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Abstract: The aggregation-induced emission (AIE) effect exhibits a significant influence on the
development of luminescent materials and has made remarkable progress over the past decades.
The advancement of high-performance AIE materials requires fast and accurate predictions of their
photophysical properties, which is impeded by the inherent limitations of quantum chemical cal-
culations. In this work, we present an accurate machine learning approach for the fast predictions
of quantum yields and wavelengths to screen out AIE molecules. A database of about 563 organic
luminescent molecules with quantum yields and wavelengths in the monomeric/aggregated states
was established. Individual/combined molecular fingerprints were selected and compared elabo-
rately to attain appropriate molecular descriptors. Different machine learning algorithms combined
with favorable molecular fingerprints were further screened to achieve more accurate prediction
models. The simulation results indicate that combined molecular fingerprints yield more accurate
predictions in the aggregated states, and random forest and gradient boosting regression algorithms
show the best predictions in quantum yields and wavelengths, respectively. Given the successful
applications of machine learning in quantum yields and wavelengths, it is reasonable to anticipate
that machine learning can serve as a complementary strategy to traditional experimental/theoretical
methods in the investigation of aggregation-induced luminescent molecules to facilitate the discovery
of luminescent materials.

Keywords: aggregation-induced emission; machine learning; quantum yield; wavelength

1. Introduction

The development of efficient organic luminescent materials is crucial for high-per
formance organic light-emitting diodes [1–3], biological probes [4,5], and chemical sen-
sors [6–8]. Organic luminescent materials have attracted extensive attention from re-
searchers in various fields due to their intriguing biocompatibility, structural diversity, and
ease of property tuning [9–11]. However, traditional organic luminescent materials usually
suffer from luminescence quenching at high concentrations or in the aggregated states,
which severely limits their practical applications [12–14]. Fortunately, Tang et al. coined the
term “aggregation-induced emission (AIE)” and paved a practical way to enhance the emis-
sion efficiency of molecules in the aggregated states [15,16]. Since then, luminogens with
AIE property (AIEgens) have served as essential luminescent materials, with widespread
application potential in optoelectronic devices [17,18], biological imaging [19], and energy
conversion [20]. Luminescence quantum yields (Φ) and maximum absorption/emission
wavelengths (λabs, λem) are two important optical parameters of AIEgens in the applications
of AIEgens, especially material development, mechanistic study, and high-tech applica-
tions [21–23]. Rational design of potential AIEgens with desired wavelengths and quantum
yields is the key to achieving favorable luminescent materials.

Traditional experimental methods often adopt a trial-and-error approach, which demands
high resources and is time-consuming to obtain high-performance AIE molecules, especially
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when the chemical compositions and structures are complex and diverse [24–26]. Quantum
chemical methods such as density functional theory (DFT) can predict the wavelengths and
quantum yields of molecules without chemical synthesis, but they fail to obtain AIE molecules
in bulk [21,27]. Computer-aided chemistry has taken many forms in recent decades. The use of
machine learning (ML) has proliferated in order to drastically reduce design and experimental
effort [28–30]. Therefore, there is an urgent need to bypass traditional tedious experimental
exploration and theoretical calculation processes and combine emerging ML methods with
luminescent chemistry to achieve rapid and accurate predictions of luminescent properties
from their molecular structures [31–33].

ML is gaining increasing popularity in scientific research and has been extensively
utilized in various areas, including luminescent materials, organic synthesis, and drug
design [34]. For nonexperts lacking an understanding of the underlying physical and
chemical mechanisms between molecular structures and properties [35], ML can help them
directly predict a wide range of physical and chemical properties based on molecular
features extracted from molecular structures [36]. For researchers who already possess
some foundational knowledge, ML can offer supplementary insights to assist them in
developing molecules with expected properties efficiently. In the luminescent domain, Ju
et al. used structural and solvent descriptors to construct accurate ML models for predicting
the photophysical properties (λabs, λem, and Φ) of distinct organic fluorescent molecules [37].
Shao et al. developed a new ML model based on deep neural networks for the accurate
prediction of the maximum absorption wavelengths for a carefully prepared database of
solvated small molecular fluorophores [38]. Senanayake et al. proposed three classification
and regression ML machines for predicting the emission color and wavelengths of carbon
dots. The best models achieved up to 94% accuracy for emission color and a minimum
mean average error of 25.8 nm for wavelength, facilitating the design of carbon dots with
targeted optical properties [39]. Mahato et al. optimized a series of ML models to predict
the physical properties of organic dyes, and the derived R2 values for absorption and
emission wavelengths that were 0.7% and 0.4% larger, respectively, than those recently
reported by the gradient boosted regression (GBR) models [40].

