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Abstract: This study investigates the effects of zinc (4 wt.%) and severe plastic deformation on the
mechanical properties of AZ61 magnesium alloy through the stir-casting process. Severe plastic
deformation (Equal Channel Angular Pressing (ECAP)) has been performed followed by T4 heat
treatment. The microstructural examinations revealed that the addition of 4 wt.% Zn enhances the
uniform distribution of β-phase, contributing to a more uniformly corroded surface in corrosive
environments. Additionally, dynamic recrystallization (DRX) significantly reduces the grain size of as-
cast alloys after undergoing ECAP. The attained mechanical properties demonstrate that after a single
ECAP pass, AZ61 + 4 wt.% Zn alloy exhibits the highest yield strength (YS), ultimate compression
strength (UCS), and hardness. This research highlights the promising potential of AZ61 + 4 wt.%
Zn alloy for enhanced mechanical and corrosion-resistant properties, offering valuable insights for
applications in diverse engineering fields.

Keywords: AZ61 magnesium alloy; ECAP; heat treatment; mechanical properties; corrosion resistance

1. Introduction

In the aerospace, automotive, and green energy industries, the concept of employing
large structural components has gained widespread acceptance due to their immense
potential in enhancing operational efficiency, reducing carbon dioxide emissions, and
achieving light-weighting. The pursuit of these characteristics has driven extensive research
and development efforts [1–4]. Magnesium alloys, being the lightest structural metals, are
considered a powerful choice for achieving industrial light-weighting. With a density of
only two-thirds that of aluminum alloys and one-fourth that of steel, magnesium alloys
offer significant advantages in light-weighting.

Furthermore, magnesium alloys possess advantageous features such as high damping
for shock absorption, efficient heat dissipation, and recyclability. For example, in the auto-
motive industry, magnesium alloys find application in various components like steering
wheels, seat frames, dashboard frames, and gearbox casings [5,6].

Despite these merits, challenges persist in the application of magnesium alloys. Is-
sues such as corrosion resistance and strength need further improvement to meet the
application requirements under high-temperature conditions in the automotive engine
compartment [7–9]. Additionally, the processing performance of magnesium alloys requires
enhancement to replace traditional steel and aluminum materials in a broader range of au-
tomotive components [10]. The automotive industry, grappling with the need for increased
safety and luxury features, faces the challenge of minimizing overall vehicle weight [11].
Therefore, the development of new magnesium alloys and improved magnesium-alloy-
processing techniques is crucial for achieving automotive light-weighting [12,13].

To address these challenges, various strategies have been devised, including alloying,
heat treatment, and the application of severe plastic deformation (SPD) [14–16]. Among
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SPD techniques, Equal Channel Angular Pressing (ECAP) has been demonstrated to yield
the most significant grain-refinement effects in magnesium alloys [15,17]. The ECAP
process generates a substantial amount of cumulative strain, playing a crucial role in the
microstructure and texture evolution of magnesium alloys. In the ECAP process, materials
are typically preheated to approximately half of their melting point [18], as performed in this
study at 350 ◦C. Given that magnesium’s hexagonal close-packed (HCP) crystal structure
has only two independent slip systems at low temperatures, dynamic recrystallization
(DRX) becomes crucial for the microstructure and texture evolution of magnesium alloys
subjected to ECAP treatment [19,20].

In the initial grains and twin boundaries, new very small grains form in a specific
crystallographic orientation due to DRX [21]. Aqeel Abbas et al. (2020) employed AZ91
magnesium alloy as the base material [22], added 1 wt.% tungsten disulfide (WS2) as a
reinforcement phase, and used mechanical stirring casting to prepare the material. The
material was homogenized at 410 ◦C for 24 h and annealed at 200 ◦C. The severe plastic
deformation process chosen was ECAP, and the results showed that after 4 ECAP passes,
the grain size had reduced to 0.2 mm, with hardness and tensile yield strength increased by
20.45% and 103.5%, respectively. Moreover, 4 ECAP passes exhibited the highest ultimate
tensile strength of 324.8 MPa.

This study investigates the impact of alloying (increasing Zn content), solution heat
treatment (T4 heat treatment), and severe plastic deformation (ECAP) on the strength
enhancement of AZ61 magnesium alloy. There is a lack of comprehensive research on
the combined effects of heat treatment and ECAP on the mechanical properties of AZ61
Mg alloy. Thus, this investigation delves into the microstructure analysis, mechanical
properties, and corrosion resistance of both AZ61 alloy and AZ61 + 4 wt.% Zn, considering
the influence of heat treatment and ECAP.

