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Abstract: The global construction industry is increasingly utilizing concrete prepared from recycled
aggregate as a substitute for natural aggregate. However, the subpar performance of recycled fine
aggregate (RFA) has resulted in its underutilization, particularly in the structural concrete exposed to
challenging environments, including those involving chlorine salts and freeze–thaw climates. This
study aimed to enhance the performance of RFA as a substitute for river sand in concrete as well
as fulfill the present demand for fine aggregates in the construction sector by utilizing accelerated
carbonation treatment to create fully recycled aggregate concrete (FRAC) composed of 100% recycled
coarse and fine aggregates. The impacts of incorporating carbonated recycled fine aggregate (C-RFA)
at various replacement rates (0%, 25%, 50%, 75%, and 100%) on the mechanical and durability
properties of FRAC were investigated. The results showed that the physical properties of C-RFA,
including apparent density, water absorption, and crushing value, were enhanced compared to that of
RFA. The compressive strength of C-RFC100 was 19.8% higher than that of C-RFC0, while the water
absorption decreased by 14.6%. In a comparison of C-RFC0 and C-RFC100, the chloride permeability
coefficients showed a 50% decrease, and the frost resistance increased by 27.6%. According to
the findings, the mechanical and durability properties, the interfacial transition zones (ITZs), and
micro-cracks of the C-RFC were considerably enhanced with an increased C-RFA content.

Keywords: carbonated recycled fine aggregates; fully recycled aggregate concrete; chloride perme-
ability resistance; frost resistance

1. Introduction

Concrete has become the most popular material for non-structural and structural
elements, and its manufacturing relies heavily on natural resources. However, with the
rapid pace of new urbanization coupled with urban redevelopment and industrialization,
a surge in the construction and demolition wastes (C&DWs) is produced. The uptick
has led to escalating environmental concerns and an acute shortage of natural aggregate
(NA) resources [1–3]. According to the statistics [4], the 21st century has experienced
an extensive urbanization process, resulting in a substantial production of construction
waste. Global urbanization rates were documented at 54.3% in 2016, and they climbed to
55% by 2018. Projections suggest a surge to 68% globally by the year 2050, leading to a
steady rise in the generation of C&DWs [5]. Such vast quantities of C&DWs are frequently
consigned to landfill-dumpsite or used as backfill for roadbeds. This mismanagement
squanders resources, harms the environment, and contradicts the principles of eco-friendly
growth [6]. This further contributes to significant ecological degradation, over-exploitation,
and a severe scarcity of quality natural sands and gravels [7–9]. As such, the necessity
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for employing alternative raw materials in construction projects becomes paramount. In
the quest for sustainability in the construction industry, which is based on the principle of
resource conservation, the strategy of recycling C&DWs debris as a means of addressing
the global strategic goal of reducing construction waste can have a significant beneficial
impact on the environment and production costs [10–13]. The practice of utilizing C&DWs
as recycled aggregate (RA) is gaining increasing traction worldwide.

Many researchers have dedicated their efforts to exploring the potential for reusing
RA. However, it has been found that due to the poor quality of RA, its application remains
markedly restricted in many countries, often limited to lower-value purposes such as
constructing unbound roadways [14,15].

Particularly in the case of RA derived from waste concrete, the cracks generated by
the machine crushing process and the presence of old mortar attached to the surface of
RA impart poor properties such as low apparent density, high porosity, and high water
adsorption, etc. [16]. In these circumstances, mixing fresh recycled aggregate concrete
(RAC) requires more water than mixing natural aggregate concrete (NAC). Additionally,
the interfacial transition zones (ITZs) between the new cement mortar and aggregate in
RAC are typically inferior to those in NAC, owing to the presence of adhered old mortar.
Consequently, the resulting hardened RAC exhibits compromised durability, diminished
strength, and reduced elastic modulus [17–20]. Compared to recycled coarse aggregate
(RCA), reports in the literature suggest that recycled fine aggregate (RFA) tends to contain a
higher proportion of old mortar and exhibits greater water absorption [21]. It also contains
a large amount of powder and interfacial transition zones [22]. As a result, concrete mixed
with RFA tends to degrade more significantly than when an equivalent quantity of RCA is
used [23]. The application scope for RFA is narrower than that of RCA, typically limited to
low-strength concrete or mortar [21].

