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Abstract: Single-layer molybdenum disulfide (MoS2) has been a research focus in recent years owing
to its extensive potential applications. However, how to model the mechanical properties of MoS2 is
an open question. In this study, we investigate the nonlinear static bending and forced vibrations of
MoS2, subjected to boundary axial and thermal stresses using modified plate theory with independent
in-plane and out-of-plane stiffnesses. First, two nonlinear ordinary differential equations are obtained
using the Galerkin method to represent the nonlinear vibrations of the first two symmetrical modes.
Second, we analyze nonlinear static bending by neglecting the inertial and damping terms of the two
equations. Finally, we explore nonlinear forced vibrations using the method of multiple scales for
the first- and third-order modes, and their 1:3 internal resonance. The main results are as follows:
(1) The thermal stress and the axial compressive stress reduce the MoS2 stiffness significantly. (2) The
bifurcation points of the load at the low-frequency primary resonance are much smaller than those at
high frequency under single-mode vibrations. (3) Temperature has a more remarkable influence on
the higher-order mode than the lower-order mode under the 1:3 internal resonance.

Keywords: single-layer MoS2; Galerkin method; multiscale method; thermal stress; 1:3 internal resonance

1. Introduction

Since monolayer graphene was first mechanically exfoliated from graphite in 2004 [1],
its excellent physical, chemical, and mechanical properties have attracted extensive at-
tention [2–7]. At the same time, the graphene-like two-dimensional (2D) transition metal
dichalcogenides (TMDCs) have attracted widespread attention due to their single-layer
characteristics and their excellent mechanical properties similar to those of graphene [8–13].
Molybdenum disulfide (MoS2) is a typical TMDC material, it can be obtained using mechan-
ical stripping, a chemical approach, CVD synthesis, and other methods [14–16]. There are
significant differences in the size, quality, and yield of monolayer molybdenum disulfide
prepared using different methods. MoS2 not only overcomes the zero-band-gap drawback
of graphene but also retains its numerous advantages. This makes it suitable for a broad
range of potential applications [15,17,18]. Thus far, research on MoS2 has focused on its
electrical, thermal, and friction properties [19], whereas its mechanical properties have
rarely been investigated. TMDCs have been used as high-quality nanoresonators [20,21].
Because the band structure of monolayer MoS2 can be changed according to the mechanical
strain, new nanomechanical devices can be designed by applying mechanical deformation.
For example, Andres [22] fabricated a single-layered mechanical resonator using MoS2
and demonstrated nonlinear behavior under room temperature and vacuum conditions.
However, how to model the mechanical properties of 2D nanomaterials, in which the mate-
rials have a monolayer structure with single or multiple atoms, remains an open question.
Because monolayer MoS2 can resist bending deformations, the macroscopic Föppl-von
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Karman plate theory has been used by most researchers to model its mechanical properties.
The deformation energy density of the classical Föppl-von Karman plate is as follows [23]:

U =
1
2

∫
s

{
D
[
(2H)2 + 2(1 − ν)K

]
+ D1

[
(2J)2 − 2(1 − ν)Q

]}
d S, (1)

where D =
[
Eh3/12

(
1 − ν2)] is the bending stiffness; D1 = Eh/

(
1 − ν2) is the exten-

sional stiffness; and E, ν, and h are the elastic modulus, Poisson’s ratio, and thickness of
the plate, respectively. This indicates that the bending and extensional stiffnesses are in
D/D1 = h2/12 for classical plate theory, whereas the two stiffnesses in 2D monolayer
nanomaterials are independent, namely D/D1 ̸= h2/12 [23]. Therefore, one cannot obtain
the out-of-plane bending and torsional stiffnesses using the in-plane mechanical parameters
and the thickness of the 2D monolayer materials. This is called the Yakobson paradox [23],
whereas some authors believe that there is no paradox because much of the literature fails
to distinguish h and E from the effective thickness and the effective elastic modulus [24].
Similarly, for a single-layer MoS2, one cannot directly obtain the out-of-plane bending and
the torsional stiffness through its thickness. Based on the bond orbital theory of covalent
bonds, Huang [25] obtained a continuous mechanical theory of monolayer graphene to
explain the Yakobson paradox physically. This theory clarifies the physical mechanism of
graphene resistance to deformations. The theory proves that graphene has two independent
in-plane mechanical parameters and two independent out-of-plane mechanical parameters.
Subsequently, Huang et al. obtained the deformation energy density of hexagonal boron ni-
tride (h-BN) using the DREIDING force field, and also proved that the monolayer h-BN has
four independent mechanical parameters [26]. By combining the classical fracture theory
and the interaction potential of carbon atoms, the researchers in [27] theoretically explained
the brittle fracture of graphene. The above studies demonstrate that the macroscopic
continuum mechanics theory needs modification to describe the mechanical behaviors
of nanomaterials.

The existing MoS2 molecular dynamics (MD) calculations have shown that the bending
stiffness obtained using classical plate theory with the thickness of the three layers of atoms
(h = 3.2 nm) is not identical to the stiffness obtained using MD calculations [28]. To
solve this contradiction, Huang proposed a nonlinear plate theory with independent
in-plane and out-of-plane mechanical parameters to model MoS2 mechanical behaviors
based on finite temperature [29]. This theory has a deformation energy density similar to
classical plate theory, but it has four independent mechanical parameters. This new theory
abandons the equivalent thickness of MoS2 and directly takes in-plane and out-of-plane
stiffnesses as independent mechanical parameters. Consequently, the Yakobson paradox is
effectively avoided.

Two-dimensional nanomaterials are typically sensitive to temperature because their
out-of-plane stiffness is low. MoS2 expands with increasing temperature [30,31]. Recent
MD calculations have shown that temperature changes have little influence on the elastic
parameters of MoS2; however, temperature can cause significant thermal expansion [32].
For single-layer MoS2 with immovable boundaries, thermal expansion may induce thermal
stress, which can lead to thermal buckling. In this study, the nonlinear static bending
and vibrations of single-layer MoS2 with four hinged edges were investigated based on
a modified plate model proposed by Huang [29]. This study focuses on the influence of
temperature on the nonlinear mechanical behavior of monolayer MoS2.