In the field of AIE materials, the incorporation of ML has greatly facilitated materials
screening and discovery, as well as the characterization of the structural–optical proper-
ties [41]. Qiu et al. proposed an efficient ML scheme based on quantum mechanics to
classify AIE and aggregation-induced quenching (ACQ) properties of diverse tripheny-
lamine derivatives, relying on their luminescent moieties [42]. Xu et al. developed an
ensemble strategy to predict the optical properties of organic molecules in the aggregated
states, wherein multiple prediction methods were designed, compared, and combined
to achieve an optimized multimodal approach [43]. Zhang et al. reported a multimodal
molecular descriptors strategy to extract the structure–property relationships of AIEgens
and predict the absorption and emission wavelengths peaks of the molecules, and three
newly predicted AIEgens with the desired absorption and emission wavelengths were
successfully applied to cellular fluorescence imaging and deep penetration imaging [44].
Given the successful applications of ML methods in luminescent materials, it is reasonable
to speculate that ML holds significant potential in predicting wavelengths and quantum
yields, both of which are two important factors of AIEgens [37].

In this work, we employed ML methods to predict the quantum yields and absorp-
tion/emission wavelengths of 563 organic molecules in the monomeric/aggregated states,
collected from literature reports spanning several years. Molecular fingerprints were
chosen as ML inputs, and favorable molecular fingerprints were selected by comparing
13 different individual molecular fingerprints and various combined molecular fingerprints.
Afterwards, different ML algorithms were applied to the selected favorable molecular
fingerprints and further compared to obtain the best ML models. The predicted quan-
tum yields and absorption/emission wavelengths are in good agreement with reference
values. The predicted accuracy of the optimal ML models was further confirmed with
DFT calculations for four newly designed AIE molecules. Therefore, our ML approach
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is expected to provide new ideas and methods for the development and application of
aggregation-induced luminescent materials.

2. Materials and Methods

In this study, we applied a ML approach to predict the quantum yields and absorp-
tion/emission wavelengths of 563 organic molecules in both monomeric and aggregated
states. The methodology involved four key steps, as illustrated in Figure 1: data collec-
tion, extraction of molecular descriptors, training of ML models, and ML predictions. We
carefully constructed a database of the photophysical properties of about 563 organic lu-
minescent compounds in both the monomeric and aggregated forms, collected from the
research literature on AIE over the years. The emission wavelengths and quantum yields
of molecules in both the original states (monomer, mostly in tetrahydrofuran solution) and
the aggregated states (mostly in tetrahydrofuran solution with a water content of more than
90% or in solid state) were collected because the photophysical properties of luminescent
molecules are usually influenced by their aggregation states due to the AIE and ACQ
effects. Each organic luminescent molecule in the database includes six photophysical
properties: maximum absorption wavelengths (λabs), maximum emission wavelengths in
the monomeric and aggregated states (λem_mono, λem_agg), quantum yields in the monomeric
and aggregated states (Φmono, Φagg), and their difference (Φagg-Φmono). The database was
randomly divided into three subsets for benchmarking: the training, validation, and test
sets, with respective ratios of about 65%, 15%, and 20%. The training set was utilized for
the ML training to learn and establish relationships between ML inputs and outputs. The
validation set was employed for tuning hyperparameters and preventing overfitting to the
training set during the ML training process. The test set was used for evaluating the final
performance of the trained ML models [45]. The dataset for ML training (the training and
validation sets) contained about 463 samples, and the test set outside the training group
(out-of-sample dataset) included about 100 samples.
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Figure 1. Workflow of machine learning (ML) approach in predicting the luminescence properties
(quantum yield Φ and wavelength λ) of luminogens with aggregation-induced emission property
(AIEgens) in the monomeric/aggregated states. The workflow consists of four steps: collecting
molecular structures and their corresponding Φ/λ data; extracting molecular descriptors from
molecular structures; optimizing ML models by performing different ML algorithms on different
molecular descriptors; predicting Φ/λ with ML models for new molecules.