2. Materials and Methods
2.1. Materials Preparation

A commercial AZ61 magnesium alloy (mainly composed of Al-6% and Zn-1%) (Bo Tao
Nanotechnology Co., Ltd., Taipei, Taiwan) served as the matrix component. The chemical
composition of AZ61 magnesium alloy is shown in Table 1. Zn powder (4 wt.%) (Emperor
Chemical Co., Ltd., Taipei, Taiwan) particles were used as reinforcements.

Table 1. The chemical composition of AZ61.

Elements Mg Al Zn Mn Si Fe Cu Ni

wt.% balance 6.25 1.24 0.27 0.06 0.03 0.01 0.01

The alloys were produced using a stir-casting technique as illustrated in Figure 1.
Initially, the base material and reinforcement were placed into the crucible furnace. When
the temperature reached 400 ◦C, a mixture of SF6 + CO2 gas was added to prevent burning.
Subsequently, the temperature was raised to 600 ◦C using Ar gas to prevent oxidation.
Once the temperature reached 760 ◦C, it was held for ten minutes. Following this, the
mixture was stirred rapidly for 20 min at 250 rpm to disperse the reinforcement particles.
After completing the stirring process, the plunger was raised to allow the molten metal to
flow into the mold. The material was then extracted and left to solidify through natural
air cooling. Finally, the last casting was removed, and the mains power supply was shut
down [23]. Two different types of cylindrical ingots were prepared using the same method
and fabrication process: 1) AZ61 and 2) AZ61 + 4% Zn.
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perature to ensure the integrity of the heat-treatment process. The purpose of this heat-
treatment procedure is to tailor the material’s crystal structure and mechanical properties 
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cation process (Figure 2), was carried out on a preheated mold of the ECAP device at 350 
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X-ray Diffraction (XRD) pa erns were analyzed using the Bruker D2 PHASER X-ray 
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pa erns were compared with the data from the Joint Commi ee of Powder Diffraction 

Figure 1. Experimental setup of the stir-casting furnace used for fabrication of the Mg ingot.

Consequently, the ingots were cut into bars measuring 11.5 mm × 11.5 mm × 75 mm,
to facilitate subsequent processing steps, including specific heat treatment and Equal
Channel Angular Pressing (ECAP) shown in Figure 2.
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Figure 2. Equal Channel Angular Pressing (ECAP) setup using 120 degrees.

In this study, we employed the T4 solid solution treatment to fabricate our specimens.
Initially, the samples underwent a 24 h heat treatment at 380 ◦C to achieve a specific
solid solution effect. Subsequently, the treated specimens were directly quenched at room
temperature to ensure the integrity of the heat-treatment process. The purpose of this heat-
treatment procedure is to tailor the material’s crystal structure and mechanical properties to
meet the requirements of our research. Following the heat treatment, the ECAP fabrication
process (Figure 2), was carried out on a preheated mold of the ECAP device at 350 ◦C
for 40 min. Subsequently, a single pass of ECAP was conducted with a channel angle of
120 degrees and a pressing speed of 20 mm/min.

2.2. Microstructural Characterization

X-ray Diffraction (XRD) patterns were analyzed using the Bruker D2 PHASER X-ray
(Bruker Co., Boston, MA USA) Diffractometer. Operating at 45 kV, the anode copper
(monochromatic Cu Kα) source provided detailed crystalline-structure insights in the 20- to
80-degree range at a 0.04 ◦/s scan rate. Subsequent data analysis was performed utilizing
the Bruker EVA 5.2 software (Bruker Co., Boston, MA, USA). The obtained diffraction
patterns were compared with the data from the Joint Committee of Powder Diffraction
Standards (JCPDS) database, a widely recognized reference, to confirm the metallic phase
composition and identify variations in diffraction planes.
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Optical microscopy (OM) analysis was performed using the Zeiss Axiotech 25HD
(Oberkochen, Germany) microscope. Prior to observation, the material underwent meticu-
lous sample preparation, including wet grinding with 4000-grit sandpaper and polishing
with a mixture of 50 nm aluminum oxide powder and deionized water (1:5 ratio). The
optimized surface preparation aimed to achieve a uniform and smooth sample for detailed
optical examination. Subsequently, a suitable etchant was applied to unveil the metallo-
graphic features, as specified in Table 2 (Emperor Chemical Co., Ltd., Taipei, Taiwan). The
microscope facilitated the detailed observation of macroscopic morphology, grain size,
and defects.