2. Materials and Methods

A modified Föppl-von Karman plate model with independent in-plane and out-of-
plane stiffnesses was established by Huang to model the mechanical properties of single-
layer MoS2 [29]. Because Huang’s theory was published in Chinese, we briefly review this
new theory for reader understanding.
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Single-layer MoS2 is considered a 2D plate in Huang’s theory, as shown in Figure 1,
and its deformation energy density is as follows [29]:

U =
∫
s

[
1
2

kB(2H)2 + kGK +
1
2

kb(2J)2 − kgQ
]

dS. (2)
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Figure 1. Calculation diagram of a single-layer MoS2 under load: (a) plate model with the coordinate; 
(b) applied edge loads; (c) side view of the MoS2 lattice structure. 
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Figure 1. Calculation diagram of a single-layer MoS2 under load: (a) plate model with the coordinate;
(b) applied edge loads; (c) side view of the MoS2 lattice structure.

Here, H and K are the mean and Gaussian curvatures, respectively, of the deformed
MoS2 middle surface. Q = det

(
ε0

ij

)
and J = tr

(
εij
)

are the two invariants of the 2D strain

tensor ε0
ij, i, j = x, y on the middle surface. kB and kG are independent bending stiffness

and torsional stiffness (Gaussian stiffness), respectively, whereas kb and kg are in-plane
stiffness parameters. These four independent stiffness parameters are obtained through
atomic simulations and experiments.

Using the von Karman nonlinear strain, the components of the strain tensor can be
expressed as follows:

ε0
xx = ∂u

∂x + 1
2

(
∂w
∂x

)2
, ε0

yy = ∂v
∂y + 1

2

(
∂w
∂y

)2
,

ε0
xy = 1

2

(
∂u
∂y + ∂v

∂x + ∂w
∂x

∂w
∂y

)
.

(3)

Here, u, v, and w are the displacements of the middle surface in the x, y, and z
directions, respectively. Equation (3) is consistent with the classical plate in addition to the
four stiffness parameters. Therefore, we can define the Airy function of the in-plane 2D
stress as Nxx = ∂2F/∂y2 and Nyy = ∂2F/∂x2. From Equation (2), we obtain

Nxx = kbε0
xx +

(
kb − kg

)
ε0

yy, Nxy = kgε0
xy,

Nyy =
(
kb − kg

)
ε0

xx + kbε0
yy.

(4)

Therefore, the in-plane strain is expressed as follows:

ε0
xy =

Nxy
kg

, ε0
xx = 1

χ Nxx − 1
λ Nyy,

ε0
yy = 1

λ Nxx − 1
χ Nyy,

(5)

where χ = kg
(
2kb − kg

)
k−1

b and λ = kg
(
2kb − kg

)(
kb − kg

)−1. According to Equation (5),
the in-plane strain energy density can be rewritten as follows:

Us =
∫
S

{
1

2χ

(
∂2F
∂y2 +

∂2F
∂x2

)2

− 1
kg

[
∂2F
∂y2

∂2F
∂x2 −

(
∂2F

∂x∂y

)2]}
dS. (6)
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To ensure the continuity and single-value of the displacement field, the strain field
must satisfy the following completeness condition [33]: 2∂2ε0

xy/∂x∂y − ∂2ε0
xx/∂y2 − ∂2ε0

yy/
∂x2 = K. This equation can be rewritten as ∆2F = −χK. The Lagrange multiplier l(x, y)
must be introduced into the potential energy function because the stress function is intro-
duced. Then, Equation (2) can be rewritten as follows:

U =
∫
s

{
1
2 kB(2H)2 + kGK + 1

2χ

(
∂2F
∂y2 + ∂2F

∂x2

)2
−

1
kg

[
∂2F
∂y2

∂2F
∂x2 −

(
∂2F

∂x∂y

)2
]
+ l

(
∆2F + χK

)}
dS.

(7)

By performing complex but direct computations on Equation (7) and identifying the
Lagrange multiplier, Equation (7) can be transformed into

U =
∫
s

{
1
2 kB(2H)2 + kGK + 1

2χ

(
∂2F
∂y2 + ∂2F

∂x2

)2
− 1

kg

[
∂2F
∂y2

∂2F
∂x2 −

(
∂2F

∂x∂y

)2
]

+ 1
2

[
∂2F
∂y2

(
∂w
∂x

)2
+ ∂2F

∂x2

(
∂w
∂y

)2
− 2 ∂2F

∂x∂y
∂w
∂x

∂w
∂y

]}
dS.

(8)

Considering the influence of temperature on MoS2, Huang applied a boundary axial
external force and thermal stress to the structure [29]; therefore, the load work is as follows:

W =
∫
S

{
q(x, y, t)w + 1

2

[(
N0

xx − NT
xx
)(

∂w
∂x

)2
+2N0

xy
∂w
∂x

∂w
∂y +

(
N0

yy − NT
yy

)(
∂w
∂y

)2
]}

dS, (9)

where q(x, y, t) is the load in the z direction, and N0
xx and N0

yy are the pre-applied axial
tensile stresses in the x and y directions at the boundaries, respectively. NT

xx and NT
yy are the

thermal stresses in the x and y directions at the boundaries [29,34]. The thermal stresses in
the uniform temperature field are NT

xx = kbεT
xx = kbαT and NT

yy = kgεT
yy = kgαT, where εT

xx

and εT
yy represent the thermal strain, and α is the coefficient of thermal expansion (CTE).