Afterwards, the molecular structures were converted to molecular descriptors as ML
inputs. Molecular descriptors are the mathematical representations of compounds, which
can capture diverse parts of the structural information of molecules. Molecular fingerprint
is a typical type of molecular descriptor where structural features are converted to either
binary bits in a bit vector or counts in a count vector [46,47]. Molecular fingerprints hold
richer structural and physicochemical information compared to some simple molecular
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descriptors [48–50]. Thirteen molecular fingerprints, which have proved their performance
in predicting luminescent properties in previous reports, were selected as ML input candi-
dates: MACCS (MA), Morgan, AtomPairs2D, PubChem (P), Substructure (S), Estate (E),
CDK (CDK), CDKextended (CDKex), SubstructureCount (Sc), AtomPairs2DCount, CD-
Kgraphonly, KlekotaRoth (K), and KlekotaRothCount (Kc) fingerprints. The 13 molecular
fingerprints of the 5,10-diphenylphenazine (DPhPZ) molecule were used as examples and
were listed in Table S1 to enlighten the forms of molecular fingerprints. The preferred
fingerprints were combined to create combined molecular fingerprints to further enhance
the efficiency and accuracy of ML. All of the molecular fingerprints were generated using
RDKit and PaDEL-Descriptor packages with SMILES strings as inputs. SMILES strings can
be exported (Figure S1) after creating 2D molecular structures in ChemDraw [51,52].

Subsequently, ML training was carried out to achieve optimal ML models [53,54]. The
selection of ML algorithms is crucial for the accuracy of ML predictions. For quantum yield
predictions (Φmono, Φagg, Φagg-Φmono), five typical classification ML algorithms were chosen:
random forest (RF), decision tree (DT), naive Bayes (NB), K-nearest neighbor (KNN), and
support vector machine (SVM). To develop more appropriate binary classifiers, we used the
median of the experimental quantum yields (5%) as the threshold to divide the database
into categories of high-efficiency luminescence (>5%) and low-efficiency luminescence
(<5%). The evaluation of the algorithms’ performance included metrics such as the receiver
operating characteristic curve (ROC), area under the curve (AUC), accuracy rate (ACC),
and F1-score (F1). For wavelength predictions (λabs, λem_mono, λem_agg), four regression
ML algorithms were selected: RF, KNN, GBR, and least absolute shrinkage and selection
operator (LASSO) regression algorithms, which were all adopted in the prediction of
wavelengths in recent reports [55,56]. Pearson correlation coefficient (r), mean relative error
(MRE), and mean absolute error (MAE) were used to evaluate the algorithms’ performances.
After the ML training, we saved the ML models with the best performance in the validation
sets for six photophysical properties. The ML predictions were carried out on the test set to
further evaluate the performances of optimal ML models. Finally, four new AIE molecules
were designed and their quantum yields were predicted with ML models, which were
confirmed with DFT calculations. All the ML training procedures were carried out using
the Python language in the Jupyter Notebook editor of the Anaconda platform [57]. The
open-source toolkit scikit-learn was used to process data (including fingerprint conversion,
train–test splitting), import, and tweak various ML classification and regression algorithms
for ML tasks. The DFT calculations were carried out in Gaussian 16 [58]. More details can
be found in the Supplementary Materials.

3. Result and Discussions
3.1. Prediction of Quantum Yields in the Aggregated and Monomeric States

The RF algorithm not only demonstrates superior performance in handling high-
dimensional features during the prediction of molecular luminescence properties but
also exhibits robustness to outliers [59–62]. Therefore, the RF algorithm was chosen in
combination with 13 individual molecular fingerprints candidates for ML training to gain a
general understanding of their prediction effects, as shown in Table 1. The quantum yields
serve as a crucial factor in evaluating the luminescence efficiency of organic molecular
materials. Thus, we firstly carried out the ML training for the quantum yields in the
aggregated states. The data distribution of quantum yields (Figure 2a) showed a peak near
zero and a relatively average distribution in most regions because most of the molecules
exhibit low or even no luminescence, and high-performance luminescent molecules are
rare. This highlights the urgency of molecular design and selection to achieve highly
efficient luminescent organic molecules. Four individual fingerprints showed relatively
high performance in the predictions of Φagg: PubChem, Substructure, KelekotaRothCount,
and SubstructureCount fingerprints (Table 1). The AUC values of the four fingerprints
were all above 0.90, and their ACC and F1-scores were both above 0.93 (Table S3).
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Table 1. Evaluation results of 13 individual fingerprints in different properties under RF algorithm.

