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Abstract: Aluminosilicates, such as montmorillonite, kaolinite, halloysite, and diatomite, have a
uniform bidimensional structure, a high surface-to-volume ratio, inherent stiffness, a dual charge
distribution, chemical inertness, biocompatibility, abundant active groups on the surface, such as
silanol (Si-OH) and/or aluminol (Al-OH) groups. These compounds are on the list of U.S. Food and
Drug Administration-approved active compounds and excipients and are used for various medicinal
products, such as wound healing agents, antidiarrheals, and cosmetics. This review summarizes
the wound healing mechanisms related to the material characteristics and the chemical components.
Numerous wound dressings with different active components and multiple forms have been studied.
Then, medicinal mineral resources for use in hemostatic materials can be developed.

Keywords: clay; aluminosilicate; hemostasis mechanism; ionic effect; hemostatic material

1. Introduction

In various societal accidents, numerous wounded people die due to massive hem-
orrhage and ineffective hemostasis [1–3]. The development of hemostatic materials with
various active components and in different forms to achieve more efficient hemostasis in
wound healing has continued to increase during long-term studies [4–7]. These commercial
hemostatic materials include kaolinite, which is used in combat gauze from Z-Medica
Corp. (Wallingford, CT, USA); zeolite, which is used in QuikClot from Z-Medica Corp.;
montmorillonite, which is used in WoundStat from TraumaCure Inc. (Bethesda, MD,
USA); mesoporous silicon and chitosan, which are used in TraumaStat from Ore-Medix
Inc. (Salem, OR, USA); chitosan, which is used in Celox from MedTrade Inc. (Houston,
TX, USA) and ChitoGauze Pro from HemCon Inc. (Portland, OR, USA); and cellulose,
which is used in Traumastem from Bioster Inc. (Stillwater, MN, USA) [8]. These hemostatic
materials act by absorbing water from the blood and concentrating the blood components,
activating platelets and blood coagulation cascade reactions, and providing a physical
barrier at the hemorrhagic site. In addition, multiple forms, including particles, hydrogels,
nanofibers, and sponges, also influence their functions and applications.

Medicinal mineral resources with less market share should be noted, such as cellulose,
starch, collagen, chitosan, fibrinogen, etc., because these medicinal mineral resources are
distinctive components in traditional Chinese medicine. Their characteristics, including
chemical compositions, internal structures, and trace elements, will influence medicinal
methods, medicinal efficacies, and remedy-based results. There are more than 80 kinds of
medicinal mineral resources, including metals and nonmetals in single-element minerals and
compound minerals, which are substances, excipients, or additives in antibacterial, hemostasis,
wound healing, and other therapeutic drug applications [9,10]. Hemostatic minerals are
distinctive and indispensable components in traditional Chinese medicinal mineral resources.
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They are present in compound minerals, such as stalactite, calcite, limonitum, ochre, kaolinite,
montmorillonite, and zeolite, more often than in single-element minerals.

Natural aluminosilicate clay minerals refer to those materials containing Si-O-Al
linkages, sometimes accompanied by variable amounts of iron (Fe), magnesium (Mg),
titanium (Ti), alkali metals, alkaline earth, and other cations. Natural aluminosilicate clays,
such as montmorillonite, kaolinite, halloysite, and diatomite, are used as multinational
Food and Drug Administration-approved excipients or additives in various biomedical
applications owing to their characteristics, such as natural shape, large specific surface area,
high surface-to-volume ratio, dual-charge distribution, active groups, inherent stiffness,
chemical inertness, high adsorption and swelling capacities, and biocompatibility [11–15].
Kaolinite, with the theoretical chemical formula of Al2Si2O5(OH)4, consists of one Al-
octahedral sheet and one Si-tetrahedral sheet. The active groups include Al-OH groups on
the outer surface and Si-OH groups or Al-OH groups on the end face [16,17]. Halloysite,
with the theoretical chemical formula Al2Si2O5(OH)4·nH2O, consists of one Si-tetrahedral
sheet-based outer surface and one Al-octahedral sheet-based inner surface. The active
groups include Al-OH groups on the inner surface, Si-OH groups on the outer surface, and
Al-OH groups or Si-OH groups on the end faces. The dual-charge distribution (negative
charges on the outer surface and opposite charges on the inner surface) results from the
different groups on the inner surface and outer surface [18,19]. Montmorillonite, with
the theoretical chemical formula (M+

x+y·nH2O){(A12−xMgx)[Si4O10](OH)2}, consists of
one Al-octahedral sheet and two Si-tetrahedral sheets, where M refers to an exchangeable
cation. According to the literature, as of August 2020, there were 222 commercial clay-
based commodities with nanotechnologies on the global market, involving 25 countries,
125 companies, and 70 items. The United States ranked first in total, with 66 commodities,
36 companies, and 28 items, and food items were ranked first. China ranked second in
total, with 39 commodities, 21 companies, and 16 items, and medicine items were ranked
first (Figure 1) [20].
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In this review, the hemostasis mechanism related to the basic characteristics and chem-
ical composition are studied, numerous wound dressings with different active components
and multiple forms are described, and then an outlook for the future is presented.
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2. Hemostatic Mechanism