The Lagrange function can be constructed as L = U − W, which is subjected to
variational calculations, namely, letting δL = 0 with the independent variables w and F.
Therefore, we obtain the force balance equation and compatibility condition as follows:

KB∇4w =
(

∂2F
∂y2 + N0

xx − NT
xx

)
∂2w
∂x2 +

(
∂2F
∂x2 + N0

yy −NT
yy

)
∂2w
∂y2 − 2

(
∂2F

∂x∂y + N0
xy

)
∂2w
∂x∂y + q,

∇4F = −χ

[
∂2w
∂x2

∂2w
∂y2 −

(
∂2w
∂x∂y

)2
]

.
(10)

Equation (10) is a mathematical model of MoS2 derived by Huang [29], in which the
out-of-plane and in-plane stiffness parameters are independent. To study the dynamics
problem, we add the inertial force term m

(
∂2w/∂t2) to Equation (10) using the D’Alembert

principle [35]; thus, the move equations can be rewritten as follows:

KB∇4w =
(

∂2F
∂y2 + N0

xx − NT
xx

)
∂2w
∂x2 +

(
∂2F
∂x2 + N0

yy − NT
yy

)
∂2w
∂y2

−2
(

∂2F
∂x∂y + N0

xy

)
∂2w
∂x∂y + q(x, y, t)− m ∂2w

∂t2 ,
(11)

∇4F = −χ

[
∂2w
∂x2

∂2w
∂y2 −

(
∂2w
∂x∂y

)2]
. (12)

For simplification, we assume that q(x, y, t) in Equation (11) is a harmonic load; therefore,

q(x, y, t) = f (x, y) cos(Ωt). (13)
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Here, we define the following dimensionless variables as follows:

w̃ = w
a , x̃ = x

a , ỹ = y
b , t̃ = ω0t,

F̃ = F
KB

, Ω̃ = Ω
ω0

, ω0 =
√

KBπ4

ma4 ,
(14)

where a and b represent the side lengths of the monolayer MoS2, as shown in Figure 1.
Thus, Equation (11) can be simplified into a dimensionless form as follows:

∂2w̃
∂t̃2 + 1

π4
∂w̃4

∂x̃4 + 2a2

π4b2
∂w̃4

∂x̃2 ỹ2 +
a4

π4b4
∂w̃4

∂ỹ4 = a2

π4b2
∂2 F̃
∂ỹ2

∂2w̃
∂x̃2

+
(N0

xx−NT
xx)

ma2ω2
0

∂2w̃
∂x̃2 + a2

π4b2
∂2 F̃
∂x̃2

∂2w̃
∂ỹ2 +

N0
yy−NT

yy

mb2ω2
0

∂2w̃
∂ỹ2

−2 a2

π4b2
∂2 F̃

∂x̃∂ỹ
∂2w̃
∂x̃∂ỹ − 2

N0
xy

mabω2
0

∂2w̃
∂x̃∂ỹ + a3 f

π4KB
cos Ω̃t̃,

(15)

b2KB

a4
∂4 F̃
∂x̃4 +

2KB

a2
∂4 F̃

∂x̃2ỹ2 +
KB

b2
∂4 F̃
∂ỹ4 = −χ

[
∂2w̃
∂x̃2

∂2w̃
∂ỹ2 −

(
∂2w̃
∂x̃∂ỹ

)2]
. (16)

2.1. Analysis of Static Bending

Because Equations (15) and (16) are nonlinear partial differential equations, they are
difficult to solve accurately. Therefore, the Galerkin method [36] is used to transform
Equations (15) and (16) into ordinary differential equations in time. Equations (15) and (16)
resemble the classical plate (but the mechanical parameters of the MoS2 are independent).
Under small deformations, symmetric loads may only induce symmetric deformations,
even when nonlinear terms emerge. We then analyze the static and dynamic bending
deformations under symmetric loads through first- and third-order symmetric modes. We
expand the transverse displacement w and stress function F as follows:{

w̃ = u1
(
t̃
)

sinπx̃ sinπỹ + u3
(
t̃
)

sin 3πx̃ sinπỹ,
F̃ = ξ̃11

(
t̃
)

sinπx̃ sinπỹ + ξ̃31
(
t̃
)

sin 3πx̃ sinπỹ.
(17)

Substituting the F̃ in Equation (17) into Equation (16) and multiplying sinπx̃ sinπỹ
and sin 3πx̃ sinπỹ on the two sides of Equation (16) (the Galerkin model), we have{

ξ11 = k∗1η2
11 + k∗2η11η31 + k∗3η2

31,
ξ31 = k∗4η2

11 + k∗5η11η31 + k∗6η2
31.

(18)

The parameters in Equation (18) are as follows:

k∗1 = −16a4b2χ

3π2KB(a2+b2)
2 , k∗2 = 352a4b2χ

45π2KB(a2+b2)
2 , k∗3 = −912a4b2χ

35π2KB(a2+b2)
2 ,

k∗4 = 176a4b2χ

45π2KB(a2+9b2)
2 , k∗5 = −1824a4b2χ

35π2KB(a2+9b2)
2 , k∗6 = −16a4b2χ

π2KB(a2+9b2)
2 .

(19)

Similarly, we substitute the w̃ in Equation (17) into Equation (15); subsequently, we
multiply sinπx̃ sinπỹ and sin 3πx̃ sinπỹ on the two sides of Equation (15), and considering
Equation (18), the vibration equations for the first-order and third-order modes can be
obtained as follows:{ ..

u1 + ω2
1u1 = α1u3

1 + α2u2
1u3 + α3u1u2

3 + α4u3
3 + f1 cos Ωt,

..
u3 + ω2

3u3 = α5u3
1 + α6u2

1u3 + α7u1u2
3 + α8u3

3 + f3 cos Ωt.
(20)

The parameters in Equation (20) are listed in Appendix A. By omitting the inertial
terms in Equation (20), the static deformations of the midpoint of the monolayer MoS2 are
obtained as follows:{

ω2
1u1 = α1u3

1 + α2u2
1u3 + α3u1u2

3 + α4u3
3 + f1,

ω2
3u3 = α5u3

1 + α6u2
1u3 + α7u1u2

3 + α8u3
3 + f3.