Descriptors
Φagg Φmono Φagg-Φmono λabs λem_agg λem_mono

AUC ACC AUC ACC AUC ACC r MRE/% r MRE/% r MRE/%

MACCS 0.73 0.9 0.87 0.77 0.88 0.81 0.81 7.62 0.84 5.87 0.86 7.15
Morgan 0.82 0.82 0.86 0.84 0.83 0.81 0.85 7.02 0.76 6.82 0.83 7.56
Atomp 0.74 0.86 0.71 0.87 0.82 0.79 0.70 8.38 0.77 7.57 0.70 10.0

Pubchem 0.92 0.97 0.60 0.56 0.89 0.80 0.75 8.59 0.80 7.21 0.83 9.80
Substructure 0.90 0.94 0.81 0.72 0.94 0.85 0.73 7.34 0.82 6.72 0.83 8.25

Estate 0.88 0.91 0.81 0.81 0.86 0.78 0.69 7.58 0.79 7.15 0.84 7.81
CDK 0.82 0.93 0.91 0.87 0.84 0.83 0.82 6.55 0.81 5.96 0.82 7.96

CDKex 0.82 0.93 0.92 0.84 0.83 0.80 0.80 6.84 0.81 6.98 0.78 8.79
SubstructureCount 0.92 0.93 0.87 0.84 0.90 0.89 0.75 9.00 0.83 6.91 0.82 8.03
Atompair2DCount 0.79 0.93 0.84 0.72 0.84 0.80 0.74 8.18 0.80 8.10 0.79 8.89

CDKgraphonly 0.82 0.91 0.85 0.71 0.82 0.73 0.72 9.50 0.80 6.76 0.73 10.2
KlekotaRoth 0.88 0.95 0.86 0.79 0.94 0.90 0.72 8.66 0.83 7.20 0.84 8.37

KlekotaRothCount 0.90 0.94 0.82 0.78 0.93 0.87 0.76 7.91 0.82 7.00 0.84 7.95
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Combined fingerprints were constructed with four selected preferred fingerprints to
enhance the accuracy and efficiency of structural representations because an individual
fingerprint may not be able to fully represent the structural information of a molecule
under certain conditions [63]. Figure 2c lists 11 combined fingerprints consisting of
2–4 kinds of individual fingerprints, all displaying superior performance in ML tasks.
The first column of Figure 2c exhibits the F1-scores of ML training results of the RF classifier
algorithm based on 11 combined fingerprints. It is obvious that P_S and Kc_Sc fingerprints
exhibited F1-scores of 0.98 (Figure 2c), with AUC values reaching 0.99 and ACC up to 0.97
(Table S4).

Subsequently, 4 individual and 11 combined fingerprints were trained under different
ML algorithms to identify optimal ML models because the selection of an appropriate ML
algorithm will influence the prediction accuracy of molecular luminescence properties.
The ML training results revealed that the RF algorithm showed the best performance
in predicting Φagg. Characterized as a versatile ensemble learning methodology, the RF
algorithm demonstrates the capability to handle mixed data within its framework. This
proficiency arises from the inherent nature of its tree growth and splitting process, which
naturally accommodates both continuous and categorical data [64,65]. Consequently, the
RF algorithm exhibited commendable stability when applied to our dataset. In contrast, the
ACCs of DT, NB, and SVM were observed to be moderate. A combined fingerprint, P_S,
exhibited the best result compared with other fingerprints across different ML algorithms.
Therefore, in the aggregated states, the RF algorithm in conjunction with the P_S fingerprint
(RF/P_S) model exhibited the best prediction results, and its ROC curve was depicted in
Figure 2e, reaching an AUC of 0.99, an ACC of 0.97 (Table S4), and an F1-score of 0.98
(Figure 2c).

