et al. examined the swelling properties of chitosan films modified with
DAS. Studies indicated that the swelling degree of cross-linked samples rapidly increased
with the increase in additive content. An addition of DAS equaling 5% was a significant
value; after achieving this content, the degree of swelling was decreased. The higher the
DAS content in the material, the greater the cross-linking degree of chitosan, which makes
it more difficult for water to permeate the film [43]. Moreover, Valipour et al. indicated
that dialdehyde starch content had an impact on hydrogels made of collagen and chitosan;
thus, the lower content of cross-linking agent applied in this study contributed to the
highest swelling ratio and biodegradability [22]. Carrera et al.’s studies on hydrogels based
on polyvinyl alcohol with the addition of dialdehyde starch resulted in the evaluation
of the swelling process of the proposed material. Various levels of DAS oxidation give
different effects. Hydrogels with low- and medium-oxidation DAS exhibited higher water
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absorption capacity but lower stability in time, which remains contrary to hydrogels
containing high-oxidation DAS [47]. Studies have shown that the oxidation degree of starch
in materials made of zein and dialdehyde starch also influences water absorption; thus,
increased oxidation degree causes a decrease in water absorption of materials. Studies
indicated that samples made of zein and polymeric dialdehyde starch (90% oxidized starch)
after immersion in deionized water did not indicate swelling, which is an important feature
for materials applied in environments characterized by high humidity [44]. Mechanical
parameters and swelling degree are very important in terms of creating wound dressings,
successfully accelerating the healing of skin damage, ensuring adequate strength of the
material, and effectively managing wound exudate.

4.5. Atomic Force Microscopy (AFM)

Based on AFM images and roughness values, it was noticed that DAS modified
collagen film surface morphology. It was found that a 1% addition of DAS in both collagen
film concentrations caused an increase in roughness, while 2% and 5% DAS addition caused
a decrease. The tendency of roughness values of films with DAS observed in this study
is different from that observed by Oluwasina et al. [48]. Various results may be caused
by the type of modifying material; different materials have various levels of compatibility
with dialdehyde starch. Low values of roughness may indicate good cross-linking level
and miscibility [48].

4.6. Thermogravimetric Analysis

Analyzing thermograms for collagen samples, there were no significant differences;
however, it can be noticed that pure collagen samples were less thermally stable than
cross-linked ones. Some reports confirm dialdehyde starch’s ability to increase the thermal
resistance of materials. Oluwasina et al. obtained bioplastic films consisting of starch, silica,
and dialdehyde starch. Materials containing DAS showed higher temperatures of degrada-
tion compared to films without this additive [48]. Moreover, improved thermal stability
in comparison to starch and dialdehyde starch indicated dialdehyde starch nanoparticles
according to research conducted by Yu et al. [49]. Furthermore, as Zhang et al. showed in
their studies, dialdehyde starch can be modified with methanol, ethanol, or glycol, resulting
in higher thermal stability, which is important in terms of mechanical properties [50].

According to the scientific literature, our studies fit into current research and the
expectations to create new biopolymer-based materials for skin regeneration. Our research
is in line with the principles of sustainability by using biodegradable and environmentally
friendly materials. The collagen used in this study was obtained from fish skins, which are
often a waste product of fish processing [7]. The method presented for obtaining biopolymer
films is relatively simple and does not require large quantities of reagents. The results of our
experiments are innovative and constitute the next step in understanding and determining
the physicochemical properties of collagen and dialdehyde starch blends. The conducted
research expands the state of knowledge about these polymers, which are important from
a biomedical and cosmetological point of view and constitute a contribution to further
research, which still in the context of collagen and dialdehyde starch remains scarce.

5. Conclusions

Dialdehyde starch is a promising cross-linking agent for collagen extracted from fish
skin. It improves collagen’s mechanical properties and its thermal stability. The swelling
properties of collagen films can be modified by the amount of added dialdehyde starch.
Based on the research conducted, certain conclusions can be drawn. Research has shown
that dialdehyde starch incorporation into collagen films influences their properties. FTIR
spectra indicated that after cross-linking, there were no significant changes in wavenumbers
of characteristic bands of collagen; however, changes could be observed in characteristic
band intensities. Based on mechanical testing results, DAS caused a decrease in Young’s
Modulus and an increase in breaking force and elongation at break parameters, which
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might be associated with the higher flexibility of samples. Obtained results for contact angle
indicated that samples with DAS addition were characterized by lower hydrophilicity and
wettability than pure collagen films. AFM analysis suggested that DAS modified collagen
film surface morphology; it was found that a 1% addition of DAS in both collagen film
concentrations caused an increase in roughness, while 2% and 5% DAS addition caused a
decrease. It was also observed that native collagen samples were less thermally stable than
cross-linked ones. Moreover, it was noticed that the higher the DAS concentration in colla-
gen films, the lower the swelling degree and the slower the film degradation. Both collagen
and dialdehyde starch, due to their safety and non-toxicity, are desirable compounds in the
design of wound dressings based on natural polymers and other biomedical and cosmetic
applications. However, further studies such as antimicrobial activity measurements or
cytotoxicity assessments are essential to confirm their beneficial impact on the skin and
usefulness in wound dressings.
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