(21)
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We take the MoS2 mechanical parameters in Table 1 as an example. Using the data
in the table and Equation (21), the static bending amplitudes under external loads are
obtained with four hinged edges, as shown in Figure 2a,b.

Table 1. Mechanical parameters of the single-layered MoS2 [28,37,38].

κB(eV) Y(N/m) V α
(
K−1) κb

(
eV/nm2) κg

(
eV/nm2) ĉj

9.61 120 0.23 6.49 × 10−5 792 610 0.05
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Figure 2. (a) Static deformation amplitudes (w̃0 = w̃(0.5, 0.5)) under the loads and temperature for
a = b = 6 nm; (b) static deformation amplitudes with the loads for two temperatures at a = 5 nm,
b = 10 nm for N0

xx = 0.3 nN/nm, N0
yy = 0.1 nN/nm.

The two figures show that the thermal stress and axial compressive stress decrease the
MoS2 stiffness. If both the first- and third-order modes are considered, the deflections of
the midpoint would be slightly smaller than those considering only the first-order mode,
as shown in Figure 2b. This may indicate that the first-order mode can precisely represent
static deformations under symmetric loads.

2.2. Nonlinear Primary Resonance without Internal Resonance

In this section, our study of the nonlinear vibrations of single-layer MoS2 using
Equation (20) are presented. These equations only contain cubic nonlinear terms. If the
geometric dimensions of MoS2 and the axial force have the given values, the equations
may exhibit a 1:3 internal resonance. This study mainly includes the following three parts:
exciting only the first- or third-order primary resonance and the 1:3 internal resonance with
the load’s frequency near the low-order natural frequency.

To simplify the analysis, we assume that the damping force is 2ĉj
.
uj with damping

coefficient ĉj. If there is no internal resonance in Equation (20), the vibrations of the
unexcited modes rapidly decay because of damping. Therefore, the steady-state vibrations
only contain the excited mode [39]. Thus, the coupling terms in Equation (20) can be
neglected. The forced vibration equation of single-layer MoS2 in the first-order mode
(Ω ≈ ω1) or third-order mode (Ω ≈ ω3) is as follows:

..
uj + ω2

j uj + 2ĉj
.
uj = β ju3

j + f j cos(Ωt), j = 1 or 3, (22)

where β1 = α1, β3 = α8. We employ the multiple scale perturbation method to analyze
Equation (22). The method is a classical perturbation method that is used to solve weak
nonlinear differential equations. We supposed that the influences of damping, the nonlinear
terms, and the loads emerge in a unified perturbation equation, so we set ĉj = ε2cj and
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f j = ε3 f j1. The small parameter ε = 0.1 is used in this research. Consequently, Equation (22)
is rewritten as follows:

..
uj + ω2

j uj + 2ε2cj
.
uj = β ju3

j + ε3 f j1 cos(Ωt), j = 1 or 3 (23)

We assume the solution of Equation (23) as

uj = εuj1(T0, T2) + ε3uj3(T0, T2) + · · · , (24)

where T0 = t, T1 = εt, and T2 = ε2t. By substituting Equation (24) into Equation (23) and
equating the coefficients of ε and ε3 on both sides, we obtain

ε : D 2
0uj1 + ω 2

j uj1 = 0, (25)

ε3 : D2
0uj3 + ω2

j uj3 = −2D0
(

D2uj1 +cjuj1
)
+ β ju3

j1 + f j1 cos(ΩT0), (26)

where D0 = d/dT0 and D2 = d/dT2. In accordance with the ordinary differential equation
theory, the solution of Equation (25) is as follows:

uj1 = Aj(T2) exp
(
iωjT0

)
+ cc, (27)

where cc denotes the complex conjugate of the preceding term, and Aj are the arbitrary
functions of T2. Substituting Equation (27) into (26), we obtain

D2
0uj3 + ω2

j uj3 =
[
−2iωj

(
D1 Aj + cj Aj

)
+3β j A2

j A
]

exp
(
iωjT0

)
+ β j A3

j exp
(
3iωjT0

)
+ 1

2 f j1 exp(iΩT0) + cc,
(28)

where A is the complex conjugate of A. Letting Ω = ωj + ε2σj and applying the elimination
condition for the secular terms in Equation (28), we obtain

−2iωj
(

D1 Aj + cj Aj
)
+ 3β j A2

j Aj +
1
2

f j1 exp
(
iσjT2

)
= 0. (29)

We introduce the polar forms Aj = (1/2)λj exp
(
iθj

)
with λj and θj in the real functions

of T2. Substituting the Aj into Equation (28) and separating the real and imaginary parts of
Equation (29), we obtain  D1λj + cλj =

f j1
2ωj

sin γj,

λjD1θj +
3

8ωj
β jλ

3
j =

−1
2ωj

f j1 cos γj,
(30)

where γj = σjT2 − θj.
The steady-state motion will occur if D1λj = D1γj = 0. This corresponds to the

solution of the following equations: cjλj =
1

2ωj
f j1 sin γj,

λjσj +
3β j
8ωj

λ3
j =

−1
2ωj

f j1 cos γj.
(31)

2.2.1. Primary Resonance of Low Frequency without Internal Resonance

The vibration amplitude of the low-frequency primary resonance can be obtained
from Equation (31) using j = 1:[

c1
2 +

(
σ1 +

3β1

8ω1
λ2

1

)2
]

λ2
1 =

f 2
11

4ω2
1

. (32)
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One can obtain λ1 from Equation (32). Then, we substitute it into Equation (24), so the
first-order approximate solution is obtained.

u1 ≈ ελ1 cos(Ωt − γ1). (33)

The mechanical parameters of MoS2 are listed in Table 1. The geometric dimensions
are a = 5 nm and b = 10 nm, and the axial tensile stresses are N0

xx = 0.3 nN/nm and
N0

yy = 0.1 nN/nm. These parameters prevent internal resonance. Because there has been
no thorough research on damping, we use 2ε2cj = 0.05 for simplification. Therefore, we
have cj = 2.5, ĉj = 0.025 for ε = 0.1. By substituting these parameters into the expressions
in Appendix A, we obtain 3ω1 ≪ ω3.