For the prediction of quantum yields in the monomeric state (Φmono), we employed
the optimal molecular descriptor, P_S fingerprint, identified from the prediction of Φagg,
in combination with the same five binary classification algorithms. Unfortunately, the
predictive performance of the P_S fingerprint proved unsatisfactory across the five ML
algorithms (Figure 2d). Therefore, similar to the prediction process of Φagg, 13 individual
molecular fingerprints candidates were combined with RF for ML training to screen out
preferable fingerprints. It can be seen from Table 1 that three fingerprints—CDK, CDKex,
and SubstructureCount—achieved AUC and ACC both above 0.84. The three fingerprints
were combined to construct combined fingerprints and were severed as ML inputs for five
ML algorithms to acquire optimal ML models. Similar to the aggregated state, RF algorithm
was superior to other algorithms in the monomeric state, with KNN ranking second as
shown in Figure 2d. RF/CDKex yielded the best ML models, with AUC of 0.92, ACC of 0.84
(Table S5), and F1-score of 0.82 (Figure 2d). Therefore, it can be inferred that the RF binary
classifier model with suitable molecular fingerprints can provide reasonable predictions for
quantum yields, and the optimal methods are RF/P_S for Φagg and RF/CDKex for Φmono.

In the ML training process, the validation set acted as a checkpoint for refining the
ML models, independent of the test set, helping to improve the model’s performance
on unseen data. The optimal ML models were saved after ML training. Subsequently,
the test set was used for evaluating the final performance of the well-trained ML models
to new data. The optimal ML models were employed in the test set, which comprised
approximately 100 samples outside the training set, to predict the photophysical properties,
and their prediction results were compared with the reference values. Figure 2e,f presents
ROC curves of the validation set and the test set of optimal models under the aggregated
and monomeric states, respectively. It is evident that the AUC for the validation sets
was notably high in ML training. The AUC value for the aggregated state in the test set
was up to 0.98, suggesting the high robustness of the optimal model, and can be used
to discriminate aggregate-induced organic materials with strong luminescence (Φ > 5%),
thereby facilitating the screening of AIE candidates. Although the prediction performance
of quantum yields under the monomeric state was slightly inferior, its AUC value in the
test set still reached 0.88 (Figure 2f), indicating a satisfactory capability to predict quantum
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yields in the monomeric state. The successful prediction of Φagg and Φmono in the test set
verified the prediction accuracy for new data.

In order to further evaluate the prediction accuracy of the optimal ML models, we
designed four new organic molecules (Figure S3a) and compared their ML-predicted
quantum yields with DFT calculated results. The ML predictions revealed that the four
molecules displayed weak emission in the monomeric states, but high quantum yields after
aggregation (Table S10). A high quantum yield can be achieved with a fast intersystem
crossing rate (kISC) between the singlet and triplet excited states of molecules. Therefore,
we used the calculated kISC to evaluate the quantum yields predicted by the ML models.
A large kISC, kISC∝|〈Sm|HSO|Tn〉|2/(∆ES-T)2 [66,67], can be realized by enhancing the
spin-orbit couplings (SOC, 〈Sm|HSO|Tn〉) and reducing the energy gap (∆ES-T) between
the singlet excited state and the triplet excited state. As shown in Figure S3b, the excited
energy levels underwent energy splitting in the process of aggregation due to excitonic
coupling, resulting in more energy channels for ISC, thereby reducing ∆ES-T. The SOCs of
aggregates were comparable to those of monomers (Tables S11 and S12). Subsequently, the
kISC for the dominant channel S1-Tn increased after aggregation (Figure S3c). Additionally,
the high-lying excited states also displayed significant kISC, which further facilitates the
overall kISC in the aggregated states. Therefore, the DFT calculated results confirmed
the high luminescent properties of the four newly designed AIE molecules, as predicted
by the optimal ML models, indicating that the optimal model can assist in designing
high-performance new AIE molecules.

