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Abstract: The paper is concerned with the boundary conditions of explicit gradient elasticity of
Mindlin’s type in dynamics. It has been argued in an earlier paper that acceleration terms should
not be present in the boundary tractions because of objectivity arguments. This is discussed in the
present paper in more detail, and it is supplemented by assuming the validity of the principle of
material frame indifference. Furthermore, new examples are discussed in order to illustrate that
significant differences exist in the responses predicted by boundary tractions with and without
acceleration terms.

Keywords: Mindlin’s gradient elasticity; extensions of Hamilton’s principle; boundary conditions;
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1. Introduction

In classical elasticity, the stress tensor at a material point is a function of the strain
tensor at that point. Such constitutive theories are called local. If the constitutive relations
at a material point account, besides for the values of the state variables at the considered
point, also for the values of the state variables in a neighborhood of that point, then the
constitutive theory is called nonlocal. A simple possibility to capture nonlocality effects
in the material response at a point is to incorporate in the theory the gradients of the
state variables at that point. The arising theories are called gradient constitutive theo-
ries. Examples of gradient theories in solid mechanics are the gradient elasticity (see the
references cited in [1]), the gradient plasticity (see the references cited in [2]) and phase
field approaches to fracture (see the references cited in [3]), to name a few. It seems that
systematic incorporation of gradient effects in elasticity, the present paper deals with, was
initiated by the works of Korteweg in the year 1901 (see [4] and the references cited there)
and Cosserat and Cosserat in the year 1909 (see [5] and the references cited there). The
latter, accomplished with inertial terms, is nowadays known as micropolar elasticity [5].
The idea in this theory is to extend the notion of the classical continuum by attaching at any
(macroscopic) material point a microcontinuum (microstructure), which is allowed to rotate
like a rigid body. Whenever the microstructure is postulated to undergo homogenous defor-
mations, the resulting continuum is denoted as micromorphic ([6], p. 5). The micromorphic
elasticity introduced by Erringen (see [5], Section 7) and the microstructured elasticity
theory introduced by Mindlin [7] are, in essence, the same and represent milestones in the
development of nonclassical elasticity theories. Nonlocality effects in these theories are
captured by the gradient of the deformation of the microcontinuum. The particular case
where the microdeformation is set equal to the macrodeformation has been considered
in [7] and is known as Mindlin’s gradient elasticity (the static version of this elasticity
has been established by Toupin [8] without reference to a microstructure). Among others,
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Mindlin’s gradient elasticity can describe so-called length scale effects, which cannot be
modeled by classical elasticity. Experimental evidence of such effects may be found in
microbending tests of epoxy cantilever beams (see [9]), in vibration tests of nickel cantilever
microbeams (see [10]), in pantographic structures (see [11]), in dispersion curves observed
in metals, alloys and concrete (see [12]), in human calcaneus bones and in fluid saturated
porous materials (cf. the references cited in [13,14]).

Mindlin’s gradient elasticity has been established by using a classical version of Hamil-
ton’s variational principle. It obeys, for dynamic problems, traction boundary conditions,
which include acceleration terms. This has been criticized in [15] by applying objectivity
arguments. That means, as it has been stated in [15], that the boundary tractions are
nonobjective and hence such boundary conditions are inacceptable physically. As a conse-
quence, these authors proposed traction boundary conditions not including acceleration
terms. Also, they calculated some uniaxial vibration examples in order to illustrate that the
differences in the responses predicted by the theories with and without acceleration terms
in the boundary tractions may be significant.

The present paper is concerned with two aspects of the traction boundary conditions in
Mindlin’s gradient elasticity, which have not been addressed in [15]. The nonobjectivity of
the boundary (contact) forces follows from the transformation rules for a change of observer.
(The different types of forces used in classical mechanics and their objectivity properties
are sketched in Section 2.2). However, as in the case of inertial forces (see Section 2.2), one
could postulate the objectivity of contact forces, even if acceleration terms are present in
these forces. This is the first aspect addressed in the paper. It is shown, as one might expect,
that if the principle of material frame indifference is assumed for contact forces (and this
is assumed in the present work), then to postulate objectivity of contact forces including
acceleration terms is equivalent to the violation of this principle. These issues are discussed
in Section 3.3. The second aspect addressed in the paper concerns the examples used to
demonstrate the differences in predicted responses calculated with the two different types
of boundary tractions. Nonvanishing nonclassical boundary tractions have been assumed
to apply in the examples calculated in [15]. However, for the time being, it is not yet
clear how to realize nonclassical boundary tractions. Therefore, homogenous nonclassical
boundary tractions are assumed in the examples of the present paper, which seems to
be more realistic. In addition, besides uniaxial loading of a bar, also vibrational loading
of consistent Euler–Bernoulli beams, and besides traction-controlled also displacement-
controlled loading histories are considered. When formulating boundary conditions, an
appropriate way is to employ variational methods. For our purposes, especially, we find
it convenient to employ extensions of Hamilton’s variational principle as explained in
Section 2.1. (Note that bending of beams for Mindlin’s gradient elasticity in dynamics and
within a consistent Euler–Bernoulli framework is studied for the first time in the present
work). In summary, the present work completes the analysis provided in [15]. It does not
investigate properties of a particular model, but rather provides an examination of the
boundary tractions of the whole gradient elasticity of Mindlin’s type.