When these parameters are substituted into Equation (32), the amplitude–frequency
response curves at three different temperatures were obtained with f11 = 10, as shown
in Figure 3a. This figure shows that temperature had an insignificant effect on the MoS2
amplitude–frequency response curve. However, the combination of the load frequency and
temperature had a significant effect on the load–amplitude curve, as shown in Figure 3b.
Figure 3a,b also shows that the amplitude–frequency and load–amplitude response curves
have two bifurcation points that lead to jumps in the vibration amplitude. The dotted lines
in Figures 3 and 4 indicate unstable solutions. The stability of steady-state solutions can be
determined through the eigenvalues of the Jacobian matrix of Equation (30); the details can
be found in [39].
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Figure 3. (a) Frequency–response curves of low-frequency primary resonance with the three tempera-
tures for f11 = 10; (b) load–response curves of vibration amplitudes with two temperatures.
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To validate the effectiveness of the approximate analytical solution, we simulate
Equation (22) with

(
f11, N0

xx, N0
yy

)
= (10, 0.3, 0.1) using the Runge–Kutta method at T = 0

and T = 40, as shown in Figure 4a,b. Comparing the approximate analytical and numerical
solutions, we find that the approximate analytical solution has good accuracy. The unstable
solutions are indicated by dotted lines in Figure 3a,b and Figure 4a.

2.2.2. Primary Resonance of High Frequency without Internal Resonance

For the primary high-frequency resonance, the vibration amplitude can be obtained
from Equation (31) using j = 3. We square the two equations and add them such that[

c2
3 +

(
σ3 +

3β3

8ω3
λ2

3

)2
]

λ2
3 =

f 2
31

4ω2
3

. (34)

Substituting the λ3 and γ3 determined by Equation (34) into Equation (24), we obtain
the third-order approximate solution as follows:

u3 ≈ ελ3 cos(Ωt − γ3). (35)

The frequency–response or load–amplitude curves can be obtained using Equation (34)
at different temperatures when the third-order mode is excited, as shown in Figure 5a,b. The
precision of the approximate analytical solution is examined using the Runge–Kutta method
as shown in Figure 6a,b. The dotted lines in Figures 5 and 6 indicate the unstable solutions.
The stability of the steady-state solutions can be determined using the eigenvalues of the
Jacobian matrix of Equation (30); the details can be found in [39].

From Figure 5a,b and Figure 6a, the following three main results can be drawn. First,
the vibration amplitudes of the third-order mode are significantly smaller than those of
the first-order mode under the same load. Second, the temperature has little effect on the
amplitude of the third-order mode. Finally, the bifurcation points of the f11 of the low-
frequency primary resonance are much smaller than those of the high-frequency resonance.
A small bifurcation point of the first-order mode indicates that the low-frequency vibration
is more prone to a large vibration amplitude. We use the Runge–Kutta method to calculate
Equation (22) with f31 = 50, as shown in Figure 6a,b. The unstable solutions are indicated
by dotted lines in Figure 5a,b and Figure 6a.
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atures for f 31 = 50; (b) load–response curves of vibration amplitudes with two temperatures.
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Figure 6. (a) Comparison between approximate analytical and numerical solutions with f31 = 50 for
T = 0 or T = 200; (b) time–response curves with f31 = 50, σ2 = 20 for T = 0 or T = 200.

Here, we have used two thicknesses [28], h = 0.445 nm and h = 0.65 nm, to show the
differences in nonlinear vibrations between the classical Föppl-von Karman plate model
and the modified Föppl-von Karman plate model in this paper. So, the partial mechanical
parameters with different effective thicknesses are shown in Table 2. The outstanding
differences in the frequency–response curves between the two models can be found from
Figure 7a,b.

Table 2. The partial mechanical parameters of the classical Föppl-von Karman plate model for
a = 5, b = 10, NT

xx = 0.3, NT
yy = 0.1, T = 50.

h(nm) KB(eV) ω1 ω3

0.445 13.05 1.1544 9.1788
0.65 27.85 1.2062 9.2167
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Figure 7. (a) Frequency–response curves of the low-frequency primary resonance with the classical
plate model and the modified plate model” for f = 10; (b) frequency–response curves of the high-
frequency primary resonance with the classical plate model and the modified plate model for f = 50.
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2.2.3. Primary Resonance and 1:3 Internal Resonance at Low Frequency

To research the 1:3 internal resonance, we rewrite Equation (20) as follows:
..
u1 + ω2

1u1 + 2ε2c1
.
u1 = α1u3

1 + α2u2
1u3 + α3u1u2

3
+α4u3

3 + ε3 f11 cos(Ωt),
..
u3 + ω2

3u3 + 2ε2c3
.
u3 = α5u3

1 + α6u2
1u3 + α7u1u2

3
+α8u3

3 + ε3 f31 cos(Ωt).

(36)

Here, we add two damping terms to the first- and third-order equations. The solution
of Equation (36) are as follows:{

u1 = εu11(T0, T2) + ε3u13(T0, T2) + · · · ,
u3 = εu31(T0, T2) + ε3u33(T0, T2) + · · · .

(37)

By substituting Equation (37) into Equation (36) and equating the coefficients of ε and
ε3, we obtain

ε :
{

D2
0u11 + ω2

1u11 = 0,
D2

0u31 + ω2
3u31 = 0,

(38)

ε3 :


D2

0u13 + ω2
1u13 = −2D0(D2u11 + c1u11) + α1u3

11 + α2u2
11u31

+α3u11u2
31 + α4u3

31 + f11 cos ΩT0,
D2

0u33 + ω2
3u33 = −2D0(D2u31 + c3u31) + α5u3

11 + α6u2
11u31

+α7u11u2
31 + α8u3

31 + f31 cos ΩT0.