Current research reveals that the accelerated carbonation treatment of recycled fine
aggregate can substantially enhance its quality, thereby improving the overall performance
of the resultant concrete [24,25]. This approach also mitigates the ecological consequences
linked to traditional aggregate extraction [26,27]. Despite many scholars focusing on the
carbonation treatment of RCA over RFA, the potential benefits of treating RFA cannot be
overlooked. The carbonation treatment method involves the diffusion and dissolution of
CO2 in mortar pores attached to the surface of RFA. As a result, the calcium sources in the
mortar become carbonated, resulting in the production of silica gel and calcium carbonate
(CaCO3) crystals. These products improve the quality of RFA by filling the microscopic
pores in attached mortar and microcracks [28–30]. Chinzorigt et al. [31] studied the effect
of replacing recycled fine aggregate with 0–50% carbonized recycled fine aggregate on the
compressive strength, carbonation resistance, and chloride ion penetration resistance of
concrete and found that the compressive strength can be increased by up to about 15%,
and the carbonation resistance and resistance to chloride ion penetration are improved.
Previous studies also showed that the incorporation of carbonated recycled fine aggregate
improved the density of recycled aggregate concrete and reduced the risk of corrosion
of steel bars [32]. Furthermore, the effect of carbonation modification on the working
performance of recycled fine aggregate concrete was studied in depth, and it was found
that mortars prepared using carbonated recycled fine aggregate showed better fluidity and
lower consistency loss values [33,34].

Existing research has demonstrated that the carbonation treatment significantly en-
hanced the physical properties of the treated RFA; specifically, it increased the apparent
density while reducing the water absorption and crushing value in comparison to un-
treated RFA [35,36]. These improvements contribute to the effective performance of the
recycled concrete, as evidenced by increases in both compressive strength and resistance to
chloride ion penetration [32,36,37]. The previous studies have primarily concentrated on
assessing the effects of accelerated carbonation on the performances of concrete containing
either RCA or RFA, but these studies fall short in considering its effects on fully recycled
aggregate concrete (FRAC). Therefore, this study examines the potential of accelerated
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carbonation to improve the properties of RFA. Furthermore, the FRAC, comprising 100%
RCA and 100% RFA, was developed to assess the impact of carbonated RFA (C-RFA) at
various replacement rates (0%, 25%, 50%, 75%, and 100%) on the compressive strength and
durability (chloride penetration resistance and frost resistance) of FRAC.

2. Materials and Methodology
2.1. Materials

The RFA and RCA used in these experiments were produced using a process of
crushing, cleaning, and sieving waste concrete supplied by Jiangsu Lvhe Environmental
Technology Co., Ltd., located in Changzhou, China. The particle size range for RFA was
between 0.16 mm and 4.75 mm, while the range for RCA spanned from 4.75 to 20 mm.
The apparent density, water absorption, crushing value, and soundness of RCA were
2356 kg/m3, 4.6%, 15.4%, and 9.9%, respectively. The binding material employed to
prepare concrete was Portland cement of grade 42.5 with an apparent density of 2963
kg/m3. Fly ash (FA), with an apparent density of 2759 kg/m3, and silica fume (SF), with
an apparent density of 3067 kg/m3, were added as mineral admixtures. The content of FA
and SF was 15% and 10% by weight of all cementitious materials, aimed at enhancing the
workability, strength, and durability of FRAC. Table 1 illustrates the chemical compositions
of various cementitious materials. To prepare RAC, additives such as a superplasticizer
(water-reducing agent) and an air-entraining agent (AEA) were utilized. The dosage of
superplasticizer was 0.5 wt.% of cementitious material to ensure that the workability of all
FRAC could meet the slump value requirement of 150 mm.

Table 1. Chemical compositions of cementitious materials (wt.%).

Component CaO SiO2 Al2O3 Fe2O3 MgO MnO K2O TiO2 SO3

Cement 61.01 20.41 7.42 3.74 1.26 0.15 0.75 0.28 2.07
Silica Fume (SF) 0.23 86.18 1.08 0.93 0.78 0.12 -- -- 0.84
Fly Ash (FA) 3.82 52.5 28.33 3.67 1.12 0.20 1.69 0.97 1.75

2.2. Methodology
2.2.1. Preparation of C-RFA and FRAC

The obtained RFAs were split into two portions: one served as the fine aggregates for
the control group in FRAC; the other was designated to produce C-RFA. The transmission of
carbon dioxide (CO2) from the cylinder toward the carbonation chamber occurred at 25 ◦C,
20 ± 2% concentration, 55 ± 5% relative humidity, and 0.5 MPa gas pressure. The rapid
carbonation process was conducted over a period of 4 to 7 days, during which the RFA
achieved a constant weight and exhibited no change in surface color upon phenolphthalein
solution application, as reported by Liu et al. [9].