3.2. Prediction of the Quantum Yield Difference between the Aggregated and Monomeric States

ML training was also performed for the difference in quantum yields before and after
aggregation (Φagg-Φmono) because the relative value can reduce system error due to the
different experimental conditions in the collected literature. The relative value (Φagg-Φmono)
can serve as a measure of the change in luminescence intensity before and after molecular
aggregation. Figure 3a illustrates the distribution of Φagg-Φmono, where the median value
(25%) was chosen as the threshold for the ML model.

Table 1 lists the ML results of 13 individual molecular fingerprints with the RF algo-
rithm. The top four molecular fingerprints, Substructure, SubstructureCount, KelekotaRoth,
and KelekotaRothCount, with AUC > 0.90, ACC > 0.85, and F1-scores > 0.82 (Table S3),
were adopted to generate 11 combined fingerprints for five ML training algorithms. Similar
to the predictions of absolute values (Φagg and Φmono), the RF with combined fingerprints
(RF/S_K_Kc) model revealed the highest accuracy in our database. Its F1-score reached
0.90 (Figure 3b), AUC reached 0.93, and ACC reached 0.91 (Table S6). The prediction result
of the RF/S_K_Kc model in the test set exhibited AUC of 0.84 (Figure 3d) and ACC of 0.86
(Table S7), verifying its favorable prediction ability. The RF algorithm in combination with
combined fingerprints demonstrated commendable accuracy and robustness in predicting
quantum yields.



Materials 2024, 17, 1664 8 of 15

Materials 2024, 17, x FOR PEER REVIEW 8 of 15 
 

 

reached 0.90 (Figure 3b), AUC reached 0.93, and ACC reached 0.91 (Table S6). The predic-
tion result of the RF/S_K_Kc model in the test set exhibited AUC of 0.84 (Figure 3d) and 
ACC of 0.86 (Table S7), verifying its favorable prediction ability. The RF algorithm in com-
bination with combined fingerprints demonstrated commendable accuracy and robust-
ness in predicting quantum yields. 

 
Figure 3. The data distributions and ML results of Φagg-Φmono. (a) Data distribution. (b) Heat map of 
F1-scores predicted with different fingerprints and ML classification algorithms. The receiver oper-
ating characteristic curve (ROC) curves of (c) validation set predicted in ML training process and 
(d) test set predicted with the optimal ML trained model. 

3.3. Prediction of Emission Wavelengths and Absorption Wavelengths 
The prediction of the absorption and emission wavelengths (λabs and λem) of organic 

luminescent molecules across a spectrum of wavelengths holds significant importance for 
their photochemical applications, such as spectral analysis, laser processing, photocataly-
sis, and photosensitive materials [68,69]. Figure 4a shows the data distribution of λabs 
within the range of 300–700 nm collected from the literature, and the data exhibits a nor-
mal distribution, which validates the reliability of our data. Similar to the process em-
ployed for predicting quantum yields, we firstly used the RF algorithm to filter out indi-
vidual fingerprints with commendable performance, yielding the following results: 
MACCS, Morgan, CDK, and CDKex (Table 1). Subsequently, the four individual finger-
prints were combined to attain combined fingerprints for further ML training with four 
ML regression algorithms. The performance metrics analysis in Figure 4b reveal that the 

Figure 3. The data distributions and ML results of Φagg-Φmono. (a) Data distribution. (b) Heat map
of F1-scores predicted with different fingerprints and ML classification algorithms. The receiver
operating characteristic curve (ROC) curves of (c) validation set predicted in ML training process and
(d) test set predicted with the optimal ML trained model.

