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Abstract: Manganese slag (MS) containing a certain amount of active hydration substances may be
used as a kind of cementitious material. In the present study, we measured the mass, the relative
dynamic modulus of elasticity (RDME), and the flexural and compressive strengths of MS high-
performance concrete (MS-HPC) with added basalt fibers exposed to NaCl freeze–thaw cycles (N-FCs),
NaCl dry–wet alternations (N-DAs), and Na2SO4 dry–wet alternations (NS-DAs). Scanning electron
microscope energy-dispersive spectrometer (SEM-EDS) spectra, thermogravimetric analysis (TG)
curves, and X-ray diffraction spectroscopy (XRD) curves were obtained. The mass ratio of MS ranged
from 0% to 40%. The volume ratio of basalt fibers varied from 0% to 2%. We found that, as a result of
salt action, the mass loss rate (MLR) exhibited linear functions which were inversely correlated with
the mass ratio of MS and the volume ratio of basalt fibers. After salt action, MLR increased by rates
of 0~56.3%, but this increase was attenuated by the addition of MS and basalt fibers. Corresponding
increases in RDME exhibited a linear function which was positively correlated with MS mass ratios
in a range of 0~55.1%. The addition of MS and basalt fibers also led to decreased attenuation of
mechanical strength, while the addition of MS led to increased levels of flocculent hydration products
and the elements Mn, Mg, and Fe. CaClOH and CaSO4 crystals were observed in XRD curves after
N-DA and NS-DA actions, respectively. Finally, the addition of MS resulted in increased variation in
TG values. However, the opposite result was obtained when dry–wet actions were exerted.

Keywords: manganese slag; basalt fibers; mechanical strengths; salt action; X-ray diffraction
spectroscopy; scanning electron microscope

1. Introduction

Manganese slag (MS) is a kind of industrial waste produced during metal smelting
processes [1,2]. It is estimated that about 3.5 tons of manganese slag are formed during
the production of a single ton of mining manganese [3,4]. Large quantities of MS may
be discarded or piled up on roads, farmland, or open spaces and thus occupy extensive
areas of land. MS also flows into rivers and lakes with the washing of rainwater, causing
serious pollution [5,6]. If a more effective utilization of MS could be achieved, potentially
high social and economic benefits might result [7]. Therefore, the issue of how best to use
manganese slag is an urgent one that needs to be addressed.

Cement is still one of the most widely used building materials today. However,
cement production results in large amounts of CO2 emissions, and a lot of energy is
consumed during its production process. Each year, 4.312 billion tons of cement are
produced, resulting in 2.13 billion tons of CO2 emissions [8]. To save energy and reduce
CO2 emissions, some mineral additions have been applied as cement replacements [9].
However, the cost of producing such mineral additions is high. For example, silica fume
and blast-furnace slag powder cost USD 145 and USD 85, respectively [10]. Because of
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this, some solid wastes such as waste fly ash, stove ash, and steel slag have also been
used as substitutes for cement. Manganese slag with certain amounts of active substances
may also be used for the manufacturing of cement matrix [11]. MS contains toxic heavy
metal substances, but these may be leached if the cement materials possess high numbers
of pores.

High-performance concrete (HPC) is a type of concrete characterized by high strength,
durability, workability, and volume stability. Consequently, HPC may serve as an excellent
material for the solidification of MS [12,13]. However, large amounts of cementitious
materials are typically required for the preparation of HPC, and such materials are ex-
pensive. Therefore, other cementitious materials should be considered for incorporation
into HPC. In light of this, some research on solid-waste cementitious material for HPC is
of particular interest. In recent studies, fly ash, steel slag, and furnace ash have all been
shown to improve the mechanical performance and the durability of HPC [14,15]. In one
study, the addition of fly ash was found to increase flexural and compressive strengths by
0~26.1% and 0~33.7%, respectively. In similar works, additions of steel slag and furnace
ash were found to increase flexural strength by 0~23.1% and 0~31.3%, respectively [16,17],
and compressive strength by 0~18.6% and 0~12.3%, respectively [18,19]. Researchers have
also shown that fly ash, steel slag, and furnace ash can all decrease the effects of chloride
ions on RDME [20–22].

HPC is frequently affected by salt erosion when it is applied in coastal environ-
ments [23]. Therefore, it is important to identify any changes in the mechanical properties
of HPC which result from exposure to salt environments [24]. However, to the best of our
knowledge, there has been no research on the performance of HPC with manganese slag
under the action of salt.

In the present study, we sought to investigate the effects of adding MS (with mass
ratios of 0~40%) and reinforced fibers (steel and basalt fibers, with volume ratios ranging
from 0% to 2%) on the mechanical strengths (flexural and compressive strengths) and the
microproperties of HPC under conditions of salt erosion. Scanning electron microscope
energy-dispersive spectrometer (SEM-EDS) spectra and X-ray diffraction (XRD) curves
were obtained to analyze the composition and phases of elements. The findings reported
here may contribute to the development of new types of cementitious materials for HPC
and new solidification methods for manganese slag. Our results may also serve as a
reference for the application of MS-HPC in coastal salt environments in the future.