FRAC was composed of 100% RFA and 100% RAC. By replacing the RFA with C-RFA
at different replacement rates (0, 25%, 50%, 75%, and 100%), the carbonated recycled fine
concrete (C-RFC) was obtained, which was labeled C-RFC0, C-RFC25, C-RFC50, C-RFC75,
and C-RFC100, respectively. The target strength of all concrete was 40 MPa, and the mix
proportions are listed in Table 2. The concrete mixture was prepared using a two-stage
mixing method. This method divides the mixing process into two parts and proportionally
splits the required water into two parts, which are added after mixing one part with fine
and coarse aggregate and cement, while the normal mixing approach only puts all the
ingredients of concrete together and mixes them [14]. According to the previous studies,
in the two-stage mixing approach, during the first stage of mixing, the use of half of the
required water leads to the formation of a thin layer of cement slurry on the surface of
RA, which permeates into the porous old cement mortar, filling up the old cracks and
voids. To complete the cement hydration process, the remaining water is added during
the second mixing stage, resulting in denser concrete, an improved interfacial zone around
recycled aggregate, and, thus, a higher strength when compared with the traditional mixing
approach [14,38].
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Table 2. Mix proportions of C-RFC (kg/m3).

C-RFA
(%) RCA RFA C-RFA Cement Fly Ash Silica

Fume Water
Water

Reducing
Agent

Air En-
training
Agent

C-RFC0 906 658 0 319 64 43 166 2.13 0.13
C-RFC25 906 493 171 319 64 43 166 2.13 0.13
C-RFC50 906 329 342 319 64 43 166 2.13 0.13
C-RFC75 906 164 513 319 64 43 166 2.13 0.13
C-RFC100 906 0 685 319 64 43 166 2.13 0.13

During this study, initially, RCA and RFA were blended for 10–20 s. This was followed
by the incorporation of half the water quantity, which was mixed for an additional 10–20 s.
Subsequently, cement was introduced and combined for a duration of 50–60 s. Finally,
the rest of the water and any admixtures were added, with the mixture being stirred
for a further 50–60 s to ensure homogeneity. To enhance the workability and durability,
mineral admixtures, such as fly ash (FA) and silica fume (SF), were incorporated. The frost
resistance of the concrete was bolstered, and water content was minimized by introducing
a combination of an AEA and a water-reducing agent. After the mixing process was
completed, the fresh concrete mixture was transferred into molds, which were removed
after 24 h. Subsequently, the specimens were placed in a standard curing chamber with a
temperature of 20 ± 2 ◦C and relative humidity over 95% for a duration of 28 days.

The specimens designated for freeze–thaw (F-T) cycles and rapid chloride migra-
tion tests must be extracted 4 days earlier to conduct a preliminary saturation test. The
dimensions of the specimens used for compressive strength, chloride penetration re-
sistance, and frost resistance tests were 100 × 100 × 100 mm3, Φ 100 × 50 mm3, and
100 × 100 × 400 mm3, respectively (Figure 1).
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2.2.2. Measurements
Physical Properties of RFA and C-RFA

Based on the Chinese standard GB T14684-2011 [39], the physical properties of RFA and
C-RFA, including apparent density, water absorption, and crushing value, were evaluated
using a mass of 300 g.

Mechanical and Physical Properties of C-RFC

According to the Chinese standard GB/T 50081-2019 [40], the compressive strength of
C-RFC with different contents of C-RFA was measured at the 28-day mark. Cubic specimens
measuring 100 × 100 × 100 mm3 were examined using a hydraulic universal testing
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machine, as illustrated in Figure 2a. The average compressive strength was determined
using three concrete cubes from each group. Additionally, the water absorption of concrete
was calculated by Equation (1):

Wa =
ms − md

md
× 100% (1)

where Wa is the water absorption of concrete (%); ms is the mass of saturated surface dry
state of water-saturated specimens (g); md is the mass of dried specimens (g).
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Chloride Ion Penetration

The rapid chloride migration coefficient method (RCM), in accordance with Chinese
standard GB/T 50082-2009 [41], was used to evaluate the chloride penetration resistance of
C-RFC cylindrical specimens (Figure 2b). The cathode solution used in this test was 10%
NaCl solution, and the anode solution was 0.3 mol/L NaOH solution. After the chloride
ion penetration was completed, the specimens were cut to measure the penetration depth.
The AgNO3 standard solution with a concentration of 0.1 mol/L was used as an indicator,
and the rapid chloride ion migration coefficient was calculated by Equation (2):

DRCM =
0.0239 × (273 + T)L

(U − 2)t

Xd − 0.0238

√
(273 + T)LXd

U − 2

 (2)

where DRCM is the rapid chloride ion migration coefficient (0.1 × 10−12 m2/s); U is the
applied voltage (V); T is the average value of the initial and final temperatures of anodic
solution (◦C); L is the thickness of specimen (mm); Xd is the average depth of chloride ion
penetration (mm); t is the test duration (h).