2. Basic Relations
2.1. Extensions of Hamilton’s Variational Principle

There are various extensions of Hamilton’s principle, which are in common use in
solid mechanics. The extensions, which are of interest to our paper, can be discussed in a
systematic way in the case of classical elasticity. Then,

δ

t2∫
t1

[
T − Π (i) − Π (e)

]
dt = 0 , (1)
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is the standard form of the principle, where δ( ) is the variation of ( ) and t is the time.
Further, T is the kinetic energy, which for classical elasticity reads

T ≡ T(cl) =
∫
V

1
2
ρ

.
ui

.
uidV. (2)

Here, ρ is the mass density and V is the range in three-dimensional Euclidean point
space, occupied by the material body we consider. The boundary of V is ∂V and has outward
unit normal vector n. Unless explicitly stated otherwise, small deformations are assumed,
all tensorial components are referred to a Cartesian coordinate system {xi}, i = 1, 2, 3, and
use is made of the summation convention. Material particles in V are identified with

location vectors x = xiei, where {ei} is the Cartesian coordinate basis. We write
.
( ) for

the time derivative of ( ) and denote by ui the components of the displacement vector u.
The variation δu(x, t) is postulated to vanish everywhere at the initial and final times t1, t2,
while δu vanishes at all times in [t1, t2] on the boundary part ∂Vu, where displacement
boundary conditions are prescribed. Conservative systems are addressed in Equation (1)
and Π (i), Π (e) are the potential energies of the internal and the external forces, respectively.
Omitting volume forces and denoting by φ(u, t) the potential per unit area for external
forces, we have

Π (e) =
∫

∂V

φ dS ⇒ δ

t2∫
t1

Π (e) dt = −
t2∫

t1

∫
∂Vp

Piδui dS dt . (3)

In the integral on the far-right side, Pi := − ∂φ
∂ui

, ∂VP denotes the part of ∂V where
traction boundary conditions are given, and ∂Vu ∪ ∂VP = ∂V, ∂Vu ∩ ∂VP = ∅. For classical
elasticity, there exists a free energy pro unit volume ψ = ψ(ε), so that

Π (i) =
∫
V

ψ(ε) dV , (4)

where ε is the strain tensor,

εij :=
1
2
(
∂iuj + ∂jui

)
. (5)

Henceforward, we use the notation ∂i( ) := ∂( )
∂xi

≡ ( ),xi . Moreover, for classical
elasticity, we define the Cauchy stress Σ through

Σij :=
∂ψ

∂εij
. (6)

Using these relations in Equation (1), after well-known manipulations, we arrive at

t2∫
t1

 ∫
V

(
ρ

..
uj − ∂iΣij

)
δujdV −

∫
∂Vp

(
Pj − niΣij

)
δujdS

 dt = 0 . (7)

With the aid of fundamental lemmas of calculus of variations (cf., e.g., [16], Section 2.4.),
it can be proved that the balance of linear momentum

∂iΣij = ρ
..
uj, (8)

together with the traction boundary conditions

niΣij = Pj on ∂VP × [t1, t2] (9)
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are necessary and sufficient conditions for Equation (7).
The most frequent extension of the principle (1) is when a part of the external forces

is conservative, with potential energy Π (e), and the remaining external forces are not
conservative and expend virtual work δW (e). Then the principle (1) is expressed in the form

δ

t2∫
t1

[
T − Π (i) − Π (e)

]
dt +

t2∫
t1

δW (e)dt = 0 . (10)

Another extension of the principle (1) arises by introducing, as in d’Alembert’s
principle, the inertial force i := − ρ ..

u (cf. [17], Section 19), which expends virtual work
δW (inert) =

∫
V ijδujdV = −

∫
V ρ

..
ujδujdV. It can be seen that in this case

δ
∫ t2

t1
T dt =

∫ t2
t1
δW (inert)dt. Now, assume that a part of the inertial forces expends virtual

work expressible as δ
∫ t2

t1
T dt, while the remainder of the inertial forces expend the work∫ t2

t1
δW (inert)dt. In this case, the principle (10) is extended as follows

δ

t2∫
t1

[
T − Π (i) − Π (e)

]
dt +

t2∫
t1

[
δW (e) + δW (inert)

]
dt = 0 . (11)

If only δW (e) and only δW (inert) are considered, then the time integration in Equation (11)
can be dropped out since

δW (inert) + δW (e) − δΠ (i) = 0 (12)

is the virtual work principle.