(39)

According to the theory of ordinary differential equations, we assume that the solution
of Equation (38) are as follows:{

u11 = A1(T2) exp(iω1T0) + cc,
u31 = A2(T2) exp(iω3T0) + cc,

(40)

Here, cc denotes the complex conjugate of the preceding terms, and A1 A2 represent
the functions of T2. Substituting Equation (40) into (39), we obtain

D2
0u13 + ω2

1u13 = −[2iω1(D2 A1 + c1 A1) + 3α1 A2
1 A1 + 2α3 A1 A2 A2

]
exp(iω1T0)

+α2 A2
1 A2 exp[i(−2ω1 + ω3)T0] +

f31
2 exp(iΩT0) + cc + NST,

(41)

D2
0u33 + ω2

2u33 = −[2iω3(D2 A2 + c3 A2) + 3α8 A2
2 A2 + 2α6 A1 A1 A2

]
exp(iω3T0)

+α5 A3
1 exp(3iω1T0) +

f31
2 exp(iΩT0) + cc + NST,

(42)

where A denotes the complex conjugate of A and NST is the non-secular term.
These equations may exhibit an internal resonance of ω3 ≈ 3ω1. Introducing the

detuning parameters σ1 and σ2, we obtain

ω3 = 3ω1 + ε2σ 1. (43)

Ω = ω1 + ε2σ2. (44)

Therefore, the solvability conditions of Equations (41) and (42) are as follows:
1
2 f11 exp(iσ1T2)− 2iω1(D2 A1 + c1 A1) + 3α1 A1

2 A1

+2α3 A2 A2 A1 + α2 A2
1 A2 exp(iσ1T2) = 0,

−2iω3(D2 A2 + c3 A2) + α5 A3
1 exp(−iσ1T2) + 2α6 A1 A1 A2 + 3α8 A2

2 A2 = 0.
(45)
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If the polar coordinate form Am = (1/2)am exp(iβm), m = 1, 2 is introduced and sub-
stituted into Equation (45), and the real and imaginary parts of the equation are separated,
we obtain 

8ω1(D2a1 + c1a1) = α2a2
1a2 sin γ1 + 4 f11 sin γ2,

8ω3(D2a2 + c3a2) = −α5a3
1 sin γ1,

8ω1a1D2β1 = −
(
3α1a2

1 + 2α3a2
2
)
a1 − α2a2

1a2 cos γ1 − 4 f11 cos γ2,
8ω3a2D2β2 = −

(
3α8a2

2 + 2α6a2
1
)
a2 − α5a3

1 cos γ1.

(46)

Here, αm and βm are real functions of T2, and γ1 = σ1T2 − 3β1 + β2, γ2 = σ2T2 − β1.
The steady-state motion may occur when D2am = D2γm = 0. The steady-state solution can
be obtained using the following nonlinear equations:

8ω1c1a1 − α2a2
1a2 sin γ1 − 4 f11 sin γ2 = 0,

8ω3c3a2 + α5a3
1 sin γ1 = 0,

8ω1a1σ2 +
(
3α1a2

1 + 2α3a2
2
)
a1 = −α2a2

1a2 cos γ1 − 4 f11 cos γ2,
8ω3a2(3σ2 − σ1) +

(
3α8a2

2 + 2α6a2
1
)
a2 = −α5a3

1 cos γ1.

(47)

An algebraic equation revealing the relationship between the vibration amplitude
and other parameters can be derived by squaring the second and fourth formulas of
Equation (47) and summing them as follows:[

32ω3α6a2
2(3σ2 − σ1) + 12α6α8a4

2
]
a2

1 + 4α2
6a2

2a4
1 − α2

5a6
1

+9α2
8a6

2 + 64ω2
3a2

2

[
c2

3 + (3σ2 − σ1)
2
]
+ 48ω3α8a4

2(3σ2 − σ1) = 0.
(48)

Letting a2
1 = A1, Equation (48) can be simplified as a cubic equation for A1,

dA3
1 + eA2

1 + gA1 + h = 0(d ̸= 0), (49)

where
d = α2

5, e = −4α2
6a2

2,
g = −12α6α8a4

2 − 32ω3α6a2
2(3σ2 − σ1),

h = −64ω2
3a2

2

[
c2

3 + (3σ2 − σ1)
2
]
− 48ω3α8a4

2(3σ2 − σ1)− 9α2
8a6

2.
(50)

Equation (49) can be rewritten as follows:

x3 + px + q = 0, (51)

with A1 = x − e/3d, p =
(
3dg − e2)/3d2, and q =

(
27d2h −9deg + 2e3)/27d3. According

to the Cardano formula, the solutions of Equation (51) are as follows:
x1 =

3

√
− q

2 +
√( q

2
)2

+
( p

3
)3

+
3

√
− q

2 −
√( q

2
)2

+
( p

3
)3,

x2 = ω
3

√
− q

2 +
√( q

2
)2

+
( p

3
)3

+ ω2 3

√
− q

2 −
√( q

2
)2

+
( p

3
)3,

x3 = ω2 3

√
− q

2 +
√( q

2
)2

+
( p

3
)3

+ ω
3

√
− q

2 −
√( q

2
)2

+
( p

3
)3.

(52)

There is one real root and two complex roots in Equation (51) if ∆ ≜ (q/2)2 + (p/3)3 > 0.
When ∆ = 0 and p, q ̸= 0, there is one double root and one single root; the equation has
three distinct real roots if ∆ < 0.