2. Materials and Methods

Figure 1 shows a flowchart of the work carried out in the present study. It shows the
preparation of materials, measurement of various performance indicators, and the testing
of specimens after salt erosion. In the following text, a more systematic description and
analysis of the work is presented.
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2.1. Raw Materials

The Ordinary Portland Cement (OPC) used in this study was sourced from Jiangsu
Changlong Cement Manufacturing Co., Ltd., Xuzhou, China. It had a density of 3.01 g/cm3,
an initial setting time of 117 min, and a final setting time of 226 min. The strength class of
the OPC was 45 MPa. We also used a type of mineral admixture known as ultra-fine silica
fume (SF), provided by Nanjing Hongqian Environmental Protection Engineering Co., Ltd.,
Nanjing, China. This silica fume had a density of 2.31 g/cm3, a specific surface area of
14.8 m2/g, and a SiO2 content of higher than 97.4%. The additive material used in this study
included manganese slag (MS) obtained from Beijing Baolaier Technology Co., Ltd., Beijing,
China. MS was a byproduct produced by electrolytic manganese ore. The blast-furnace slag
powder (BFP) was provided by Lingshou County Qiangdong Mineral Products Processing
Factory, Shijiazhuan, China. The BFP shows the density and the specific surface area of
2.91 g/cm3 and 436.2 m2/g, respectively. Quartz sand (QS), sourced from the Lingshou
County Quanfeng Mineral Products Processing Factory in Lingshou, China, was used as the
aggregate. The particle size ranges for the quartz sand were 1 mm~0.5 mm, 0.5 mm~0.1 mm,
and 0.1 mm~0.01 mm. To adjust the fluidity of the fresh high-performance concrete (HPC),
we used a TD-JSS1 polycarboxylic acid high-range water-reducing agent (HRWR); this was
provided by Shanxi Kebang Building Materials Co., Ltd., Yuncheng, China. The setting
times, densities, and physical properties of the raw materials were readily provided by the
suppliers. Tables 1 and 2 show the cumulative retained fractional pass rates and chemical
compositions, respectively, of the raw materials. Particle size distribution curves for the raw
materials are shown in Figure 2, which is obtained from Xu’s paper [25]. Finally, the basalt
fibers used in this study were manufactured by Shandong Taicheng Fiber Co., Ltd., Taian,
China. The average lengths and diameters of the basalt fibers were 6 mm and 0.025 mm,
respectively, and their corresponding density was 2.631 g/cm3.

Table 1. The cumulative retained fractional pass rates (%).

Types
Particle Size/µm

0.3 0.6 1 4 8 64 360

OPC 0.13 0.36 3.08 14.79 29.13 92.62 100
SF 32.03 59.02 82.98 99.9 99.8 100 100
QS 0 0 0 0 0.035 23.94 100
MS 0.05 0.32 1.33 8.72 23.52 98.43 100
BFP 0.04 0.12 3.3 19.4 35.2 98.2 100

Table 2. Chemical composition (wt%).

Types SiO2 Al2O3 FexOy MgO CaO SO3 K2O Mn2O Loss on
Ignition

OPC 20.1 5.8 3.1 1.9 62.2 3.0 - - 3.0
SF 90 0.4 0.5 0.6 0.35 0.3 7.4 - -
QS 98.3 - 1.5 - - - - - -
MS 34.22 7.32 12.03 1.91 13.92 0.08 - 30.52 -
BFP 34 14.9 0.5 9.8 36.9 0.3 3.6 - -
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Figure 2. The particle size distribution curves of the raw materials [25].

2.2. Specimen Preparations

Table 3 presents the mixing ratios for the HPC. The mass ratios of MS were 0%, 10%,
20%, 30%, and 40% (by total mass of OPC, MS, and SF). The volume ratio of basalt fibers
ranged from 0% to 2.0% (with a MS mass ratio of 20%). The mixing proportions were
obtained from previously published works, in line with the maximum density theory [26].
The HPC samples were prepared using the following procedure. First, the powder binder
materials were loaded into a JJ-5 planetary cement mortar mixer located at the Xianxian
Longhui Highway and Railway Test Instrument Factory in Xian, China. They were mixed at
a stirring speed of 140 rpm for 30 s. Subsequently, quartz sand was added to the materials,
and stirring at 285 rpm was allowed to continue for a further 90 s. Finally, a mixture of
water and a water-reducing agent was introduced to the blend, and the mixture was stirred
for 120 s at a speed of 285 rpm. Throughout the HPC mixing process, fibers were evenly
sprinkled into the mixer. The HPC was manufactured according to the Chinese standard
GB/T 2419-2005 [27].

Table 3. The mixing proportions of HPC with MS and BFs (kg/m3).