Hemostasis is the first stage in wound healing and immediately starts to reduce blood
loss at the wound site in the first minutes. Hemostatic materials are more effective in control-
ling hemorrhage and even in accelerating wound healing abilities. Therefore, the hemostatic
material and its hemostatic biological mechanisms should be summarized in a continuous
manner that could be a valuable reference in clinical therapeutics. The hemostatic mechanism
for clays is related to their internal structures (one-dimensional or two-dimensional), charac-
teristics (surface roughness, the surface/end charge, and wettable surface), main chemical
compositions (silicon, Si; aluminum, Al), trace elements (calcium, Ca; zinc, Zn; copper, Cu;
et al.), etc. The nano-bio interactions and hemostatic effects following treatment with clays at
the cellular, molecular, and in vivo levels are being revealed.

2.1. Hemostatic Mechanism Related to Material Characteristics

In this section, the hemostatic mechanism related to the surface roughness, the sur-
face/end charge, and the wettable surface are discussed (Figure 2).
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2.1.1. Surface Roughness

Clay surface morphologies, including surface roughness, surface curvature, and
surface texture, could affect various protein adsorption properties, including the total
adsorption amount, adsorption thickness, competitive adsorption, and conformational
changes [21,22].

Clays first adsorb plasma proteins in seconds after contact with the blood due to
the concentration and diffusion rate in blood. Blood coagulation-related plasma proteins
include albumin, γ-globulin, and fibrinogen. Albumin adsorption helps to inhibit blood
coagulation on the clay surface. Fibrinogen adsorption and its conformational changes
activate blood coagulation factors and platelets, and then thrombi form.

Research has shown that a higher surface roughness results in a larger exposed
area in blood and easier clotting; i.e., surface roughness correlates with clotting [22,23].
Notably, clay surface modification can enhance surface smoothness, which is beneficial
for reducing thrombosis.

2.1.2. Surface Charge

Clay surface charges result from the internal structure, chemical composition, and
exchangeable ions of these materials. Clays often have a dual charge distribution and a net
negative charge in aqueous suspensions.
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Most blood components have a negative charge and can be adsorbed onto clay surfaces
with opposite charges through electrostatic attraction, causing coagulation and thrombosis.
Notably, a clay surface with a negative charge can activate coagulation factor XII and
subsequently cause intrinsic coagulation, even without the adsorption of blood components
and cell adhesion [24,25].

Research has shown that clay surfaces with different charge distributions and the
amount of charge in units influence blood coagulation. Surface modification with the
charged groups to obtain a suitable charge distribution range on the clay surface could
facilitate blood coagulation.

2.1.3. Wettable Surface and Other Factors

Clay surface groups, including -OH, -COOH, and even -NH2, could facilitate the
formation of a water-wettable region used in protein adsorption [26]. In addition, clays
with higher surface free energy result in larger clay-blood component interactions, which
could facilitate protein adsorption and blood coagulation. Notably, clay surfaces with
hydrophobic groups could not adsorb those proteins efficiently because of the large in-
terfacial free energies, so blood coagulation activation was needed; that is, the adhesion
characteristics between the clay surface and the blood components were much smaller than
the cohesion characteristics between the blood components within the blood.

2.2. Hemostatic Mechanism Related to Chemical Components

Aluminosilicate clays mainly consist of SiO2 and Al2O3 and contain certain amounts
of Fe2O3 and MgO, as well as small amounts of K2O, Na2O, and CaO. Skin’s surface
environment is weak acidic, and weak acidic environments have been shown to aid wound
healing. Metal cations could come out from these metal oxides in weak acidic conditions
and even in neutral solutions. Besides, clay surfaces with negative charges tend to attract the
opposite cations. In particular, Ca2+, Zn2+, Fe2+, and Mg2+ can facilitate blood coagulation
(Figure 3) [27,28].
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Figure 3. An overview of the hemostatic mechanism related to chemical components. HIF: hypoxia-
inducible factor; TNF: tumor necrosis factor; VEGF: vascular endothelial growth factor; ROS: reactive
oxygen species. Reprinted with permission from ref. [27]. 2019, Elsevier.

2.2.1. Calcium Ions

In intrinsic coagulation pathways, calcium ions can assist in factor IX (FIX) activation
and even activate factor X (FX) through combination with activated (FIX). In extrinsic
coagulation pathways, calcium ions can accelerate the binding of exposed tissue factor (TF)
and factor VII (FVII), which activate FX. In common pathways, calcium ions can facilitate
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prothrombin transformation into thrombin, assist with phospholipids, and activate FX,
which can accelerate fibrinogen conversion into fibrin monomers. In addition, calcium ions
can enhance platelet aggregation in platelet-rich plasma and assist in factor XIII (FXIII)
activation, which converts soluble fibrin monomers into stable fibrin multimers [29].