Table 2. Etching solution combination.

Ethanol (mL) DI Water (mL) Acetic Acid (mL) Picric Acid (g) Time (s)

100 10 5 6 25

SEM analysis using the JEOL 7900F FE-SEM (Japan) allowed high-magnification ob-
servation of the material’s surface morphology and microstructural features. Equipped
with Energy Dispersive Spectrometry (EDS), it allowed comprehensive elemental analysis,
enhancing understanding of the material’s composition and distribution at the micro-
scopic level.

2.3. Mechanical Characterization

A Vickers hardness tester FR-1AN (Tokyo, Japan) with VHPro Express software,
adhering to ASTM E18–94 standards, was employed to analyze the hardness of AZ61 alloys.
Using a 100 gf load, the machine created a rhombic impression on the material’s surface
with a pyramidal diamond indenter (136◦ included angle) and an indentation duration of
10 s. In this experiment, a total of 6 sets of specimens were tested, with 6 different points
selected on each specimen for hardness testing, and the average values were calculated.

Compression testing adhered to the ASTM E9 standard, utilizing specimens sized
at 20 × 10 × 10 mm3. The MTS-810 (MTS systems Corp., Cary, NC, USA) Compression
Testing Machine was employed for the experiments. Each specimen underwent three
compression tests, and the average values were calculated to determine the material’s
properties, including EL (%), YS (MPa), and UCS (MPa).

2.4. Corrosion Properties

The experiment adhered to ASTM B117 standards. A 72 h salt spray test was conducted
using deionized water containing 5% NaCl to induce corrosion behavior. The testing
environment was maintained at a strict temperature of 35 ± 0.5 ◦C. Through meticulous
observation and detailed corrosion-area measurements, this study aimed to evaluate the
material’s corrosion resistance and performance under harsh environmental conditions.
The specimen dimensions were 20 mm × 10 mm × 10 mm, with one specimen taken for
each material. The top surface of the specimens was selected for observation, as it is least
affected by contact with the testing platform, thus providing a more accurate assessment of
corrosion behavior.

3. Results
3.1. Phase Characterization

Figure 3 illustrates the X-ray diffraction (XRD) analysis of AZ61 alloy (Figure 3a) and
AZ61 + 4 wt.% Zn alloy (Figure 3b). XRD peaks corresponding to the α- Mg0.97Zn0.03 phase
and β-Mg17Al12 phase are observed in both as-cast AZ61 and AZ61 + 4 wt.% Zn. No zinc
containing phase is detected, as zinc has a certain solid solubility in magnesium and thus
exists in the form of Mg0.97Zn0.03 [24]. In the XRD patterns within the 2θ range of 30◦–45◦, a
noticeable decrease in the intensity of β-Mg17Al12 phase XRD peaks (411), (332) is observed
after T4 heat treatment for both AZ61 and AZ61 + 4 wt.% Zn alloys. Moreover, after
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undergoing ECAP with one pass, only the α—Mg0.97Zn0.03 phase was observed, indicating
homogenization and dissolution of the β-Mg17Al12 phase during the ECAP process. It is
worth noting that this dissolution phenomenon may be attributed to the ECAP process and
to heat treatment prior to the ECAP process. These XRD results align with the observations
from optical microscopy (OM), as depicted in Figure 4.
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In Figure 3, the analysis of the XRD reveals the texture change of the AZ61 alloy
after passing through the ECAP channel, which is shown compared to the zero pass.
Typically, the basal plane (002) and (100) line of the material are parallel to the extrusion
direction [25]. A similar trend is also observed in the SPD-processed samples of AZ61 alloy,
where the largest grain distribution aligns parallel to the extrusion direction. From previous
studies, it has been noted that after the ECAP process, the peak intensity of the (100) line in
magnesium alloy samples increases, resulting in an increase in the alloy’s strength [26]. In
Figure 3b, the (100) line becomes more intense than the (002) line in the AZ61 + 4 wt.% Zn
alloy after ECAP, exhibiting higher mechanical properties.
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3.2. Microstructure Evaluation