Samples Water OPC MS SF BFP QS BFs HRWR

MS-0% 240 658 0 183 111.1 962 0 16
MS-10% 240 567 91 183 111.1 962 0 16
MS-20% 240 477 181 183 111.1 962 0 16
MS-30% 240 383 274 183 111.1 962 0 16
MS-40% 240 293 365 183 111.1 962 0 16
BFs-0% 240 477 181 183 111.1 962 0 16

BFs-0.5% 240 477 181 183 111.1 962 13 16
BFs-1.0% 240 477 181 183 111.1 962 26 16
BFs-1.5% 240 477 181 183 111.1 962 39 16
BFs-2.0% 240 477 181 183 111.1 962 42 16

2.3. Experimental Methodology

To measure mechanical strengths, a fully automatic integrated bending-testing ma-
chine was utilized, with loading rates of 0.05 kN/s and 2.4 kN/s to measure flexural
and compressive strengths, respectively. Tests of mechanical strength were conducted on
specimens with dimensions of 40 mm × 40 mm × 160 mm. The bending strength of the
40 mm × 40 mm × 160 mm specimen was taken as the flexural strength. The two halves
of each broken specimen were then used for the measurement of the compressive strength.
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Therefore, three specimens were used for measuring flexural strengths and six specimens
were used for determining compressive strengths. All specimens were cured in a standard
curing environment (temperature of 20 ± 2 ◦C and relative humidity of higher than 95%)
for 28 days. The process used for measuring the HPC’s mechanical strengths is shown in
Figure 3. The mechanical strengths were tested with reference to the Chinese standard
GB/T17671-2005 [28].
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2.4. The NaCl F-C Action

Specimens were immersed in a 3% NasCl solution for four days before being trans-
ferred to a DR-10 fully automatic rapid freeze–thaw test box manufactured by Tianjin
Tianyu Experimental Equipment Co., Ltd., Tianjin, China. The specimens were then placed
in sealed stainless-steel freeze–thaw boxes filled with NaCl solutions of the same concentra-
tion. The temperature in the F-C box was in a range of −15 ◦C to 8 ◦C. The freezing time for
each NaCl freeze–thaw cycle (N-FC) was 2~3 h, while the thawing time was 1~2 h. These
parameters were obtained after 50 repetitions of the N-FC process. Figure 4 illustrates the
N-FC process.
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2.5. The NaCl and Na2SO4 D-A Actions

For the dry–wet alternation (N-DA) experiments, the same procedure as that used for
NaCl F-C was used to immerse the specimens in NaCl. After soaking, the specimens were
transferred to a concrete corrosion resistance dry–wet cycle tester supplied by Zhejiang
Miaoda Instrument Manufacturing Co., Ltd., Shaoxing, China. During each D-A cycle,
a specimen was placed in a solution of NaCl or Na2SO4 for 8 h; after this, the specimen
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surface was dried with a rag. The specimen was then dried at 80 ◦C for 36 h, followed by
a 2-h cooling period. Figure 5 depicts the process of Na2SO4 D-A (NS-DA). The mechan-
ical strengths were measured per 100 N-FC, 10 N-DA, and 10 NS-DA, using the process
described in Section 2.3 above.
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2.6. The Measurement of Mass Loss Rate

The masses of specimens were measured by immersing them in NaCl for four days,
wiping their surfaces, and then weighing them using a BWS-SNR electronic scale pur-
chased from Heng Edge Electronic Technology Co., Ltd., Foshan, China. The scale had a
measurement range of 0~3 kg and a minimum measurement of 0.1 g. The mass loss rate
(MLR) was calculated using Equation (1), as follows:

MLR =
mt − m1

m1
(1)

where m1 represents the mass of samples after 4 days of immersion in 3% NaCl solution,
and mt represents the mass of samples after 50 F-C or 10 D-A actions.

2.7. The Measurement of Relative Dynamic Modulus of Elasticity

A CSM900C digital ultrasonic flaw detector produced by Sanmukeyi Instrument
Testing Technology Co., Ltd., Jinan, China, was used to obtain the relative dynamic modulus
of elasticity (RDME). A transmit-and-receive ultrasonic head was attached firmly to a
central position on each specimen. Probes and specimens were matched using petroleum.
Ultrasonic velocities were measured as shown in Figure 6, and RDME was calculated using
Equation (2), as follows:

RDME= (
vt

v1
)2 (2)

where v1 and vt are the ultrasonic velocities of the samples after periods of salt action of
0 and t, respectively. MLR and RDME were measured using samples with dimensions of
100 × 100 × 100 mm3. Figure 4 shows a flowchart of the experimental procedure. The
measuring method was according to the standard UNE-CEN/TS 12390-2008 [29].
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2.8. The Measurement of Leached Toxic Heavy Metal Substances

Specimens with a size of 100 × 100 × 100 mm3 were used to determine the presence
of any leached toxic heavy metal substances during a 6-month period of immersion in
deionized water. Concentrations of dissolved chromium (Cr) and zinc (Zn) were measured
monthly using an inductively coupled plasma emission spectrometer supplied by Shanghai
Meishan Instrument Co., Ltd., of Shanghai, China. In the present study, three specimens
were measured in each test, and an average value was used for each experiment.

2.9. The Energy-Dispersive X-ray Spectroscopy and XRD Experiment

To obtain scanning electron microscope (SEM) images and energy-dispersive X-ray
spectroscopy (EDS) results, an SU3800 scanning electron microscope, purchased from
Shanghai Weihan Optoelectronic Technology Co., Ltd. of Shanghai, China, was used.
Sample cores were extracted, dried in an oven at 105 ◦C for two days, subjected to vacuum
gold spraying, and then analyzed using the SU3800 scanning electron microscope. SEM
and EDS measurements were then obtained.