The epidermis is composed of the basal layer, spinous layer, granular layer, transparent
layer, and stratum corneum. Keratinocytes are the main constituent cells of the epidermis
and are tightly connected by intercellular bridges, forming a barrier. The calcium ion
concentration affects keratinocyte proliferation, keratinocyte differentiation, keratinocyte-
to-keratinocyte junctions, and keratinocyte barrier function in the epidermis [30–32]. The
calcium ion concentration inside and outside the keratinocytes from the basal cell layer
to the granular layer increases from a low level to a high level, while the calcium ion
concentration in the stratum corneum is low. This calcium ion concentration gradient
causes the different layers of the epidermis to undergo different degrees of differentia-
tion. Notably, the calcium ion concentration gradient from the inside to the outside of
keratinocytes is maintained by the active transport of the cell membrane, endoplasmic
reticulum, and inner mitochondrial membrane. The molecular biological mechanism by
which calcium ions regulate the division and differentiation of keratinocytes involves
increasing the intracellular calcium ion concentration, linking calmodulin with intracellular
calcium ions, activating various intracellular enzymes by calmodulin, and regulating the
division and differentiation of keratinocytes. Low extracellular calcium concentrations
promote keratinocyte proliferation, and high extracellular calcium concentrations promote
keratinocyte differentiation and intercellular adhesion.

Various studies have reported the use of calcium-based biomaterials in wound heal-
ing [33]. Calcium-crosslinked alginates have been used for acute and chronic wound healing
because calcium ions can assist the clotting cascade [34]. Moreover, calcium carbonate
nanoparticles (topical injection or intravenous injection) and calcium phosphate particles
(topical injection or topical dressing) have promoted calcium ion-induced wound healing.
During wound healing, calcium-containing bioglass has been shown to promote the pro-
liferation, migration, and protein and growth factor expression of endothelial cells and
fibroblasts [35]. Calcium ions incorporated microporous hydrogel (illustrated in Figure 4)
that could accelerate wound healing through the blood or tissue fluid absorbing on the
wound surface due to the hydrogel’s characteristics and activating the coagulation cascade
with calcium ions released [36].
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2.2.2. Zinc Ions

Zinc ions are involved in more than 300 enzymes and several transcription factors.
During wound healing, zinc ions are involved in epithelial tissue differentiation, metalloth-
ionein transport, and storage, reducing UV-induced cell and gene damage and improving
the tolerance of skin fibroblasts to oxidative stress [37].

Zinc ion levels in plasma have a significant effect on hemostasis [38,39]. Zinc ions
can regulate high-molecular-weight kininogen (HMWK) and factor XII (FXII) to achieve
negatively charged surface binding to potentiate the intravascular clotting process. In
particular, the combination of HMWK and vascular endothelial cells is important for
the activation of FIX and factor XI (FXI) [40,41]. In addition, zinc ions can protect
calcium ion channels through chelation, ensure the production of calcium-dependent
protein kinases during platelet activation, and then facilitate platelet activation [34].
Clinical research has shown that low zinc intake causes poor platelet aggregation and an
increased bleeding tendency in adult males, and this condition can be remedied through
zinc supplementation.

Zinc is an essential trace element for maintaining the human immune system and
immune cell metabolism. Zinc ions are important for the directed proliferation, apoptosis,
and intracellular signaling of immune cells [42–44]. Low levels of zinc ions can reduce
neutrophil chemotaxis and phagocytosis. Zinc ions are directly involved in protein synthe-
sis, and low zinc concentrations can also affect protein structures and charge states. Zinc
ions bind to different amino acid ligands and have different functions, such as maintaining
protein structure, redox balance, and cell cycling. For example, zinc ions can affect the
ion channel conformation through binding to histidine (His), cysteine (Cys), aspartic acid
(Asp), and glutamic acid (Glu) residues. Ion channels are important in various immune cell
signaling pathways, especially in T cells and B cells. This explains the indirect effects of
zinc ions on intracellular signaling and immune responses [45].

Zinc ions play an important role in the wound-healing process by supporting tissue
growth and repair [46,47]. Zinc-dependent matrix metalloproteases can degrade almost
all components in the extracellular matrix. These endopeptidases are called matrix met-
alloproteinases because certain metal ions are required as active sites. These enzymes
can originate from several different cells in the wound, such as keratinocytes, fibrob-
lasts, macrophages, endothelial cells, mast cells, and eosinophils. Zinc ion-dependent
endopeptidases play important roles in cell proliferation, migration, differentiation,
angiogenesis, apoptosis, and host defense [48]. In addition, zinc is similar to copper
and manganese and can enhance autologous debridement and keratinocyte migration
during wound healing.