Frost Resistance

As shown in Figure 2c, the relative dynamic elastic modulus (RDEM) and mass
loss of C-RFC specimens were recorded before and after subjecting to F-T cycles [42].
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Measurements were conducted every 50 cycles up to a total of 300 cycles, in accordance
with Chinese standard GB/T 50082-2009 [41]. The transverse fundamental frequency and
mass of the specimens were measured every 50 F-T cycles, and the relative dynamic elastic
modulus (RDEM) and mass loss rate (MLR) were calculated separately by Equations (3)
and (4) to assess the frost resistance of the specimens:

RDEMn =
f 2
n

f 2
0
× 100% (3)

MLRn =
m0 − mn

m0
× 100% (4)

where RDEMn is the RDEM after n F-T cycles (%; MLRn is the mass loss rate after n F-T
cycles (%); fn is the transverse fundamental frequency after n F-T cycles (Hz); mn is the
mass after n F-T cycles (kg); f0 is the initial transverse fundamental frequency (Hz), and m0
is the initial mass (kg).

Microscopic Analysis of C-RFC

The microstructure features of the concrete prepared with C-RFA were analyzed using
a digital Vickers Microhardness Tester (HVS-1000SS, GOYOJO, Shenzhen, China). Elements
such as ITZs, pores, and cracks within the C-RFC were examined using the Scanning
Electron Microscopy (SEM) images generated for each group.

3. Results and Discussion
3.1. Physical Properties of RFA and C-RFA

This study evaluated the physical properties of RFA before and after undergoing
carbonation treatment. The detailed results are systematically cataloged in Table 3. The
recorded apparent density of RFA and C-RFA were 2476 kg/m3 and 2577 kg/m3, respec-
tively, marking a rise of 4.1%. The water absorption displayed a reduction from 8.8% to
6.9%, while the crushing value exhibited a marked reduction, dropping from 25.7% to
19.8%. Namely, the water absorption and crushing value exhibited a decrease of 21.6%
and 22.9%, respectively. This result signified an improvement in the quality classification
of RFA from Grade III to Grade I, as per the standards outlined in GB/T 25176-2010 [43].
These research findings corroborated the global scholarly consensus that CO2 carbonation
enhanced the apparent density of RCA, with a notable uptick observed as the particle size
of the RCA decreased [44–46].

Table 3. Physical properties of RFA and C-RFA.

Name Apparent Density
(kg/m3)

Water Absorption
(%) Crushing Value (%)

RFA 2476 8.8 25.7
C-RFA 2577 6.9 19.8

The observed reduction in the decrease in water absorption and crushing value of
C-RFA is attributed to the formation of calcium carbonate (CaCO3) particles [47]. These
substances are produced by the reaction between the hydration products of attached mortar
in RFA and CO2. The attached mortar coating of the RFA underwent carbonation treatment,
yielding calcium carbonate (CaCO3) particles. These particles bridged the gaps and fissures
within the old mortar, fortifying the ITZ between it and the original aggregates (Figure 3),
thus yielding a more consolidated aggregate framework [28]. As a result, the structure and
quality of C-RFA were significantly improved.
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3.2. Physical and Mechanical Properties of C-RFC
3.2.1. Water Absorption

Figure 4 depicts the correlation between water absorption of RFC and different C-RFA
replacement rates. With the escalating replacement rate of C-RFA, a corresponding gradual
decline in the water absorption of the RFC was observed, diminishing from 5.83% in
C-RFC0 to 4.98% in C-RFC100. The water absorption capacity of concrete is significantly
affected by its pore structure [9,48–50]. The results presented above demonstrated that
incorporating C-RFA into recycled concrete could positively modify the pore structure
of the concrete. This confirmed that the rapid carbonation process applied to RFA was
an effective method for reducing water absorption and decreasing the overall porosity in
C-RFC.
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3.2.2. Compressive Strength

Figure 5 presents the variation in compressive strength of C-RFC corresponding to
different replacement rates of C-RFA. It was observed that the FRAC, that is, the concrete
with a C-RFA replacement rate of 0% marked as C-RFC0, exhibited a compressive strength
of merely 38.45 MPa, falling short of the prescribed design criteria. But, as the replacement
rate of C-RFA rose, a consistent enhancement in the compressive strength of concrete was
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recorded, echoing observations made in earlier research [9,51]. When RFA was entirely
replaced with C-RFA in the FRAC mixture, the compressive strength of C-RFC notably
increased, reaching a value of 46.8 MPa. This was comparable to the compressive strength
of natural aggregate concrete after a curing period of 28 days [52,53].
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Figure 5. Compressive strength of C-RFC.