The OM analysis of the as-cast, homogenized, and ECAP-1 Pass AZ61 alloys are shown
in Figure 4a,d depicting the as-cast AZ61 and AZ61 + 4 wt.% Zn, respectively. With an
increase in zinc content of 4 wt.% (indicated by yellow arrows), Mg-Zn phases and second
phases are observed growing along grain boundaries, with dispersion becoming more
uniform. Figure 4b,e represents the AZ61 and AZ61 + 4 wt.% Zn after the homogenization
treatment. It reveals that most of the second phase and Zn has dissolved into the α-Mg
matrix, but some remnants are still present along the grain boundaries (highlighted by
yellow arrows). In particular, the solid solution effect is most pronounced in the AZ61
+ 4 wt.% Zn alloy, as evidenced in the results in Figure 4e, indicating that the T4 heat
treatment at 380 ◦C has a higher solid solution effect on Zn.

Figure 4c,f shows the AZ61 and AZ61 + 4 wt.% Zn after one pass of ECAP. Compared
to T4 homogenization conditions, the grain size of the samples subjected to ECAP is
significantly refined, which can be mainly attributed to the significant contribution of the
dynamic recrystallization (DRX) mechanism. The sample with 4 wt.% zinc content shows a
more pronounced grain refinement as shown in Figure 4f (highlighted by yellow circles),
with larger areas of extensive grain refinement and the generation of more fragmented
small grains.

The grain size distribution, as shown in Figure 5, indicates that severe plastic de-
formation processes improve the microstructure of the alloy, resulting in a significant
grain-refinement effect. Figure 5a,d depicts the grain size distribution in the alloy OM
images after T4 heat treatment, showing the presence of coarse grains with average sizes of
37.62 ± 8.81 µm (AZ61) and 33.82 ± 6.32 µm (AZ61 + 4 wt.% Zn). Figure 5b,c illustrates
the microstructures of AZ61-ECAP and AZ61 + 4 wt.% Zn-ECAP alloys, respectively. Com-
pared to the T4 heat treatment alloy, their grains are significantly refined to average sizes of
17.38 ± 5.12 µm and 13.36 ± 3.75 µm, respectively. OM images (Figure 4) show that some
parent grains in the alloy after the ECAP process are surrounded by small DRX grains, with
the volume fraction of DRX grains increasing with the addition of 4 wt.% Zn, resulting in
the smallest average grain size.
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Figure 6 presents the SEM analysis and EDS analysis of as-cast AZ61 (Figure 6a) and
AZ61 + 4 wt.% Zn (Figure 6b). The images indicate that the second phase in AZ61 without
added zinc is mostly Mg-Al (highlighted by red arrows), forming clustered spherical shapes
that are unevenly distributed. In contrast, AZ61 + 4 wt.% Zn exhibits a Mg-Al second phase
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and a Mg-Zn phase (highlighted by red arrows), presenting long and slender shapes that
are uniformly distributed along the grain boundaries. These evenly distributed structures
influence the strength of the metallic alloy [27].
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3.3. Mechanical Properties

The stress–strain curves of AZ61 and AZ61 + 4 wt.% Zn under as-cast, T4, and ECAP
conditions are presented in Figure 7a,b. As indicated in Table 3, the T4 and ECAP pro-
cess did not significantly affect the ductility of the materials, but there were variations
in both the yield strength (YS) and ultimate compression strength (UCS). The T4 homog-
enization treatment slightly decreased the mechanical properties of AZ61, reducing the
YS (115.42 MPa) and UCS (353.97 MPa) by 7.42% and 4.17%, respectively. After ECAP
treatment, the YS (141.53 MPa) and UCS (400.48 MPa) of AZ61 significantly improved
compared to the as-cast alloys, increasing by 13.52% and 8.43%, respectively.
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Table 3. A summary of the mechanical characteristics of the AZ61 and AZ61 + 4 wt.% Zn alloy.

Metallic Alloys Process EL (%) YS (MPa) UCS (MPa) Hardness (HV)

AZ61 as-cast 19.26 ± 4.24 124.67 ± 3.60 369.36 ± 4.24 67.88 ± 5.61
T4 21.83 ± 2.60 115.42 ± 5.05 353.97 ± 7.71 63.87 ± 4.14
ECAP 22.96 ± 2.84 141.53 ± 3.80 400.48 ± 4.10 77.44 ± 3.12

AZ61 + 4 wt.% Zn as-cast 18.49 ± 4.88 138.55 ± 4.14 384.43 ± 9.55 79.33 ± 6.63
T4 19.73 ± 2.50 117.42 ± 3.40 365.43 ± 6.74 64.82 ± 5.74
ECAP 20.58 ± 3.66 145.88 ± 3.14 421.79 ± 4.25 84.83 ± 2.62