Research has shown that zinc oxide nanoparticles can produce reactive oxygen
species (ROS). They can also facilitate cell migration and adhesion and even accelerate
the wound-healing process by triggering growth factor-mediated pathways. With the
generation of ROS, zinc oxide nanoparticles inhibit the expression levels of superox-
ide dismutase and glutathione peroxidase genes in human keratinocytes and induce
oxidative stress and apoptosis in the cell membrane. Furthermore, the higher zinc
oxide nanoparticle concentrations are associated with mitochondrial dysfunction in ker-
atinocytes, releasing lactate dehydrogenase. Zinc ions incorporated scaffold (illustrated
in Figure 5) could accelerate the innervated and vascularized skin burn wound healing
through the sustained released zinc ions that could enhance the angiogenic abilities and
neurogenic activities in vitro [49].
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2.2.3. Iron Ions

Iron is an indispensable trace element in humans, and its absorption occurs in the
duodenum. Most iron exists in red blood cells in the form of hemoglobin, and the free Fe3+

in the plasma can combine with proteins or enzymes to maintain the normal function of the
human body. Hepcidin is a peptide hormone that regulates iron homeostasis during iron
metabolism, inhibits iron absorption via intestinal mucosal epithelial cells, and regulates
the absorption, transport, and utilization of iron in the body.

Thrombin can activate FXIII to generate FXIIIa, convert soluble fibrinogen in plasma
into insoluble fibrin monomers, and then the insoluble fibrin monomers interweave into
a network to form firm fibrin polymers to achieve rapid hemostasis. Thus, iron ions
have a certain influence on fibrin clot formation because iron ions easily combine with
protein, Fe3+ can react with hemoglobin in blood and aggregate into thrombi blocked
in blood vessels, and free Fe3+ modifies fibrinogen molecules for resistant fibrinolysis
and stimulates the coagulation cascade reaction, and these phenomena have roles in
thrombosis [50]. Studies have shown that iron oxide nanoparticles can affect thrombin
clotting activities [51]. A lower iron content can cause increased reactive thrombocytosis
and then lead to thrombosis. Excess ferrous ions can cause an increase in hydroxyl radicals
and then accelerate thrombosis.

Ferrous Fe ions is a prolyl hydroxylase (heme iron(II)-independent dioxygenase)
cofactor that could participate in the regulation of hypoxia inducible factor-1α (HIF-1α)
hydroxylation during hypoxia. A lower iron ion content results in HIF-1α accumulation
due to its stabilization. The increased levels of HIF-1α and vascular endothelial growth
factor (VEGF) can be beneficial for angiogenesis and even in wound healing. However,
HIF-1α accumulation affects the expression of the proinflammatory cytokine macrophage
migration inhibitory factor, which could cause inflammation.

Research has shown that Fe doping and NIR laser irradiation contribute to fibroblast
proliferation, neovascularization, and collagen deposition, thus enabling the iron-doped
carbon dots-mediated healing of bacteria-infected wounds [52]. Fe doping endows carbon
dots with photo-enhanced peroxidase-like activity, which leads to the generation of heat
and ROS to kill gram-positive and gram-negative bacteria. Iron ion incorporated hydrogel
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(illustrated in Figure 6) that could accelerate the infected diabetic wound healing through
the released ferrous Fe ions that could induce bacterial death [53].
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Figure 6. Iron ion incorporated hydrogel with its (a1–a5) fabrication illustration and materials charac-
terization ((a1): fabrication illutration; (a2): photos; (a3): FeS’s TEM; (a4): FeS’s elemental mapping;
(a5): FeS/GA hydrogel’s SEM, with red circles indicating FeS), (b1,b2) antibacterial characterization
and mechanism, (c) in vivo infected diabetic wound healing evaluation, and (d) wound healing
mechanism. GA: glycyrrhizic acid. Scale bars in b1 is 400 nm. Reprinted with permission from
ref. [53]. 2023, Elsevier.

2.2.4. Copper Ions

Copper is an indispensable trace element in humans, and its absorption occurs in the
small intestine and in small amounts in the stomach [54]. Copper ions have an important
role in metabolism because they are important components in metalloenzymes, such
as ceruloplasmin, cytochrome C oxidase, copper-zinc superoxide dismutase, tyrosinase,
lysyl oxidase, and dopamine-beta-hydroxylase. Therefore, ceruloplasmin could activate
ferroxidase and amine chlorinate, which can regulate iron absorption and transport. In
addition, copper is a component of coagulation factor V (FV) and metallothionein.

Copper protein plays different roles in biological electron transport and oxygen trans-
port due to the interconversion of Cu1+ and Cu2+ [55,56]. Cytochrome C oxidase plays
a role in oxygen reduction and energy generation. Copper-zinc superoxide dismutase
converts superoxide into oxygen molecules and hydrogen peroxide for antioxidant defense.
Tyrosinase converts tyrosine into melanin and is involved in collagen synthesis and elastin
synthesis in bone and connective tissue. Dopamine beta-hydroxylase has a role in the
conversion of dopamine to norepinephrine.