With an increase in the replacement rate of C-RFA, compressive strength shows a
linear increase. The compressive strength of C-RFC100 marked a significant increase of
19.8% relative to the initial strength of baseline C-RFC0. After accelerated carbonation
treatment, the apparent density of RFA markedly increased, while the water absorption and
crushing value decreased substantially, indicating a denser structure of CRFA [54]. Such
density contributed to a more consolidated concrete matrix and a reinforced interfacial
transition zone (ITZ) between the old mortar of the RFA and the new mortar in concrete,
ultimately leading to an increase in compressive strength [51,55].

3.3. Durability of C-RFC
3.3.1. Chloride Ion Permeability of C-RFC

Chloride ion ingress often leads to corrosion of steel within reinforced concrete, thereby
reducing the structure’s safety and longevity [56,57]. Due to the high porosity of recycled
aggregate, the recycled concrete is more vulnerable to chloride ion intrusion. However,
the carbonation treatment improved the pore structure of the recycled aggregate, thereby
increasing its resistance to chloride ion penetration. Figure 6 illustrates the chloride ion per-
meability coefficient of C-RFC. As the replacement rate of C-RFA increased from 0% to 100%,
the chloride ion permeability coefficient progressively decreased from 2.54 × 10−12 m2/s
to 1.26 × 10−12 m2/s, respectively, representing a decrease of 50.4%. It is worth noting that
even for FRAC without carbonated aggregates, the chloride ion permeability coefficient
was lower than 4 × 10−12 m2/s, meeting the requirements for Type E chloride exposure
environments for a concrete structure with a service life of 100 years according to the
standard of GB/T 50476–2019 [58].
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3.3.2. Frost Resistance

In a manner akin to enhancing chloride ion permeability resistance, the incorporation
of C-RFA was found to bolster the frost resistance of C-RFC. Figure 7 shows the mass loss
and RDEM of C-RFC for each group after subjecting to F-T cycles.
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Under the influence of fluctuating temperatures, the degradation of C-RFC exhibited
a non-linear pattern of mass change, characterized by an initial increase followed by a
decrease (Figure 7a). Throughout the recurring freeze–thaw cycles in concrete, the volumet-
ric expansion induced by the freezing of entrapped water generates frost heave pressure.
Simultaneously, the migration of supercooled water toward the ice boundary results in
osmotic pressure. These combined forces instigate the progressive enlargement of microc-
racks within the concrete [59]. When a significant number of these cracks interconnect, they
create a web-like fracture network, potentially leading to surface erosion or the outward dif-
fusion of the internal fracture network, culminating in surface cracking of the concrete [59].
This process intensifies the deterioration of the concrete, precipitating a decline in mass
and even a corresponding reduction in strength. During the early stages of F-T cycles, the
frost heave and osmotic pressures induced the emergence of micro-cracks, which, however,
did not yet lead to the detachment of the concrete’s surface mortar. This condition elevated
the concrete’s capacity to absorb water, thereby leading to an incremental gain in its mass.
But with the progressive intensification of the freeze–thaw cycles, the resultant damage
escalated, culminating in a steady amplification of mass loss.
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Surprisingly, the mass loss of C-RFC with C-RFA was consistently lower than that of
C-RFC0, with the difference being particularly notable in the case of C-RFC100.

After 300 F-T cycles, the mass loss rate of C-RFC100 was only 1.46%. The concrete
from the other groups also satisfied the requirement of a mass loss of less than 5%, thus
not reaching the failure criterion [41]. Figure 7b depicts the variations in the RDEM across
different replacement rates as influenced by the number of freeze–thaw cycles. Similar
to the mass loss results, the incorporation of C-RFA enhanced the RDEM of C-RFC. But
following 300 freeze–thaw cycles, only the RDEM of CRFC75 and CRFC100 satisfied the
operational standard. The concrete specimens with other contents of C-RFA fell below 60%,
reaching the failure criterion.

3.4. Microscopic Analysis of C-RFC

The SEM images featured in Figure 8 portray the microstructural integrity of C-RFC at
different C-RFA replacement rates. The findings showed that the pore structure in mortar,
the ITZ width, and the number of micro-cracks in C-RFC were proportional to the level of
C-RFA content.
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As illustrated in Figure 8a, the microstructure of C-RFC0 exhibited relative weakness,
characterized by numerous large pores within the attached mortar, pronounced cracks,
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and wider ITZ. This structural compromise accounted for the suboptimal compressive
strength and diminished resistance to chloride permeability of FRAC. However, with the
increase in C-RFA content, the ITZ between the attached mortar coated on the surface of
CRFA and the new concrete mortar narrowed, accompanied by a decline in micro-cracks
and voids, resulting in a denser overall structure. This compaction was ascribed to the
CaCO3 particles formed on the RFA from carbonation, which coated and reinforced the
interface. Given that CaCO3 possessed greater hardness than the hydration products in the
old mortar, it substantially elevated the quality of C-RFA [60,61].