3.3. Prediction of Emission Wavelengths and Absorption Wavelengths

The prediction of the absorption and emission wavelengths (λabs and λem) of organic
luminescent molecules across a spectrum of wavelengths holds significant importance for
their photochemical applications, such as spectral analysis, laser processing, photocatalysis,
and photosensitive materials [68,69]. Figure 4a shows the data distribution of λabs within
the range of 300–700 nm collected from the literature, and the data exhibits a normal
distribution, which validates the reliability of our data. Similar to the process employed
for predicting quantum yields, we firstly used the RF algorithm to filter out individual
fingerprints with commendable performance, yielding the following results: MACCS,
Morgan, CDK, and CDKex (Table 1). Subsequently, the four individual fingerprints were
combined to attain combined fingerprints for further ML training with four ML regression
algorithms. The performance metrics analysis in Figure 4b reveal that the MRE range for
both RF and GBR was within 8.22%, making them two preferable regression algorithms for
λabs. The Morgan fingerprint under GBR algorithm exhibited the smallest MRE at 6.28%
compared to other fingerprints and ML methods. The regression curve of the validation set
of optimal model (GBR/Morgan) is shown in Figure 4c, with an r value of 0.90, achieving
the expected effect. The verification of the prediction accuracy of the optimal model was
performed in the test set, and the final result in the test set yielded an r of 0.87 and an MRE
of 5.07% (Figure 4d), demonstrating the substantial robustness of the optimal ML model in
predicting absorption wavelengths.
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We extended our study to explore the emission wavelengths of molecules in both the ag-
gregated and monomeric states (λem_agg and λem_mono). Figure 5a presents the data distribution
for λem_agg, fitting well to a normal distribution. The optimal fingerprints for λabs (the Morgan
fingerprint) were adopted and compared with 13 individual molecular fingerprints for ML
training under RF algorithm. Four fingerprints, MACCS (r = 0.84, MRE = 5.87%), Substruc-
ture (r = 0.82, MRE = 6.72%), SubstructureCount (r = 0.83, MRE = 6.91%) and KelekotaRoth
(r = 0.83, MRE = 7.20%), demonstrated superior performance compared with Morgan fin-
gerprint (r = 0.76, MRE = 6.82%), as revealed in Table 1. To evaluate the effects of combined
fingerprints, the selected four fingerprints were combined into 11 combined fingerprints and
served as ML inputs for ML training with four regression algorithms. The results revealed that
MA_K combined fingerprints trained using GBR regression exhibited the lowest MRE value
of 4.75%, as indicated in Figure 5b. The regression curve for the optimal model (GBR/MA_K)
illustrated a favorable r of 0.91 and an MRE of 4.75% (Figure 5c).
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GBR/MA_K was adopted for further prediction of emission wavelengths in the
monomeric state (λem_mono), which also demonstrated satisfactory results. To validate
whether the GBR/MA_K method remains the optimal ML model for predicting λem_mono,
we compared the results with screened individual molecular fingerprints (Table 1) and
combined fingerprints based on screened fingerprints under four different ML algorithms.
It was found that the MA_K/GBR method held superior results when compared to other
methods, with an MRE of 6.27% and an r of 0.92 (Table S9, Figure S2). In summary, the
GBR/MA_K model was the optimal model for predicting emission wavelengths under both
the aggregated and monomeric states. The prediction results were close to experimental
data, with r-values of 0.91 and 0.92 for λem_agg and λem_mono, respectively, and MRE of 4.75%
for λem_agg and 6.27% for λem_mono (Figures 5c and S2).

The well-trained models were employed to predict the emission wavelengths in both
the aggregated and monomeric states for the test set. As illustrated in Figure 5d, the regres-
sion curve derived from the aggregated state in the test set yielded a commendable r of 0.87,
accompanied by an MRE of 5.22%. Similarly, in the monomeric state, the outcomes from
the test set yielded an r of 0.88 and an MRE of 4.31% (Figure S2d). These observed errors
fall within an acceptable range, demonstrating the model’s robustness and precision in
predicting emission wavelengths and, thereby, affirming its utility in practical applications.

The successful prediction of quantum yields and wavelengths of AIE molecules by
our optimal ML models is beneficial for researchers interested in AIE molecules. For
those new to AIE research, our optimal ML models enable the prediction of quantum
yields and wavelengths for a large number of organic molecules, facilitating the screening
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of potential AIE molecules without requiring an in-depth understanding of structure–
property relationships. Experienced researchers in the luminescent domain can use their
chemical expertise and understanding of structure–property relationships in AIE molecules
to design new structures with potentially high quantum yields by including propeller-like
or rotor features, such as tetraphenylethylene (TPE) and triphenylamine (TPA), to restrict
molecular motions. They can also design new structures of AIE molecules with potentially
long emission wavelengths by introducing electron donor and acceptor groups into a
π-conjugation system, extending the π-conjugation degree and reducing the bandgap in
AIE molecules. Subsequently, they can employ our optimal ML models to predict quantum
yields and wavelengths and further identify new structures with expected AIE properties.