Copper plays an important role in inducing angiogenesis by acting on various angio-
genic factors, such as VEGF, angiopoietin (ANG), platelet-derived growth factor (PDGF),
fibroblast growth factor 1 (FGF1), fibroblast growth factor 2 (FGF2), and interleukin 1
(IL-1). In addition, copper can affect endothelial cells by binding angiogenin and tripeptide
glycyl-L-histidyl-L-lysine (GHK), which then play a role in promoting/modulating dermal
wound healing [57–59].

Research has shown that CuS nanodots can be used to treat infected chronic nonhealing
wounds [60,61]. The released Cu2+ can promote fibroblast migration and endothelial cell
angiogenesis, thus accelerating wound-healing effects. In addition, CuS nanodots with
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photothermal effects initiate a strong antibacterial effect on drug-resistant pathogens,
including methicillin-resistant Staphylococcus aureus (MRSA) and extended-spectrum beta-
lactamase Escherichia coli, both in vitro and in vivo. Copper ion-incorporated hydrogel
(illustrated in Figure 7) impacts the healing of infected wounds through the released copper
ions, which could induce bacterial death [62].
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HA: hyaluronan. Scale bars in a is 300 µm * p < 0.05, ** p < 0.01, *** p < 0.001. Reprinted with
permission from ref. [62]. 2022, ACS.

2.2.5. Magnesium Ions

Magnesium exists in the form of Mg2+ in humans and can serve as a cofactor in
multiple enzyme catalysis reactions, participate in energy generation and transportation,
coordinate protein synthesis, help transmit nerve signals, and keep muscles loose. Mag-
nesium ions play a protective role in cardiovascular diseases, such as inhibiting calcium
channels and potassium channels, inhibiting calcium ion deposition on the blood vessel
wall, and creating stones. Approximately 60–80% of magnesium ions in humans are found
in mitochondria, bones, myocardium, and cells.

Magnesium ions play an important role in activating coagulation FVII. However, mag-
nesium sulfate mainly shows antithrombotic properties by inhibiting platelet aggregation
and thrombus formation. In addition, magnesium ions can modulate vascular smooth
muscle contraction by competing with calcium in calcium channels. Fewer magnesium
ions can lead to coronary atherosclerosis or thrombosis.

Magnesium ions can promote the proliferation and migration of human umbilical
vein endothelial cells and the formation of collagen and angiogenesis in skin wounds.
Magnesium ions enhance the migration and adhesion of human skin fibroblasts and human
immortalized keratinocytes [63–65]. Magnesium ions can promote Zn2+ into human skin
fibroblasts by upregulating the expression levels of the zinc and its transporter 6/10 (ZIP6
and ZIP10) genes, enhancing signal transducer and activator of transcription 3 (STAT3)
phosphorylation to induce human skin fibroblasts to differentiate into myofibroblasts, and
accelerating the deposition of extracellular matrix, thereby promoting the wound healing
of skin tissues [66].

Magnesium ions play an important role in immune cells and affect immune function.
Magnesium ions are involved in immunoglobulin synthesis and complement activation,
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regulating macrophage phagocytic function and T lymphocyte maturation. In addition,
magnesium ions are anti-inflammatory agents that have immune protection effects in
eliminating excessive inflammation.

Research has shown that magnesium ions can inhibit the production of the proinflam-
matory cytokines (tumor necrosis factor-α, TNF-α; interleukin 6, IL-6) in macrophages
and the production of ROS and NO in immune cells, thus attenuating the neutrophil res-
piratory burst [67]. Magnesium ion-incorporated hydrogels are confirmed to have good
proliferative capacities for fibroblasts and good inhibition effects on the NF-κB pathway (a
classic transcription factor associated with inflammation and infection) [68]. Magnesium
ion incorporated hydrogel (illustrated in Figure 8) could accelerate the healing of infected
diabetic wounds through the released magnesium ions, which could induce bacterial death
and increase the M2 macrophage count [69].
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Figure 8. Magnesium ion incorporated hydrogel with its (a1,a2) fabrication illustration and ma-
terials characterization, (b) antibacterial characterization (I: QP; II: QP/Mg2+; III: QP/NMN; IV:
QP/Mg2+/NMN.), (c) in vivo infected wound healing evaluation, and (d) wound healing mechanism.
QP: QCS/PEGSD, quaternized chitosan/poly(glycerol sebacate)–co-poly(ethylene glycol)-g-catechol
prepolymer; NMN: nicotinamide mononucleotide. Scale bars in (a2) contains 50 µm (top images)
and 200 µm (bottom images). * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Reprinted with
permission from ref. [69]. 2023, Elsevier.

2.2.6. Other Ions

In addition to the abovementioned ions, other ions, such as aluminum ions, silicon
ions, and manganese ions, play less of a role in hemostatic effects. Aluminum ions combine
with fibrinogen, accelerate the adhesion and activation levels of platelets, and then promote
thrombosis [70]. Silicon ions can affect the adsorption of extracellular matrix components,
such as collagen I, fibronectin, and vitronectin. Manganese ions can shrink local tissue [71].