Samples were also ground into powder, which was used for XRD diffraction measure-
ments using a Bruker JV-DX X-ray diffractometer provided by Shanghai Erdi Instrument
Technology Co., Ltd. of Shanghai, China. The samples were characterized by X-ray
diffraction (XRD) analysis (Empyrean XRD, PANalytical, Almelo, The Netherlands) with a
monochromator using Cu Kα radiation (1.5406 Å). Spectra were acquired in a range from
10◦ to 70◦ at 40 kV with a scanning speed of 8◦ min−1.

Some of the powder was then used for thermogravimetric analysis using a TGA
thermogravimetric analyzer supplied by Shanghai Farui Instrument Technology Co., Ltd.
of Shanghai, China.

The method of thermal analysis was as follows. First, a sample with a mass of 100 mg
was weighed after being passed through a 0.1 mm sieve. The sample was then placed on the
thermal balance of an STA6000 thermogravimetric analyzer (Shanghai Zhunquan Instru-
ment Equipment Co., Ltd., Shanghai, China). The temperature in the thermogravimetric
analyzer ranged from 30 ◦C to 900 ◦C, with a heating rate of 10 ◦C/min and a nitrogen gas
flow rate of 150 mL/min to reduce the influence of carbonation on the sample.

3. Results and Discussion
3.1. The MLR of HPC

The MLR of HPC is shown in Figure 7. The continuous lines on the graph represent the
fitting curves of the experimental results. The N-FC, N-DA, and NS-DA were applied to the
specimens. An increasing trend of mass was noted during the periods of N-FC, N-DA, and
NS-DA, which was due to the erosion of N-FC, N-DA, and NS-DA [30]. Once, the N-FC acts
on the HPC specimens, the NaCl crystals will continuously dissolve and precipitate, which
results in continuous generation and dissipation of stress [31]. The round-trip stress induces
the propagation and increase of internal cracks in HPC. Consequently, the mass decreases
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with the number of N-FC, leading to an increase in the MLR of HPC. Moreover, the freezing
and thawing stress from N-FC can cause surface detachment of HPC, resulting in the
increased mass. The NaCl penetrated into the pores of HPC when HPC was immersed in
NaCl solution [32]. When the HPC was dried, the NaCl crystals precipitated. The wet and
dry process led to NaCl infiltration, precipitation, and dissolution cycling; therefore, the
crack and spalling of specimens occurred, resulting in the reduction of mass [33]. During
the sulfate attack process, concrete was not only affected by the expansion and damage
of corrosion products such as ettringite and gypsum but also by the crystallization and
expansion of Na2SO4·10H2O during the dry–wet cycle, causing repeated and continuous
accumulation of concrete damage, accelerating the rate of corrosion and deterioration of
concrete, and gradually reducing the mass [34]. Moreover, as observed in Figure 7, the MLR
decreased with the mass ratio of MS, due to the filling effect and the pozzolanic effect [35].
The decreasing rates of HPC’s MLR were 0~52.1%, 0~56.3%, and 0~54.8%. When the
microcracks appeared inside the HPC, a large amount of water continued to penetrate the
cracks, accelerating the secondary hydration reaction of MS, and the generated hydration
products blocked the microcracks [36]. Therefore, under the action of N-FC, N-DA, and
NS-DA, the mass of HPC increases. The error bars’ values were lower than 8.5% of the real
values of MLR, indicating the experimental correctness. The MLR after 30 N-DA was the
highest, and the MLR after 30 NS-DA was the lowest. Table 4 shows the fitting equations
of the relationships between the MLR and MS’s mass ratios. As observed in Table 4, the
equations were linear functions, and the fitting degrees of the fitting equations were higher
than or equal to 0.92, ensuring the reasonability of fitting functions. Compared with the
UHPC with waste fly ash and secondary aluminum ash, the HPC with MS showed a
0~0.71% lower MLR.
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Figure 7. The MLR of HPC under salt action. (a) The MLR of HPC during NaCl freeze–thaw cycles.
(b) The MLR of HPC during NaCl dry–wet alternations. (c) The MLR of HPC during Na2SO4

dry–wet alternations.
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Table 4. The fitting equations of the relationships between the MLR and MS’s mass ratios.