A1 is real because it is the vibration amplitude. Thus, we disregard the complex roots.
Equation (48) provides the relationship between the low-frequency vibration amplitude
a1 and the high-frequency vibration amplitude a2. Equation (52) implies that a given a2
corresponds to one or three values of a1. To simplify the research, we only consider that an
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a2 corresponds to an a1. The more intricate cases will be studied in another paper. Hence,
we had

A1 =
3

√
− q

2
+

√( q
2

)2
+

( p
3

)3
+

3

√
− q

2
−

√( q
2

)2
+

( p
3

)3
− e

3d
. (53)

Equation (53) can be transformed into

A1 =

{
− 27d2h−9deg+2e3

54d3 +

[(
27d2h−9deg+2e3

54d3

)2
+

(
3dg−e2

9d2

)3
]1/2

}1/3

+

{
− 27d2h−9deg+2e3

54d3 +

[(
27d2h−9deg+2e3

54d3

)2
+

(
3dg−e2

9d2

)3
]1/2

}1/3

− e
3d .

(54)

From the second and the fourth formulas of Equation (46), we obtain{
sin γ1 = −8ω3c3a2/α5a3

1,
cos γ1 = −

[
8ω3a2(3σ2 − σ1) +

(
3α8a2

2 + 2α6a2
1
)
a2
]
/α5a3

1.
(55)

Substituting sin γ1 and cos γ1 into the first and third formulas of Equation (47), and
then squaring and summing the two equations, we obtain

16 f 2
11 = 64ω2

1a2
1
(
c2

1 + σ2
2
)
+

(
8ω3c3α2a2

2/α5a1
)2

+ 128ω1ω3c1c3α2a2
2/α5

+
(
3α1a3

1 + 2α3a1a2
2
)2

+
[(

8ω3σ1α2a2
2 − 24ω3σ2α2a2

2 − 3α8α2a4
2 − 2α6α2a2

1a2
2
)]2

+ω1σ2
(
48α1a4

1 + 32α3a2
1a2

2
)
+ 16ω1α2σ2a2

2
[(

8ω3σ1 − 24ω3σ2 − 3α8a2
2 − 2α6a2

1
)
/α5

]
+
(
6α1α2a2

1a2
2 + 4α2α3a4

2
)[(

−24ω3σ2 + 8ω3σ1 − 3α8a2
2 − 2α6a2

1
)
/α5

] (56)

The vibration amplitude of the first- and third-order models can be obtained using the
following procedure: First, a2

1 is obtained using Equation (54); subsequently, a2
1 is substi-

tuted into Equation (54) to find a2. The angles γ1 and γ2 can be obtained by substituting a1
and a2 into the second and fourth formulas of Equation (47).

2.2.4. Stability Analysis of Steady-State Solutions

The stability of the solutions can be determined by investigating the nature of the
singular points in Equation (46). To accomplish this, we set a1 = a0

1 + a1
1, a2 = a0

2 + a1
2,

γ1 = γ0
1 + γ1

1, and γ2 = γ0
2 + γ1

2. Subsequently, by substituting them into Equation (46)
and considering that α0

j , γ0
j , j = 1, 2 meet Equation (47), we obtain



a′1 =
(
α2a2

1a2 sin γ1 + 4 f11 sin γ2
)
/8ω1 − c1a1 ≜ F1(a1, a2, γ1, γ2),

a′2 = − α5a3
1 sin γ1
8ω3

− c3a2 ≜ F2(a1, a2, γ1, γ2),

γ′
2 =

[(
3α1a2

1 + 2α3a2
2
)
a1 + α2a2

1a2 cos γ1 + 4 f11 cos γ2
]
/8ω1a1 + σ2 ≜ F3(a1, a2, γ1, γ2),

γ′
1 =

[(
9α1a2

1 + 6α3a2
2
)
a1 + 3α2a2

1a2 cos γ1 + 12 f11 cos γ2
]
/8ω1a1

−
[(

3α8a2
2 + 2α6a2

1
)
a2 +α5a3

1 cos γ1
]
/8ω3a2 + σ1 ≜ F4(a1, a2, γ1, γ2).

(57)

The Jacobian matrix of Equation (57) is as follows:

J =



∂F1
∂a1

∂F1
∂a2

∂F1
∂γ2

∂F1
∂γ1

∂F2
∂a1

∂F2
∂a2

∂F2
∂γ2

∂F2
∂γ1

∂F3
∂a1

∂F3
∂a2

∂F3
∂γ2

∂F3
∂γ1

∂F4
∂a1

∂F4
∂a2

∂F4
∂γ2

∂F4
∂γ1

 (58)
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The elements in this matrix are shown in Appendix B. From Equation (47), we obtain
γ1 = arctan

[
8ω3c3

8ω3(3σ2−σ1)+(3α8a2
2+2α6a2

1)

]
± π,

γ2 = arctan
{
−
(
8α2ω3c3a2

2 + 8ω1c1α5a2
1
){[

8ω1σ2 +
(
3α1a2

1 + 2α3a2
2
)]

α5a2
1

−
[
8ω3(3σ2 − σ1) +

(
3α8a2

2 + 2α6a2
1
)]}−1

}
± π

(59)

The stability of steady-state solutions can be determined using the eigenvalues of
the Jacobian matrix J. The steady-state solution is unstable if the eigenvalues of the
corresponding Jacobian matrix contain positive real components. The unstable solutions
are indicated by the dotted lines in Figures 8–11.

To study the 1:3 internal resonance, we use the mechanical and geometric coefficients
listed in Tables 1 and 3; the axial stresses are N0

xx = 10 nN/nm, N0
yy = 49.8 nN/nm. By

substituting these data into Equations (54) and (56), the relationship between the load
frequency and amplitude can be displayed with a 1:3 internal resonance, as shown in
Figures 8–11.
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Figure 8. (a) Frequency–response curves of the first-mode vibration amplitudes with σ2 for T = 0;
(b) frequency–response curves of the third-mode vibration amplitudes with σ2 for T = 0.
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Figure 9. (a) Amplitude–frequency response curves of the first-mode vibration amplitudes with three
temperatures for f11 = 100; (b) amplitude–frequency response curves of the third-mode vibration
amplitudes with three temperatures for f11 = 100.
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Figure 10. (a) Comparison between approximate analytical and numerical solutions for vibration
amplitudes of the first-order model with two loads for T = 0; (b) comparison between approxi-
mate analytical and numerical solutions for vibration amplitudes of the first-order model with two
temperatures for f11 = 100.
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Figure 11. (a) Amplitude–response curves of the first-order mode for three temperatures at σ2 = 7;
(b) amplitude–response curves corresponding to the third-order mode for three temperatures at
σ2 = 7.