4. Conclusions

In this work, a series of ML trainings were carried out to achieve the fast and accurate
prediction of quantum yields and absorption/emission wavelengths. Optical properties
data of about 563 organic luminescent molecules in both the aggregated and monomeric
states were collected from the literature reported in recent years. Molecule structures were
then converted into a variety of machine-readable individual and combined molecular
fingerprints. Different ML algorithms were chosen for ML training, using different individ-
ual/combined molecule fingerprints as ML inputs to screen out the optimal fingerprints
and ML algorithms. Rapid and robust predictions were achieved for six optical properties:
Φmono, Φagg, Φagg-Φmono, λabs, λem_mono, and λem_agg. (1) For quantum yield predictions,
we used a classification model to distinguish strong and weak quantum yields of lumi-
nescent materials. The best model for predicting quantum yields in the aggregated state
in the validation set was found to be RF/P_S, which achieved an AUC of 0.99, ACC of
0.97, and F1-score of 0.98. The model also demonstrated favorable prediction accuracy
and robustness in the test set (AUC = 0.98, ACC = 0.97). The best model for quantum
yields in the monomeric state was RF/CDKex, with an AUC of 0.92 and ACC of 0.84
in the validation set, and yielding a good robustness results in the test set (AUC = 0.88,
ACC = 0.85). The prediction accuracy and robustness of the optimal ML models were
verified by DFT calculations for four newly designed AIE molecules. The high accuracy of
the quantum yields prediction suggest the high effectiveness of our ML model in differ-
entiating high and low quantum yield intensities in both the monomeric and aggregated
states. This may prove to be useful in identifying organic luminescent molecules with
strong quantum yields. (2) For wavelength predictions, we established optimal regression
models for predicting both absorption and emission wavelengths in the monomeric and
aggregated states. For the aggregated state, the optimal model for predicting emission
wavelengths was GBR/MA_K, with an r of 0.91 and an MRE of 4.75% in the validation
set. This model maintained its effectiveness in the test set, achieving an r of 0.87 and an
MRE of 5.22%. Additionally, four newly designed AIE molecules were predicted using
the optimal ML models and successfully verified with DFT calculations, suggesting the
prediction accuracy of the optimal ML models and their potential for designing new AIE
molecules.

Our results indicate that the utilization of combined fingerprints in the aggregated
state can lead to better accuracy in predicting quantum yields compared to individual
fingerprints. In addition, the RF classification algorithm was proven to be the best ML
method for predicting quantum yields, and the GBR regression method was optimal for
predicting wavelengths. The ML models developed in this study can facilitate the screening
of organic molecules with desired photophysical properties, thus reducing traditional
experimental/computational resource and time costs. Furthermore, these models can aid
in the design of new AIEgens, thereby promoting the development of high-performance
organic luminescent materials.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17071664/s1, Table S1: Thirteen molecular fingerprints of
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DPhPZ molecule. Table S2: ML algorithms employed in this work. Table S3: F1-scores of Φ predicted
with RF algorithm under different individual fingerprints. Table S4: AUC and ACC of Φagg predicted
with different ML algorithms under different combined fingerprints. Table S5: AUC and ACC of
Φmono predicted with different ML algorithms under different fingerprints. Table S6: AUC and ACC
of Φagg-Φmono predicted with different ML algorithms under different combined fingerprints. Table
S7: ML-predicted results of the test set with the optimal models for Φagg, Φmono and Φagg-Φmono. Table
S8: MRE and r of λabs predicted with different ML algorithms under different combined fingerprints.
Table S9: MRE and r of λem_mono predicted with different ML algorithms under different combined
fingerprints. Table S10. The predicted quantum yield results for the four newly designed molecules
under the ML optimal models. Table S11. Calculated SOC for the S1-Tn channel of the four molecules
in monomeric states. Table S12. Calculated SOC for the S1-Tn channel of the four molecules in the
aggregated states. Figure S1. The 2D structure and SMILES string of the DPhPZ molecule. Figure S2:
The data distributions and ML results of λem_mono. Figure S3. The four newly designed AIE molecules
and their DFT calculation results.
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