Equation Types a b R2

MLR = a + bMS

N-FC-100 0.81 −6.29 × 10−3 0.98
N-FC-200 1.29 −1.43 × 10−2 0.97
N-FC-300 2.29 −2.08 × 10−2 0.96
N-DA-10 1.01 −9.34 × 10−3 0.92
N-DA-20 1.71 −2.23 × 10−2 0.93
N-DA-30 2.67 −3.49 × 10−2 0.97

NS-DA-10 0.66 −4.87 × 10−3 0.98
NS-DA-20 1.18 −1.29 × 10−2 0.98
NS-DA-30 2.23 −2.29 × 10−2 0.98

3.2. The RDME of HPC

The RDME of HPC after different cycles of N-FC, N-DA, and NS-DA are provided
in Figure 8. The RDME of HPC decreased with the effect of N-FC, N-DA, and NS-DA.
This was attributed to the width and the number of internal cracks in HPC by the salt
action, which slowed down the propagation of sound waves in HPC [37]. Consequently,
the RDME of HPC was decreased by the effects of N-FC, N-DA, and NS-DA. Meanwhile,
the RDME of HPC was increased by adding the MS with the increasing rates of 0~15.7%,
0~27.1%, and 0~13.7%, respectively, under the actions of N-FC, N-DA, and NS-DA, which
was ascribed to the microaggregate effect and the pozzolanic effect just in the analysis
of Section 3.1 [38]. The error bars’ values were lower than 7.9% of the real MRL values,
ensuring the experimental correctness. HPC showed the highest RDME after 30 NS-DW.
Meanwhile, the RDME of HPC was the lowest after 30 N-DA. Table 5 demonstrates the
fitting equations of the relationships between the RDME and MS’s mass ratios. As depicted
in Table 5, the equations are linear functions, and the fitting degrees of the fitting equations
are higher than or equal to 0.90, ensuring the reasonability of fitting functions. The RDME
of HPC was 0~7.1% higher than the HPC with waste fly ash and secondary aluminum ash.

Table 5. The fitting equations of the relationships between the RDME and MS’s mass ratios.

Equation Types a b R2

RDME = a + bMS

RDME(%)-N-FC-0 100 0 1.00
RDME(%)-N-FC-100 94.48 0.074 0.97
RDME(%)-N-FC-200 84.27 0.251 0.91
RDME(%)-N-FC-300 80.9 0.308 0.98
RDME(%)-N-DA-0 100 0 1.00

RDME(%)-N-DA-10 92.92 0.103 0.90
RDME(%)-N-DA-20 81.89 0.382 0.92
RDME(%)-N-DA-30 72.4 0.52 0.97
RDME(%)-NS-DA-0 100 0 1.00
RDME(%)-NS-DA-10 94.93 0.089 0.98
RDME(%)-NS-DA-20 88.04 0.258 0.92
RDME(%)-NS-DA-30 83.73 0.27 0.91
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Figure 8. The RDME of HPC under salt action. (a) The RDME of HPC during NaCl freeze–thaw
cycles. (b) The RDME of HPC during NaCl dry–wet alternations. (c)The RDME of HPC during
Na2SO4 dry–wet alternations.

3.3. The Mechanical Strengths of HPC

Figure 9 provides the flexural and compressive strengths of HPC with MS during
the N-FC, N-DA, and NS-DA actions. The mechanical strengths of HPC were decreased
by N-FC, N-DA, and NS-DA actions. This could be explained by the increased number
and length of cracks in HPC, leading to decreased mechanical strengths [39]. As depicted
in Figure 9, after salt action, the flexural strengths were increased by the added MS with
varying rates of 0~17.3%, 0~18.6%, and 0~17.1% under the N-FC, N-DA, and NS-DA actions,
respectively. Meanwhile, the corresponding compressive strengths were increased by the
rates of 0~11.7%, 0~12.63%, and 0~11.3%. The microaggregate effect and the pozzolanic
effect were improved by adding the MS, which decreased the internal crack propagation,
resulting in a decline in mechanical strength loss [40]. The mechanical strengths of HPC
after NS-DA were the highest, while the corresponding mechanical strengths of HPC after
N-DA were the lowest. The error bars’ values were lower than 8.2% of the real values of
mechanical strengths, indicating the experimental accuracy. Compared with the HPC with
fly ash and secondary aluminum ash, the flexural and compressive strengths of HPC were
0~11.3% and 0~17.2% higher [23].
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Figure 9. The mechanical strengths of HPC under salt erosion. (a) HPC flexural strength during NaCl
freeze–thaw cycles. (b) HPC compressive strength during NaCl freeze–thaw cycles. (c) HPC flexural
strength during NaCl dry–wet alternations. (d) HPC compressive strength during NaCl dry–wet
alternations. (e) HPC flexural strength during Na2SO4 dry–wet alternations. (f) HPC compressive
strength during Na2SO4 dry–wet alternations.

3.4. The Influence of Basalt Fibers

The MLR of HPC after different numbers of N-FC, N-DA, and NS-DA actions are
shown in Figure 10. As shown in Figure 10, the MLR increased with the increasing numbers
of N-FC, N-DA, and NS-DA and decreased with the added basalt fibers with the decreasing
rates of 0~34.8%, 0~55.1%, and 0~45.3%, respectively. The basalt fibers showed decreasing
effects on the increasing rates of MLR by the N-FC, N-DA, and NS-DA. This was because
the added basalt fibers can limit cracks in HPC to achieve the goal of reducing surface
peeling and reducing the MLR [41]. After salt action, the MLR of HPC with basalt fibers
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was the highest after suffering 40 N-DA. Meanwhile, HPC with basalt fibers showed the
lowest MLR after 40 NS-DA. The error bars’ values were lower than 9.3% of the real values
of the MLR, ensuring the experimental accuracy. The fitting equations of the relationships
between the MLR and BF’s volume ratios are illustrated in Table 6. As depicted in Table 6,
the equations were linear functions, and the fitting degrees of the fitting equations were
higher than or equal to 0.95, which ensured that most of the variance of the tests (>95%)
was explained by the linear fit.
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Figure 10. The MLR of HPC with fibers under salt action. (a) The MLR of HPC with fibers during
NaCl freeze–thaw cycles. (b) The MLR of HPC with fibers during NaCl dry–wet alternations. (c) The
MLR of HPC with fibers during Na2SO4 dry–wet alternations.