Additionally, these fine CaCO3 particles served as nucleation sites, promoting a sig-
nificant formation and growth of the C-S-H gel on the C-RFA’s surface, which, in turn,
seamlessly filled the ITZ and existing voids, enhancing the concrete’s structure [62]. Sur-
prisingly, the ITZ between the old mortar and the new mortar was greatly mitigated or even
eliminated, particularly in CRFC100, where this ITZ was nearly imperceptible, as shown in
Figure 8e. This indicated that carbonation-modified RFA could significantly enhance the
performance of FRAC.

4. Conclusions

A comprehensive experimental investigation into the impact of carbonated recycled
fine aggregates on the mechanical properties and durability of fully recycled aggregate
concrete was conducted in this work. From the experimental data and subsequent analysis,
we have arrived at the following conclusions:

(1) In comparison to untreated RFA, the apparent density of C-RFA enhanced by rapid
carbonation treatment saw an increase of 4.1%. Concurrently, the 24-h water absorp-
tion and crushing values decreased by 21.6% and 22.9%, respectively. As a result of
carbonation modification, the RFA was transformed from a Grade III material to a
superior Grade I, affirming its enhanced suitability for use in concrete construction;

(2) The carbonated recycled fine aggregate plays a positive role in concrete production.
The compressive strength of C-RFC experienced a positive trajectory as the C-RFA
content increased; with a 25% substitution rate, the strength achieved 40.7 MPa,
exceeding the target threshold of 40 MPa. At full replacement, the strength further
escalated to 46.05 MPa. This trend highlighted the potential of C-RFA to enhance the
microstructure of recycled aggregate concrete (RAC), offering a proven approach to
decrease water absorption and porosity, thereby augmenting the compressive strength
of FRAC;

(3) The incorporation of C-RFA into FRAC led to a discernible enhancement in its re-
sistance to the rigors of freeze–thaw cycles. Upon reaching a 100% C-RFA mixture,
a significant reduction of about 50.4% in the chloride permeability coefficients was
observed; FRAC can satisfy the requirements of the standard for Type E chloride
exposure environments for concrete structures with a service life of 100 years;

(4) With the increase in C-RFA content, the frost resistance durability of FRAC was
improved significantly. Across a substitution spectrum from 25% to 100% for C-RFA,
C-RFC demonstrated a mass loss rate below 3.0% after withstanding 300 freeze–thaw
cycles. Furthermore, as the number of freeze–thaw cycles increased, the RDEM of
FRAC with 0~50% C-RFA content exceeded the 60% threshold. The frost resistance
durability of FRAC was unable to meet the requirements of 300 freeze–thaw cycles;

(5) Carbonation treatment served to densify the mortar structure attached to the surface of
the RFA and strengthened the ITZ between the old mortar and the original aggregates,
consequently enhancing the quality of the RFA. The CaCO3 particles encrusting the
RFA surface were characterized by their considerable hardness and acted as inducers
for the generation of cement hydration products, thus consolidating the porosity and
ITZ between RFA and new mortar in the FRAC.

Based on the research findings, FRAC prepared with carbonation-modified RFA ex-
hibits excellent performance in both mechanical and durability aspects. This provides a
positive significance for the advancement of fully recycled aggregate concrete.
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5. Limitations and Future Works

Currently, governments worldwide are actively striving to achieve the goals of “peak
carbon emissions and carbon neutrality”. Utilizing construction and demolition wastes
to prepare recycled concrete undoubtedly constitutes a crucial measure for energy con-
servation and emission reduction in the construction industry. This study explores the
enhancement effects of carbonation-modified treatment on the quality of recycled fine
aggregate and the application potential of fully recycled aggregate concrete, which con-
tributes to further improving the utilization rate of waste concrete. However, it is worth
noting that due to the particularity of recycled aggregate, the long-term performance of
fully recycled aggregate concrete, including creep and crack resistance, warrants further
in-depth research.