3. Forms of Hemostatic Materials

Wound healing materials with different functions have been used in different sce-
narios in distinct wound microenvironments, which is a realistic situation that should be
considered for the use of clays in wound healing [2]. The authors conducted basic research
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regarding value- and effect-added mineral materials in wound healing in Figure 9, such
as emerging clay composites for effective hemostasis [72], robust hemostatic bandages
based on clay electrospun membranes [73], and living hydrogels with clays incorporated
for wound healing. More importantly, clays can accelerate blood coagulation without intro-
ducing biohazardous effects. For example, engineered kaolinite absorbs water from the
blood and concentrates the blood components at hemorrhagic sites, and more importantly,
kaolin activates FXII and platelets to start the clotting cascade (blood coagulation cascade)
in vivo [4,17].
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Figure 9. Different forms of clays based wound healing materials, such as (a) kaolinite based
hemostatic bandage, (b) halloysite based hemostatic electrospun fibers, and (c) montmorillonite
based wound healing hydrogel. Reprinted with permission from refs. [4,73]. 2023, Elsevier.

3.1. Clay Bandages

Bandages are often used in different accident scenarios with compressible torso hemor-
rhage and have the advantages of being safe and efficient, with sealing anti-sticking, antim-
ildew, and antimicrobial properties. Commercial hemostatic compounds in Figure 10 [74],
including kaolinite, which is used in Combat Gauze from Z-Medica Corp.; zeolite, which
is used in QuikClot from Z-Medica Corp.; and montmorillonite, which is used in Wound-
Stat from TraumaCure Inc. Notably, a single component in bandages provides poorer
hemostatic properties and requires extra functional component supplementation.
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Clay-coated bandages have advantages in debridement, flexibility, wrapping, sealing,
and impermeability and can prevent infection from environmental bacteria. Clays adhere
to the bandage surface, preventing active component loss and residues in the wound
areas [75]. Clay-coated bandages exhibit bandage characteristics and clay characteristics
and can aggregate the effective components in the blood, activate platelet and coagulation
cascade reactions, and accelerate the hemostasis process. In addition, the surface silanol
groups from clays can enhance cell activity and result in wound healing [76].

Research has shown that clays such as montmorillonite, kaolinite, and halloysite can
be combined with chitosan, polyvinyl pyrrolidone (PVP), polyethylene terephthalate (PET),
and cotton through the impregnation method, resulting in a hemostatic bandage [77,78].
These bandages still have hemostatic activities after multiple rinsing treatments, and no
residues remain in the wound area.

3.2. Clay Hydrogels

Hydrogel materials are often used in chronic wound healing with noncompressible
torso hemorrhage and have advantages such as high water content, strong tensile exten-
sion, biocompatibility, and biodegradability, thus offering a moist healing environment and
bacterial isolation area. In addition, hydrogels combined with clay exhibit antibacterial
functionality, hemostasis, healing, anti-inflammatory functionality, and antioxidation, and
they have application prospects in the fields of biomedical engineering, such as drug deliv-
ery and tissue engineering [79]. Montmorillonite-based hydrogel (illustrated in Figure 11)
could accelerate the blood coagulation through the blood or tissue fluid absorbing on
the wound surface due to the hydrogel’s characteristics and the coagulation FXII chain
activation with montmorillonite’s surface charges [14].
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Figure 11. Montmorillonite-based hydrogel with its (a) hemostatic mechanism, (b1–b3) photo and
SEM images, (c) hemolysis assays, and (d1–d7) hemostatic experiment in rabbits ((d1): separated
femoral artery and transected artery; (d2): the wound caused hemorrhage. (d3): the GMCS was
compressed on the wound; (d4): hemostasis was achieved; (d5): the wound was cleaned, and a
clot formed (white arrow); (d6): the wound healing image, the white arrows denote the residue
GMCS). MMT: montmorillonite; CGS: cross-linked GO sponge; GMCS: GO-MMT composite sponge.
Reprinted with permission from ref. [14]. 2016, ACS.
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On the one hand, clays exhibit certain biological properties, such as antibacterial capa-
bilities, healing promotion, and hemostasis, based on the characteristics of surface mixed
charge, chemical stability, physiological inertness, and many active groups (hydroxyl groups).
The hemostasis mechanism is based on the surface negative charge and the physical ad-
sorption characteristics, which can directly activate platelets and endogenous coagulation
FXII, effectively aggregate the main blood components, and form a blood clot around the
clay without causing abnormal coagulation function [13]. The wound healing mechanism
is based on the stiffness characteristics of the material and its environment, activating cell
membrane surface receptors and ion channels through physical stimulation, regulating in-
tracellular signal transmission at the transcriptomic level, affecting the expression levels of
molecules related to the biological effects of migration and adhesion, and guiding correct cell
migration. The antibacterial mechanism is based on the two-dimensional sheet structures
and the surface active groups, which adsorb, fix, or inhibit various viruses, bacteria, and
mycotoxins containing polar groups and hinder the exchange of substances between attached
bacteria, bacterial communities, and the surrounding environment.