The RDME of HPC with basalt fibers is depicted in Figure 11. As shown in Figure 11,
the HPC’s RDME decreased after 300 N-FC, 30 N-DA, and 30 NS-DA. After the basalt
fibers were added, the corresponding decreasing rates of RDME by basalt fibers were
decreased by 0~7.62%, 0~6.65%, and 0~12.11%, respectively. The reason for this was
that the basalt fibers could bridge the cracks in HPC, which limited the propagation of
cracks [42]. Therefore, a decrease in the speed of sound propagation in HPC occurred. The
RDME of HPC with basalt fibers after 30 NS-DW was the highest, while HPC with basalt
fibers showed the lowest RDME after 30 N-DW. The corresponding error bars’ values were
lower than 9.1% of the real values of the HPC’s RDME, which indicated the experimental
exactitude. The fitting equations of the relationships between the RDME and BF’s volume
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ratios are illustrated in Table 7. As depicted in Table 7, the equations were linear functions,
and the fitting degrees of the fitting equations were higher than or equal to 0.91, which
ensured the reasonability of fitting functions.

Table 6. The fitting equations of the relationships between the MLR and BF’s volume ratios.

Equation Types a b R2

MLR = a + bBF

N-FC-100 0.68 −0.0818 0.98
N-FC-200 0.96 −0.165 0.99
N-FC-300 1.62 −0.245 0.99
N-DA-10 0.80 −0.18 0.95
N-DA-20 1.19 −0.32 0.99
N-DA-30 1.89 −0.18 0.96

NS-DA-10 0.56 −0.095 0.96
NS-DA-20 0.91 −0.21 0.98
NS-DA-30 1.52 −0.29 0.96
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Figure 11. The RDME of HPC with fibers under salt action. (a) The RDME of HPC with fibers during
NaCl freeze–thaw cycles. (b) The RDME of HPC with fibers during NaCl dry–wet alternations.
(c) The RDME of HPC with fibers during Na2SO4 dry–wet alternations.
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Table 7. The fitting equations of the relationships between the RDME and BF’s volume ratios.

Equation Types a b R2

RDME = a + bBF

N-FC-0 100 0 1.00
N-FC-100 95.98 0.85 0.96
N-FC-200 90.04 2.43 0.99
N-FC-300 87.77 3.38 0.99
N-DA-0 100 0 1.00
N-DA-10 95.08 1.18 0.96
N-DA-20 91.97 1.93 0.98
N-DA-30 84.26 2.71 0.99
NS-DA-0 100 0 1.00

NS-DA-10 95.19 1.96 0.96
NS-DA-20 87.63 5.65 0.91
NS-DA-30 82.57 4.71 0.92

The mechanical strengths of HPC with basalt fibers are provided in Figure 12. As
illustrated in Figure 12, the mechanical strengths obviously decreased after the actions
of N-FC, N-DA, and NS-DA due to the increased cracking by salt action [43]. After the
basalt fibers were added, the increasing rates of flexural strength were 0~22.1%, 0~23.6%,
and 0~20.4% after 300 N-FC, 30 N-DA, and 30 NS-DA. The corresponding compressive
strengths’ increasing rates were 0~21.3%, 0~20.2%, and 0~13.6% after salt action. The
corresponding error bars’ values were lower than 9.1% of the real values of the HPC’s
mechanical strengths, indicating the experimental accuracy.
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Figure 12. Cont.
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Figure 12. The mechanical strengths of HPC with fibers under salt erosion. (a) HPC with fibers
flexural strength during NaCl freeze–thaw cycles. (b) HPC with fibers compressive strength during
NaCl freeze–thaw cycles. (c) HPC with fibers flexural strength during NaCl dry–wet alternations.
(d) HPC with fibers compressive strength during NaCl dry–wet alternations. (e) HPC with fibers
flexural strength during Na2SO4 dry–wet alternations. (f) HPC with fibers flexural strength during
Na2SO4 dry–wet alternations.