For AZ61 + 4 wt.% Zn, the T4 treatment decreased the YS (117.42 MPa) and UCS
(365.43 MPa) by 15.25% and 4.94%, respectively. After the ECAP process, the mechan-
ical properties of AZ61 + 4 wt.% Zn were maximized, with YS (145.88 MPa) and UCS
(421.79 MPa) increasing by 5.29% and 9.72%, respectively. The results of compression tests
indicated that the ECAP process had a greater influence on the mechanical properties of
the materials than did the T4 homogenization treatment.

Figure 7c and Table 3 demonstrate a slight decrease in hardness after T4 heat treatment
for both materials, with AZ61 + 4 wt.% Zn showing a decrease of 18.29%. Figure 4d,e
illustrates the substantial incorporation of the β-phase into the α-phase resulting from T4
heat treatment in AZ61 + 4 wt.% Zn. After ECAP, the significant grain refinement in AZ61,
as shown in Figure 7d, leads to a hardness increase to 77.44 HV.

3.4. Corrosion Properties

The results of salt spray tests are depicted in Figure 8. Figure 8a shows poor corrosion
resistance on the surface of AZ61-as-cast, with uneven surface corrosion and numerous
corroded pits (highlighted by yellow circles). Figure 8b,c displays the uneven corrosion on
AZ61 after T4 heat treatment and ECAP. Figure 8d–f shows specimens of AZ61 + 4 wt.%
Zn after different processing steps. With the addition of 4 wt.% Zn, the corrosion area
becomes more uniform, with only a few corroded pits observed in Figure 8d AZ61 + 4 wt.%
Zn-as-cast. The best corrosion resistance is observed in Figure 8f for AZ61 + 4 wt.% Zn
after ECAP, with a majority of the surface remaining uncorroded and exhibiting a bright
appearance.
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4. Discussion

In this study, the influences of zinc addition and secondary processing on the me-
chanical properties of the AZ61 magnesium alloy have been thoroughly investigated. The
initial observations revealed the presence of aluminum (Al) in the form of β-Mg17Al12
precipitates within the magnesium alloy matrix [28,29], as illustrated in Figure 4a. During
the homogenization process, an increase in temperature led to an enhanced solubility of
aluminum in the magnesium matrix. The β-Mg17Al12 phase was observed at grain bound-
aries, which eventually dissolved into the α-Mg supersaturated solid solution and cooled
in the form of fine particles [30]. The second phase significantly affected the mechanical
and corrosion properties of magnesium alloy [31], as confirmed by the findings presented
in Figure 6b.

The addition of 4 wt.% zinc, as depicted in Figure 6b, induced structural modifications
in the magnesium alloy, impacting the lattice structure and solid solubility [32]. This
transformation resulted in a shift from coarse to elongated structures and a more uniform
distribution of the Mg-Zn phase and second phase [33]. These phenomena significantly
influenced the alloy’s mechanical performance, corrosion resistance, and other properties,
as evidenced in Table 3.

Upon subjecting the alloy to T4 heat treatment, dual-grain structures were created.
The heat-treatment process led to recrystallization or growth of grains, with the forma-
tion of dual-grain structures due to uneven growth rates in different directions during
solidification [34]. Additionally, the presence of impurity cores within the material during
heat treatment possibly guided grain orientation, contributing to the observed dual-grain
structures [23]. T4 heat treatment adversely affected the mechanical properties of the AZ61
magnesium alloy, resulting in a decrease in both strength and hardness, as outlined in
Table 3.

The strength behavior of materials processed through Severe Plastic Deformation
(SPD), such as Equal Channel Angular Pressing (ECAP), is primarily influenced by grain
size, dislocation density, and crystallographic texture [35–37]. The reduction in grain
size, as illustrated in Figure 7d, showing post-ECAP processing of AZ61 + 4 wt.% Zn,
demonstrated a pronounced grain-refinement effect, effectively enhancing mechanical
strength. The improved strength can be attributed to Orowan strengthening and the load-
carrying effect [38]. The heat treatment performed during the ECAP process facilitated the
complete dissolution of β-Mg17Al12 into the α phase, as shown in Figure 4c,f, contributing
to the enhancement of material mechanical properties.