Table 3. Coefficients in Equation (56) for a = 5, b = 15, NT
xx = 10, NT

yy = 49.8.

T First-Order Natural
Frequency

Third-Order Natural
Frequency Detuning Parameter σ1

0 ω1 = 5.18 ω3 = 15.50 −4
100 ω1 = 5.03 ω3 = 15.09 0.914
200 ω1 = 4.88 ω3 = 14.68 4

Figure 8a,b illustrates the amplitude–frequency response curves of the first- and third-
order modes with three external forces at T = 0. The two figures show that the vibration
amplitudes of the low-order mode are significantly larger than those of the high-order
mode under the same loads. Because the nonlinear terms increase the stiffness of MoS2, the
resonance peaks shift toward higher frequencies. Furthermore, the vibration amplitude
may increase with frequency, which indicates significant changes in motion.

Figure 9a,b shows the effects of temperature on the amplitude–frequency response
curves with f11 = 100. The two figures reveal that the temperature has a more significant
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influence on the higher-order mode than on the lower-order mode. A slight temperature
difference may induce an abrupt increase in the vibration amplitude.

To validate the reliability of the approximate analytical solutions, we perform numeri-
cal calculations for Equation (20) using the Runge–Kutta method. A comparison between
the analytical solution and numerical calculations is shown in Figure 10a (the first-order
mode) and Figure 10b (the third-order mode). The results indicate that the approximate
analytical solution is reliable.

To show the effect of temperature on the vibration amplitude, we draw the load–
amplitude response curves with σ2 = 7 under different temperatures, as shown in Figure 11a,b.
They imply that temperature has a more significant impact on the higher-order mode
than on the low-order mode. The time–history curves display this feature, as shown in
Figure 12a,b at f11 = 100.
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Figure 12. (a) Time–history response curves of the first-order mode with two temperatures at
f11 = 100; (b) time–history response curves of the third-order mode with two temperatures at
f11 = 100.

3. Conclusions

In this study, we employ a modified plate model in which four independent elastic
parameters and thermal stresses are considered to investigate the nonlinear static bending
and vibrations of monolayer MoS2. First, we use the Galerkin method to truncate the
partial differential equation with the first and third modes. Subsequently, nonlinear static
bending and forced vibrations are explored using ordinary differential equations obtained
using the Galerkin method. The main conclusions are as follows:

(1) The first-order mode can accurately represent the static deformation of MoS2 under
symmetric loads.

(2) Temperature has a slight effect on the single-mode vibrations of the MoS2. However,
the combination of the load frequency and temperature have a more significant effect
on the vibrations. When the temperature has a slight change, the bifurcation points
of vibration amplitude will change significantly with the identical load’s amplitude
and frequency.

(3) The bifurcation points of the load at the low-frequency primary resonance are signifi-
cantly smaller than those at the high frequency for single-mode vibrations.

(4) The vibration amplitudes of the first-order mode are significantly larger than those of
the higher-order modes under the same loads when a 1:3 internal resonance appear in
the MoS2.

(5) For the 1:3 internal resonance, the temperature has a more significant influence on the
higher-order mode than on the lower-order mode, and a slight temperature difference
may induce an unexpected jump in the vibration amplitude. Under the same load, the
maximum value of the amplitude–frequency curve will increase significantly with the
temperature’s increase.
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The above findings may give some important inspirations when a single-layer MoS2
is used in nano-resonators and mass sensors.
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Appendix A

The parameters of Equation (20):

ω2
1 = (b2+a2)

2

b4 + a2(N0
xx−NT

xx)
KBπ2 +

a4(N0
yy−NT

yy)

b2KBπ2 ,

f1 = 16a3 f
π6KB

, f3 = 16a3 f
3KBπ6 ,

ω2
2 = (9b2+a2)

2

b4 + 9a2(N0
xx−NT

xx)
KBπ2 +

a4(N0
yy−NT

yy)

b2KBπ2 ,

α1 = −
[

56.89a6χ

KBπ4(a2+b2)
2 +

55.62a6χ

KBπ4(a2+9b2)
2

]
,

α2 =

[
125.16a6χ

KBπ4(a2+b2)
2 +

1029.34a6χ

KBπ4(a2+9b2)
2

]
,

α3 = −
[

339.13a6χ

KBπ4(a2+b2)
2 + 4918.36a6χ

KBπ4(a2+9b2)
2

]
,

α4 =

[
203.82a6χ

KBπ4(a2+b2)
2 − 1579.89a6χ

KBπ4(a2+9b2)
2

]
,

α5 = 41.72a6χ

KBπ4(a2+b2)
2 +

214.55a6χ

KBπ4(a2+9b2)
2 ,

α6 = −
[

339.13a6χ

KBπ4(a2+b2)
2 + 2691.97a6χ

KBπ4(a2+9b2)
2

]
,

α7 =

[
611.47a6χ

KBπ4(a2+b2)
2 − 3101.26a6χ

KBπ4(a2+9b2)
2

]
,

α8 = −
[

1357.95a6χ

KBπ4(a2+b2)
2 +

682.7a6χ

KBπ4(a2+9b2)
2

]
.

Appendix B

The Jacobian matrix coefficients of Equation (58) are as follows:

∂F1
∂a1

= α2a1a2 sin γ1
4ω1

− c1, ∂F1
∂a2
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α2a2

1 sin γ1
8ω1
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∂γ2

= f11 cos γ2
2ω1

,
∂F1
∂γ1
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1a2 cos γ1
8ω1

, ∂F2
∂a1

= − α53a2
1 sin γ1

8ω3
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= −c3,

∂F2
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8ω3
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= 6α1a1+α2a2 cos γ1
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