3.5. The Microscopical Properties

Figure 13 provides the SEM-EDS of HPC with MS after salt action. As depicted in
Figure 13, the hydration products consisted of compact hydration products, flocculent
hydration products, and needle hydration products. As shown in Figure 13, more flocculent
hydration products were found after the NS-DA action. The element of Cl was increased
after N-DA actions. The cracked hydration products were increased by adding NaCl
actions. The flocculent hydration products are used to describe the morphology of the
new hydration product induced by salt action. Compared with the ordinary compact
structure, the flocculent hydration products identified by SEM can degrade the mechanical
performance of HPC. The MS demonstrated the increasing effects on flocculent hydration
products and the elements of Mn, Mg, and Fe.
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Figure 13. The SEM-EDS of HPC with MS under salt erosion. (a) The SEM-EDS photos of specimens
before salt action. (b) The SEM-EDS photos of specimens after 30 NaCl dry–wet alternations. (c) The
SEM-EDS photos of specimens after 30 Na2SO4 dry–wet alternations.
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The XRD curves of HPC with MS are shown in Figure 14. As shown in Figure 14, the
crystals of SiO2, Ca(OH)2 (CH), CaSO4·2H2O, calcium silicate hydrate (C-S-H), and CaCO3
were discovered in all specimens. The CaClOH crystals were observed after the NaCl
dry–wet actions. This was attributed to the fact that the actions of the dry–wet alternations
could increase the hydration between the cement and the NaCl solution, thus forming the
chloride complex salt. When the 30 Na2SO4 dry–wet alternations actions were finished, the
diffraction peaks of Fe2SO3 were increased by the increasing dosages of MS, since the Fe
content was increased by the added MS [44]. When the dry–wet alternations of Na2SO4
were applied to the specimens (the iron), the diffraction peaks of Fe2SO3 crystals increased.
Moreover, the CaSO4 crystals’ diffraction peaks were increased by the dry–wet alternations
with Na2SO4 solution. This could be explained by the reaction of the Ca(OH)2 and the
Na2SO4, forming the CaSO4 [45].

Materials 2024, 17, x FOR PEER REVIEW 16 of 20 
 

 

Figure 13. The SEM-EDS of HPC with MS under salt erosion. (a) The SEM-EDS photos of specimens 
before salt action. (b) The SEM-EDS photos of specimens after 30 NaCl dry–wet alternations. (c) The 
SEM-EDS photos of specimens after 30 Na2SO4 dry–wet alternations. 

The XRD curves of HPC with MS are shown in Figure 14. As shown in Figure 14, the 
crystals of SiO2, Ca(OH)2 (CH), CaSO4·2H2O, calcium silicate hydrate (C-S-H), and CaCO3 
were discovered in all specimens. The CaClOH crystals were observed after the NaCl dry–
wet actions. This was attributed to the fact that the actions of the dry–wet alternations 
could increase the hydration between the cement and the NaCl solution, thus forming the 
chloride complex salt. When the 30 Na2SO4 dry–wet alternations actions were finished, 
the diffraction peaks of Fe2SO3 were increased by the increasing dosages of MS, since the 
Fe content was increased by the added MS [44]. When the dry–wet alternations of Na2SO4 
were applied to the specimens (the iron), the diffraction peaks of Fe2SO3 crystals increased. 
Moreover, the CaSO4 crystals’ diffraction peaks were increased by the dry–wet alterna-
tions with Na2SO4 solution. This could be explained by the reaction of the Ca(OH)2 and 
the Na2SO4, forming the CaSO4 [45]. 

  
(a) (b) 

0 10 20 30 40 50 60 70 80 90

▲

In
te

ns
ity

(c
ps

)

2θ(°)


♥

MS-40%

MS-30%

MS-20%

MS-0%

MS-10%



♣

♣
♠ ♠

♦

♦

 CH    72-0156
♣  SiO2   39-1425
♥ C-S-H  15-0641
▲ MnO2   44-0141
♠ CaCO3   05-0586
♦ CaSO4·2H2O  33-0311

 
(c) 

Figure 14. The XRD curves of the HPC. (a) The XRD curves of specimens before salt action. (b) The 
XRD curves of specimens after 30 NaCl dry–wet alternations. (c) The XRD curves of specimens after 
30 Na2SO4 dry–wet alternations. 

The TG curves of HPC with MS are provided in Figure 15. In Figure 15, the curves 
can be divided into four parts. In stage one, the temperature varied from 33 °C to 113.7 °C 
(the first peak shown in Figure 15b,d,f), and the TG showed a declining trend ranging from 
100% to 94.3%. This could be explained by the evaporation of free water in pore solution [46]. 

10 20 30 40 50 60 70 80

In
te

ns
ity

(c
ps

)

2θ(°)

MS-40%

MS-30%

MS-20%

MS-0%

MS-10%

★ ♦
♣ ♠♥

♠
♦ ♦

♣
♣

 CH    72-0156
♣  SiO2   39-1425
♥ C-S-H  15-0641
♠ CaCO3   05-0586
♦ CaSO4·2H2O  33-0311

0 10 20 30 40 50 60 70 80 90

▲ ♠
•  CaClOH  36-0983

In
te

ns
ity

(c
ps

)

2θ(°)



 CH    72-0156
♣  SiO2   39-1425

♥

♥ C-S-H  15-0641

♣
▲ MnO2   44-0141

MS-40%

MS-30%

MS-20%

MS-0%

MS-10%

♠ CaCO3   05-0586


♦
♦ CaSO4·2H2O  33-0311

♦



♣

♠

Figure 14. The XRD curves of the HPC. (a) The XRD curves of specimens before salt action. (b) The
XRD curves of specimens after 30 NaCl dry–wet alternations. (c) The XRD curves of specimens after
30 Na2SO4 dry–wet alternations.