Our future work will focus on the long-term performance of fully recycled concrete,
such as drying shrinkage and autogenous shrinkage, as well as the enhancement effects of
different aggregate modification methods on the performance of fully recycled aggregate
concrete. Additionally, after fully recycled aggregate concrete reaches failure or the design
service life, its potential for regeneration will be investigated in future studies.
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Nomenclature

FRAC Fully recycled aggregate concrete
C-RFA Carbonated recycled fine aggregate
C-RFC Carbonated recycled fine aggregate concrete
C&DW Construction and demolition waste
NCA Natural coarse aggregate
FA Fly ash
SF Silica fume
F-T cycles Freeze-thaw cycles
RCM Rapid chloride migration
RDEM Relative dynamic elastic modulus
ITZs Interface transition zones
AEA Air-entraining agent
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26. Nedeljković, M.; Visser, J.; Šavija, B.; Valcke, S.; Schlangen, E. Use of fine recycled concrete aggregates in concrete: A critical
review. J. Build. Eng. 2021, 38, 102196. [CrossRef]

27. Singh, R.; Nayak, D.; Pandey, A.; Kumar, R.; Kumar, V. Effects of recycled fine aggregates on properties of concrete containing
natural or recycled coarse aggregates: A comparative study. J. Build. Eng. 2022, 45, 103442. [CrossRef]

28. Zhang, T.; Chen, M.; Wang, Y.; Zhang, M. Roles of carbonated recycled fines and aggregates in hydration, microstructure and
mechanical properties of concrete: A critical review. Cem. Concr. Compos. 2023, 138, 104994. [CrossRef]

29. Fang, X.; Xuan, D.; Shen, P.; Poon, C.S. Fast enhancement of recycled fine aggregates properties by wet carbonation. J. Clean. Prod.
2021, 313, 127867. [CrossRef]

30. Shen, P.; Zhang, Y.; Jiang, Y.; Zhan, B.; Lu, J.; Zhang, S.; Xuan, D.; Poon, C.S. Phase assemblance evolution during wet carbonation
of recycled concrete fines. Cem. Concr. Res. 2022, 154, 106733. [CrossRef]

31. Chinzorigt, G.; Lim, M.K.; Yu, M.; Lee, H.; Enkbold, O.; Choi, D. Strength, shrinkage and creep and durability aspects of concrete
including CO2 treated recycled fine aggregate. Cem. Concr. Res. 2020, 136, 106062. [CrossRef]

https://doi.org/10.3390/ma15031110
https://doi.org/10.1016/j.jenvman.2020.110445
https://doi.org/10.1016/j.wasman.2020.09.030
https://doi.org/10.1016/j.cscm.2020.e00450
https://doi.org/10.1016/j.conbuildmat.2022.128688
https://doi.org/10.3390/cryst11030232
https://doi.org/10.1016/j.jclepro.2019.118710
https://doi.org/10.1080/13467581.2023.2270029
https://doi.org/10.3390/su15065324
https://doi.org/10.1016/j.conbuildmat.2021.124091
https://doi.org/10.1016/j.jobe.2022.104713
https://doi.org/10.3390/buildings12050671
https://doi.org/10.1016/j.conbuildmat.2022.127071
https://doi.org/10.1016/j.seta.2022.102722
https://doi.org/10.1016/j.clet.2022.100428
https://doi.org/10.1016/j.conbuildmat.2023.130307
https://doi.org/10.1016/j.cemconcomp.2022.104527
https://doi.org/10.1016/j.jclepro.2020.122115
https://doi.org/10.1016/j.conbuildmat.2022.129876
https://doi.org/10.1016/j.resconrec.2022.106436
https://doi.org/10.1016/j.jcou.2022.102000
https://doi.org/10.1016/j.jobe.2021.102196
https://doi.org/10.1016/j.jobe.2021.103442
https://doi.org/10.1016/j.cemconcomp.2023.104994
https://doi.org/10.1016/j.jclepro.2021.127867
https://doi.org/10.1016/j.cemconres.2022.106733
https://doi.org/10.1016/j.cemconres.2020.106062


Materials 2024, 17, 1715 14 of 15

32. Lu, B.; Shi, C.; Cao, Z.; Guo, M.; Zheng, J. Effect of carbonated coarse recycled concrete aggregate on the properties and
microstructure of recycled concrete. J. Clean. Prod. 2019, 233, 421–428. [CrossRef]

33. Liu, Q.; Tang, H.; Chen, K.; Sun, C.; Li, W.; Jiao, S.; Tam, V.W. Improving industrial drying process of recycled fine aggregates as a
means of carbonation to improve the mechanical properties and plastic shrinkage of self-leveling mortar. Constr. Build. Mater.
2023, 403, 133001. [CrossRef]

34. Jamil, S.; Shi, J.; Idrees, M. Effect of various parameters on carbonation treatment of recycled concrete aggregate using the design
of experiment method. Constr. Build. Mater. 2023, 382, 131339. [CrossRef]