The hardness test results in Figure 6c align with the research conducted by S.J Huang
et al. [39]. The authors investigated the impact of ECAP on grain refinement in AZ61
magnesium alloys, demonstrating that an increase in the number of ECAP passes leads to a
reduction in average grain size, accompanied by an increase in both hardness and ductility.
Therefore, the observed hardness outcomes may be attributed to grain refinement, the size
of hard phase particles, and strain hardening during the ECAP process.
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This study explored the impacts of the presence, morphology, and distribution of the
second phase in magnesium alloys on corrosion resistance (Figure 8). In Figure 8a,d, it is
shown that the surface of AZ61-as-cast exhibits severe collapse, indicating a high corrosion
rate during the salt spray test. After the addition of 4 wt.% Zn, a uniform corroded surface
is formed. Dark corrosion pits (highlighted by yellow circles) are observed, indicating
localized corrosion attacks during the salt spray test. It is noteworthy that the presence of
pits is detrimental to overall corrosion resistance, and the degradation of AZ61 + 4 wt.%
Zn-as-cast will proceed through one or more pit corrosion [40]. The AZ61 + 4 wt.% Zn alloy
exhibits milder pit corrosion, while the AZ61 alloy accompanies severe collapse across the
entire surface, indicating the slowest corrosion rate for AZ61 + 4 wt.% Zn alloy, whereas
AZ61 alloy exhibits significant non-uniform corrosion.

Post-ECAP treatment, AZ61 + 4 wt.% Zn exhibited increased corrosion resistance,
potentially associated with the size and distribution of second-phase particles [33]. The
transformation of large, coarse second-phase particles to smaller sizes and a more uniform
distribution after ECAP treatment was crucial for improved corrosion resistance [41].
The role of ECAP in influencing these microstructural features, especially the small and
uniformly distributed second phase, proved essential in mitigating the micro-galvanic
effect. Moreover, the significant reduction in grain size compared to cast alloy further
enhanced corrosion resistance (Figure 4f). As grain size decreases, the density of lattice
defects, such as grain boundaries and high dislocation density, increases, leading to an
increase in the fraction of grain boundaries. Studies have shown that high-density lattice
defects, such as grain boundaries and high dislocation density, are more likely to form a
dense and uniform passivation layer [42]. These high-density lattice defects will enhance
the stability and integrity of the passivation film, thereby improving the corrosion resistance
of the alloy.

In conclusion, our study highlights the efficiency of alloying element addition and sec-
ondary processing in tuning the microstructure of magnesium alloys, leading to improved
mechanical performance and corrosion resistance. The findings underscore the potential for
tailoring magnesium alloy properties for specific applications through controlled alloying
and processing techniques.

5. Conclusions

In this research, the stir-casting method was employed to fabricate AZ61 and AZ61 +
4 wt.% Zn magnesium alloy. The influence of Equal Channel Angular Pressing (ECAP) on
the microstructure, mechanical properties, and corrosion resistance of the materials was
thoroughly investigated. The key findings and conclusions are summarized as follows:

(1) Microstructural analysis revealed that the addition of 4 wt.% Zn resulted in a sig-
nificant refinement of grain size and promoted the uniform distribution of Mg-Zn
phases and β-Mg17Al12 phases along grain boundaries. This refinement was further
enhanced after ECAP processing, leading to a more pronounced grain refinement in
AZ61 + 4 wt.% Zn. This refinement played a crucial role in the notable improvement
of mechanical and corrosion properties.

(2) The region with the most extensive Dynamic Recrystallization (DRX) grain refinement
was observed in AZ61 + 4 wt.% Zn after ECAP processing, showcasing the highest
yield strength (145.88 MPa), ultimate compression strength (421.79 MPa), and hardness
(84.83 HV).

(3) T4 heat treatment demonstrated a significant impact on the solid solution of Mg-Zn
phases and β-Mg17Al12 phases in Mg-Al-Zn alloys. Especially in AZ61 + 4 wt.%
Zn, the Mg-Zn phases are completely dissolved in the Mg alloy during the T4 heat
treatment.

(4) ECAP has been demonstrated as an effective method for enhancing the mechani-
cal properties and corrosion resistance of magnesium alloys. The results indicate
that ECAP has increased the mechanical properties of AZ61 + 4 wt.% Zn, showing
improvements of 5.29% in YS and 9.72% in UCS. Furthermore, with regard to corro-
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sion properties, ECAP significantly reduced the corrosion rate and promoted a more
uniform corrosion surface.
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