The TG curves of HPC with MS are provided in Figure 15. In Figure 15, the curves can
be divided into four parts. In stage one, the temperature varied from 33 ◦C to 113.7 ◦C (the
first peak shown in Figure 15b,d,f), and the TG showed a declining trend ranging from 100%
to 94.3%. This could be explained by the evaporation of free water in pore solution [46].
In the second stage, the TG values decreased from 94.3% to 86.7% with the temperature
ranging from 113.7 ◦C to 487.3 ◦C due to the decomposition of calcium silicate hydrate
(C-S-H) and calcium aluminate hydrates phases [47]. The second peak (313 ◦C shown in
Figure 15b,d,f) indicated the calcium aluminate hydrates phases. In the third stage, the TG
values’ range was 86.7~82.8% with the temperature ranging from 487.3 ◦C to 711 ◦C, which
was ascribed to the decomposed Ca(OH)2 hydration products. In the fourth stage, the TG
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values varied from 82.8% to 80.7% with the temperature ranging from 711 ◦C to 900 ◦C,
which was ascribed to the CaCO3’s decomposition. The addition of MS could increase the
degree of decline in the TG values. This could be explained by the improved pozzolanic
effect of MS. Therefore, the TG values were decreased by the added MS [48]. When the salt
actions were exerted on the specimens, the decline in the TG values decreased. This was
attributed to the infiltration and decomposition of salts [49]. The TG values showed the
least decline after the 30 N-DW.
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exerted on the specimens, the decline in the TG values decreased. This was attributed to 
the infiltration and decomposition of salts [49]. The TG values showed the least decline 
after the 30 N-DW. 
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Figure 15. The thermal analysis curves of the HPC. (a) The TG curves of specimens before salt action.
(b) The DTG curves of specimens before salt action. (c) The TG curves of specimens after 30 NaCl
dry–wet alternations. (d) The DTG curves of specimens after 30 NaCl dry–wet alternations. (e) The
TG curves of specimens after 30 Na2SO4 dry–wet alternations. (f) The DTG curves of specimens after
30 Na2SO4 dry–wet alternations.
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4. Conclusions

In this study, changes in the mechanical strength of HPC with added MS during
exposure to N-FC, N-DW, and NS-DW were investigated experimentally. The study
conclusions may be summarized as follows:

With additions of MS ranging from 0% to 40%, the MLR of HPC was found to decrease
in ranges of 0% to 52.1%, 0% to 56.3%, and 0% to 54.8% during N-FC, N-DW, and NS-
DW actions, respectively. Furthermore, for these same salt actions, the incorporation of
BFs led to MLR reduction rates in ranges of 0% to 34.8%, 0% to 55.1%, and 0% to 45.3%,
respectively. The addition of MS and BFs also had the effect of increasing the RDME. When
MS was added, the RDME increased in ranges of 0~15.7%, 0~27.1%, and 0~13.7% after
N-FC, N-DW, and NS-DW actions, respectively. When BFs were added, the corresponding
increases in RDME values for the same actions were in the ranges of 0~34.8%, 0~55.1%, and
0~45.3%, respectively.

The mechanical strengths of HPC were, therefore, improved by the addition of MS and
BFs. When MS was added, flexural strength increased by 0% to 17.3%, 0% to 18.6%, and 0%
to 17.1% under N-FC, N-DW, and NS-DW actions, respectively. For the same actions, the
corresponding increases in compressive strength were 0~11.7%, 0~12.63%, and 0~11.3%,
respectively. Similarly, when BFs were added, the flexural strength increased by 0~22.1%,
0~23.6%, and 0~20.4% under N-FC, N-DW, and NS-DW actions, respectively. For the same
cycles, the corresponding increases in compressive actions were 0~21.3%, 0~20.2%, and
0~13.6%, respectively.

The addition of MS resulted in an increased presence of flocculent hydration products
and the elements Mn, Mg, and Fe. In the XRD curves, CaClOH and CaSO4 ·2H2O crystals
were found after the N-DW and NS-DW actions. The variation in TG values could be
increased by the addition of MS.

In conclusion, in the present work, we found that the addition of MS and BFs proved
effective in enhancing the resistance of HPC to salt erosion. This finding may be attributed
to the volcanic ash effect in the case of MS, and the bridging effect in the case of BFs.
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Abbreviations

MS manganese slag
RDME relative dynamic modulus of elasticity
HPC high-performance concrete
MS-HPC manganese slag high-performance concrete
N-FC NaCl freeze–thaw cycles
N-DA NaCl dry–wet alternations
NS-DA Na2SO4 dry–wet alternations
SEM scanning electron microscope
EDS energy-dispersive spectrometer
TG thermogravimetric analysis
XRD X-ray diffraction spectroscopy
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MLR mass loss rate
OPC Ordinary Portland Cement
SF silica fume
QS quartz sand
BFP blast-furnace slag powder
HRWR high-range water-reducing agent
Cr chromium
Zn zinc
C-S-H calcium silicate hydrate
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