On the other hand, clay hydrogels can significantly improve the local microenviron-
ments of wound tissues based on the micro-/nanostructure characteristics, physicochem-
ical characteristics, and surface-interface properties. A highly ordered polymer network
crosslinked structure provides a physical barrier and sealing properties, which can protect
cells/tissues from environmental disturbances and prevent bacterial infection of wounded
tissues [80]. Superior tensile and rheological properties provide cell/tissue adhesion and
affinity, support the spreading and migration of cells, and adaptively adjust and achieve
adhesion and sealing according to the irregular shape of the wound tissue. Excellent
water-rich properties and the three-dimensional pore structure provide a physiological en-
vironment that highly simulates cell culture/tissue regeneration, supports cell aggregation,
proliferation, and migration, prevents tissue dehydration, and ensures air permeability.
Excellent swelling performance and high permeability can accommodate a large amount of
water or tissue fluid. The sample swells but does not dissolve in a physiological environ-
ment, which helps to promote the absorption of wound tissue permeate. The roughness
and silanol-rich characteristics of the surface/interface of the micro/nanostructure can
expand the contact area between the material and cells and promote the adhesion and
proliferation of cells. The stable mechanical strength and rigid building blocks provide
biophysical and biochemical signals capable of guiding cell proliferation and migration at
micro/nanostructured surfaces/interfaces.

Research has shown that clays, including kaolinite, halloysite, and montmorillonite
loaded with nanoparticles (Fe2O3, ZnO, and Au), have been used as the core components
of hydrogels for wound healing [81]. Mineral hydrogels with various functions, including
antibacterial functionality, healing promotion, and hemostasis, are constructed through
controllable hydrogel preparation technologies, such as in situ radical polymerization and
molecular self-assembly.

3.3. Clay Electrospun Fibers

Electrospinning technology can continuously, stably, and economically prepare a clay-
based nanofiber membrane with controllable nanofiber diameter, uniform morphology and
structure, and multimaterial and multicomponent blending. In addition, the technology
creates samples with high mechanical strength, a large specific surface area, and high
porosity and biodegradability characteristics. Due to their high porosity, large surface
area, and remodification ability, electrospun nanofibers can effectively solve the problem
of powder particles falling off, compensate for the poor comprehensive performance of a
single component and limited hemostatic indications, and greatly enhance the macroscopic
material physicochemical structures and wound hemostatic properties. Halloysite-based
electrospun fibers (illustrated in Figure 12) could accelerate blood coagulation through the
blood components enrichment due to the fiber’s characteristics and the intrinsic coagulation
cascade activation with the halloysite’s exposed surface charges [74].



Materials 2024, 17, 1691 14 of 19

Materials 2024, 17, x FOR PEER REVIEW 15 of 20 
 

 

compression force to meet the practical application requirements of wound dressings. The 
porous and breathable fiber structure can avoid the formation of an anaerobic environ-
ment in the wound, reduce the growth of anaerobic bacteria, and maintain a normal en-
vironment for wound healing. 

According to the literature, clays, including kaolinite and halloysite, can be combined 
with PVP, polycaprolactone (PCL), polyurethane (PU), and other high molecular-weight 
polymers through electrospinning technology, leading to the formation of rough, fluffy 
nanofiber spinning films [73,86]. The composite fiber film has the characteristics of abun-
dant hemostatic functional sites, a strong skeleton structure, and a hydrophilic surface, 
enabling it to rapidly aggregate blood components, activate platelets, and trigger the in-
trinsic coagulation pathway to promote blood coagulation. The film has excellent compre-
hensive performance in terms of hemostasis time, hemostatic effect, and blood loss. The 
hemostatic effect can meet the standard of care for commercial products. 

 
Figure 12. Halloysite-based electrospun fibers with its (a) SEM images, (b) in vitro hemostatic eval-
uation, (c) hemostatic mechanism, and (d) the blood components-electrospun fibers interaction. 
PLA: polyactic acid; HNMs: halloysite nanotube microspheres. Reprinted with permission from ref. 
[74]. 2023, Elsevier. 

3.4. Toxicities and Limitations 
Those toxicities evaluations about wound healing materials should be carried out 

following those clinical medical orientations, which are different from oral usage, intrave-
nous usage, external usage, etc., and that enable those standardized evaluation activities 
to be carried out in the micro/nano-biological studies. The evaluation of toxicities is related 
to influencing factors about mineral-based wound healing materials in literature [87–91], 
including mineral size distribution, mineral trace elements, human skin-associated cell 
lines, micro/nano-biological interactions, etc. Besides, some side effects were correlated 
with the excess dosages and silica sand. The mineral size distribution range from 1 nm to 
1000 nm might have uncertain effects on micro/nano-biological interactions. These min-
eral trace elements, including iron, calcium, manganese, titanium, zinc, etc., could cause 
side effects in clinical medical studies, such as the excess calcium or zinc intake could 

Figure 12. Halloysite-based electrospun fibers with its (a) SEM images, (b) in vitro hemostatic
evaluation, (c) hemostatic mechanism, and (d) the blood components-electrospun fibers interaction.
PLA: polyactic acid; HNMs: halloysite nanotube microspheres. Reprinted with permission from
ref. [74]. 2023, Elsevier.