35. Wang, X.; Wu, Y.; Zhu, P.; Yang, J.; Li, H.; Wang, F.; Yan, X. Improvement of mechanical properties and carbonation durability
of recycled fine aggregate engineered cementitious composites for structural strengthening. J. Build. Eng. 2023, 76, 107277.
[CrossRef]

36. Huang, H.; Ren, X.; Liu, Z.; Wang, F. Development of low-carbon and cost-effective ultra-high performance concrete using
carbonated recycled fine aggregate. Constr. Build. Mater. 2023, 399, 132575. [CrossRef]

37. Lu, Z.; Tan, Q.; Lin, J.; Wang, D. Properties investigation of recycled aggregates and concrete modified by accelerated carbonation
through increased temperature. Constr. Build. Mater. 2022, 341, 127813. [CrossRef]

38. Verma, A.; Sarath Babu, V.; Arunachalam, S. Influence of mixing approaches on strength and durability properties of treated
recycled aggregate concrete. Struct. Concr. 2021, 22, E121–E142. [CrossRef]

39. GB/T14684-2011; Sand for Construction. China Architecture and Building Press: Beijing, China, 2011. (In Chinese)
40. GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. China Architecture and Building

Press: Beijing, China, 2019. (In Chinese)
41. GB/T 50082–2009; Test Methods of Long-Term Performance and Durability of Ordinary Concrete. National Standard of The

People’s Republic of China: Beijing, China, 2009.
42. Haitao, Y.; Shizhu, T. Preparation and properties of high-strength recycled concrete in cold areas. Mater. Construcción 2015, 65,

e050. [CrossRef]
43. GB/T 25176-2010; Recycled Fine Aggregate for Concrete and Mortar. Standards Press of China: Beijing, China, 2010.
44. Zhang, J.; Shi, C.; Li, Y.; Pan, X.; Poon, C.-S.; Xie, Z. Influence of carbonated recycled concrete aggregate on properties of cement

mortar. Constr. Build. Mater. 2015, 98, 1–7. [CrossRef]
45. Etxeberria, M.; Castillo, S. How the carbonation treatment of different types of recycled aggregates affects the properties of

concrete. Sustainability 2023, 15, 3169. [CrossRef]
46. Gholizadeh-Vayghan, A.; Snellings, R. Beneficiation of recycled concrete fines through accelerated carbonation. Mater. Struct.

2022, 55, 171. [CrossRef]
47. Algourdin, N.; Larbi, K.S.; Santos, I.; Mesticou, Z.; Pimienta, P.; Pinoteau, N.; Larbi, A.S. Experimental and numerical investigation

of accelerated carbonation of recycled fines. Constr. Build. Mater. 2023, 382, 131286. [CrossRef]
48. Xiao, J.; Lv, Z.; Duan, Z.; Zhang, C. Pore structure characteristics, modulation and its effect on concrete properties: A review.

Constr. Build. Mater. 2023, 397, 132430. [CrossRef]
49. Razak, S.; Zainal, F.F.; Shamsudin, S.R. Effect of porosity and water absorption on compressive strength of fly ash based

geopolymer and OPC Paste. IOP Conf. Ser. Mater. Sci. Eng. 2020, 957, 012035. [CrossRef]
50. Kumar, M.H.; Macharyulu, I.S.; Ray, T.; Mohanta, N.R.; Jain, M.; Samantaray, S.; Sahoo, A. Effect of water absorption and curing

period on strength and porosity of triple blended concrete. Mater. Today Proc. 2021, 43, 2162–2169. [CrossRef]
51. Russo, N.; Lollini, F. Effect of carbonated recycled coarse aggregates on the mechanical and durability properties of concrete.

J. Build. Eng. 2022, 51, 104290. [CrossRef]
52. Liang, C.; Pan, B.; Ma, Z.; He, Z.; Duan, Z. Utilization of CO2 curing to enhance the properties of recycled aggregate and prepared

concrete: A review. Cem. Concr. Compos. 2020, 105, 103446. [CrossRef]
53. Liu, K.; Xu, W.; Sun, D.; Tang, J.; Wang, A.; Chen, D. Carbonation of recycled aggregate and its effect on properties of recycled

aggregate concrete: A review. Mater. Express 2021, 11, 1439–1452. [CrossRef]
54. Wang, J.; Zhang, J.; Cao, D.; Dang, H.; Ding, B. Comparison of recycled aggregate treatment methods on the performance for

recycled concrete. Constr. Build. Mater. 2020, 234, 117366. [CrossRef]
55. Zheng, Y.; Xi, X.; Zhang, Y.; Zhang, P.; Du, C. Review of mechanical properties and strengthening mechanism of fully recycled

aggregate concrete under high temperature. Constr. Build. Mater. 2023, 394, 132221. [CrossRef]
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