On the one hand, the natural and diverse structure of clay can effectively alter the
nanofiber morphology, obtain different nanofiber diameters and porosities of spun films,
control the swelling effects and specific surface areas of spun films, and realize customized
nanofiber structures. The incorporation of clays into the nanofibers can enhance their
mechanical properties and play a supporting role in wound hemostasis and cell prolifera-
tion [82]. Clays can be partially exposed or attached to the nanofiber surface to form a rough
texture or a unique fiber structure, such as a spindle-like structure [83]; this phenomenon
increases the specific surface area and the number of active sites of the nanofiber, which can
improve the ability of the fiber material to capture blood cells and to activate coagulation
factors to promote the coagulation process, thereby promoting wound healing.

On the other hand, clay-based nanofiber membranes have various properties, includ-
ing biocompatibility, degradation, absorption, synergistic hemostasis, synergistic coagu-
lation, other biological properties, sealing, anti-seepage, tensile rebound, waterproofness,
moisture permeability, environmental service, and other physical properties. Based on the
high porosity, the large specific surface area of the fiber structure, and the similarity to
natural fibrin fibers, the composite fibers can effectively capture red blood cells, platelets,
etc., and achieve rapid hemostasis [84]. The hydrophilic properties of clay fibers are benefi-
cial for absorbing water in the blood to accelerate local blood coagulation to form blood
clots, enhance the aggregation, proliferation, and migration of cells on the material, and
promote wound healing [85]. The abundant hemostatic active sites on the fiber and its
excellent adsorption properties form a synergistic effect, which can effectively improve
the hemostatic performance of the material. Excellent toughness, mechanical properties,
and thermal stability can effectively fit the wound to form a seal and provide a certain
compression force to meet the practical application requirements of wound dressings. The
porous and breathable fiber structure can avoid the formation of an anaerobic environment
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in the wound, reduce the growth of anaerobic bacteria, and maintain a normal environment
for wound healing.

According to the literature, clays, including kaolinite and halloysite, can be combined
with PVP, polycaprolactone (PCL), polyurethane (PU), and other high molecular-weight
polymers through electrospinning technology, leading to the formation of rough, fluffy
nanofiber spinning films [73,86]. The composite fiber film has the characteristics of abun-
dant hemostatic functional sites, a strong skeleton structure, and a hydrophilic surface,
enabling it to rapidly aggregate blood components, activate platelets, and trigger the
intrinsic coagulation pathway to promote blood coagulation. The film has excellent com-
prehensive performance in terms of hemostasis time, hemostatic effect, and blood loss. The
hemostatic effect can meet the standard of care for commercial products.

3.4. Toxicities and Limitations

Those toxicities evaluations about wound healing materials should be carried out fol-
lowing those clinical medical orientations, which are different from oral usage, intravenous
usage, external usage, etc., and that enable those standardized evaluation activities to be
carried out in the micro/nano-biological studies. The evaluation of toxicities is related
to influencing factors about mineral-based wound healing materials in literature [87–91],
including mineral size distribution, mineral trace elements, human skin-associated cell
lines, micro/nano-biological interactions, etc. Besides, some side effects were correlated
with the excess dosages and silica sand. The mineral size distribution range from 1 nm to
1000 nm might have uncertain effects on micro/nano-biological interactions. These mineral
trace elements, including iron, calcium, manganese, titanium, zinc, etc., could cause side
effects in clinical medical studies, such as the excess calcium or zinc intake could induce
diseases due to broken ion homeostasis, the excess Fe intake could induce diseases due to
reactive -OH radicals. Mineral-based hemostatic materials have some shortcomings, such
as being hard to remove from wound sites, inducing inflammation and thrombosis due
to wound contamination and inefficient micro/nano-biological interactions, and therefore
limiting their commercial use [91]. Nevertheless, the limitations of wound healing materials
should be determined through that actual scenario, such as compressible hemostasis or in-
compressible hemostasis, acute or chronic wound healing, diabetic wound healing, infected
wound healing, etc. Fundamental research on mineral-based wound healing materials
was deficient due to their lower market share than cellulose, starch, collagen, chitosan,
fibrinogen, etc.

4. Conclusions and Outlook

Clays are used in biomedical fields, such as antibacterial, hemostasis, and wound
healing, and have received international attention. Basic exploration and technical research
related to the fine processing and functional manufacturing of clays have basically elim-
inated the need for empirical identification techniques, such as sources, characteristics,
physical clay resources, and chemical clay resources, and they have greatly reduced the
dependence of clay resources on types, reserves, and grades. The following issues include
the technologies regarding value- and effect-added medicinal resources, the evaluation
methods regarding bio-safe medicinal materials, the wound healing mechanism at different
levels, and wound dressings with different active components and multiple forms, which
is something that needs to be studied in the future.
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