2.2. Material Frame-Indifference

Only in this section do the discussions refer to finite deformations. Following Liu [18]
and Liu and Sampaio [19] (see also the references cited in these works), we define an
observer or frame of reference to be a one-to-one map Φ assigning to a point (event) of
space-time, a point on the product space of a three-dimensional Euclidean space and the
set of real numbers (time axis). Let x = x(X, t) be the motion of a material body relative
to Φ, where X and x are the location vectors of a material particle in the reference and the
actual configuration, respectively. The same motion with respect to another frame Φ* is
denoted by x∗ = x∗(X∗, t) and we have

x∗ = Q(t)x + c∗(t) , (13)

where Q is an orthogonal transformation, c is a relative translation, and t∗ = t+ a, a = const.
Scalars s, vectors v and second-order tensors T are said to be Euclidean objective, or

simply objective, if
s∗ = s, v∗ = Qv, T∗ = QTQT . (14)

In these transformation rules, AT is the transpose of a second-order tensor A and
s∗, v∗, T∗ are the quantities in the frame Φ* corresponding to s, v, T in the frame Φ, respectively.

In classical mechanics, there are different classifications of forces. On the one hand,
forces are divided into those that obey a response law and those that cannot be determined
by response laws but are calculated from balance laws and boundary conditions. The
existence of the second type of forces arises from imposed geometrical conditions. Examples
of the first type of forces are spring forces, obeying an elasticity law, and inertial forces,
obeying, e.g., the response law −ρ ..

u with respect to an inertial reference frame. Examples
of the second type of forces are reaction forces due to supports, the geometrical constraint
being, e.g., no displacement, or the pressure in incompressible continua, the geometrical
constraint being isochoric deformations. On the other hand, forces in continuum mechanics
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are divided into contact, body and inertial forces. A fundamental postulate in classical
mechanics is that all forces mentioned above are assumed to be objective.

Now let U be a set of state and kinematical variables and suppose that an objective
quantity J obeys a response law J = fΦ(U ) in the frame Φ. For simplicity, fΦ is supposed
here to be a function, but in the general case it may be a functional. Generally, response
functions may be observer-dependent, so that J∗ = fΦ∗ (U ∗). The response function is
said to be observer-independent, or material frame-indifferent (see [6–8], Section 19), or
simply frame-indifferent, if it has the same form in all frames, i.e., fΦ( ) = fΦ∗( ). When
formulating constitutive laws for ordinary stresses, the response functions are required
to be frame-indifferent, which imposes restrictions on the form of the functions that are
to be designed. On the contrary, the form of the response functions of inertial forces
is supposed to be known with respect to an inertial frame. The forms of the response
functions of the inertial forces in other, noninertial frames are derived on the basis of the
transformation rules (13) and (14), imposed by the postulated objectivity of inertial forces,
and are generally dependent on the observer (cf. [20]). This is a consequence of the unique
feature characteristics of inertial forces.

2.3. A Simple Model of Explicit Gradient Elasticity

Consider material bodies which, for omitting body forces, are described by balance
laws of linear and angular momentum, so that at any point in V the field equations

∂jΣjk + ik = 0 , (15)

Σjk = Σkj (16)

apply. As in Equation (8), Σ is the Cauchy stress tensor, while i is the inertial force. In
Mindlin’s gradient elasticity (see [7]), i is decomposed into classical and nonclassical parts,

i = i(cl) + i(noncl) , (17)

with
i(cl)
k := − ρ ..

uk . (18)

For simplicity,
i(noncl)
k := γ∂p∂p

..
uk = γ ∆

..
uk (19)

is chosen in the present paper, where ∆ is the Laplacian operator and γ = const. is a material
parameter. The inertial law (19) corresponds to the “isotropic case” in Mindlin’s work (see
p. 70 in [7]).

A simple gradient elasticity model arises by assuming the free energy per unit volume
ψ to be given by

ψ = ψ(ε, k) =
1
2
εjkKjkmnεmn +

1
2

l2kijkKjkmn kimn , (20)

where
kijk := ∂iεjk (21)

is the gradient of ε. Further, K is an anisotropic fourth-order elasticity tensor exhibiting the
symmetries Kjkmn = Kkjmn = Kmnjk and l = const. is an internal material length. According
to the gradient elasticity Form II of Mindlin’s theory (see [7]), Σ obeys the constitutive law

Σjk := τjk − ∂iµijk , (22)

τjk = τkj :=
∂ψ(ε, k)

∂εjk
= Kjkmn εmn , (23)
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µijk = µikj :=
∂ψ(ε, k)

∂kijk
= l2Kjkmn(∂iεmn) , (24)

where τ is a classical, second-order stress tensor of Cauchy type and µ is a nonclassical,
third-order stress tensor. From Equations (22)–(24),

Σjk = Kjkmnεmn − l2Kjkmn∆εmn . (25)

To our knowledge, this constitutive law, with K being an isotropic elasticity tensor, has
been proposed for the first time in Altan and Aifantis [21]. In Broese et al. [22], the gradient
elasticity law (25) has been interpreted to represent the gradient elasticity analog of the
Kelvin viscoelastic solid. In the following, we shall denote it as Kelvin-Gradient elasticity
Model (KG-Model).

To accomplish the theory, concomitant boundary conditions for the field equations
remain to be formulated. As mentioned in the introduction, an appropriate way to establish
these is to invoke variational principles.

3. Gradient Elasticity in the Setting of Hamilton’s Principle
3.1. Variational Formulation of the Field Equations

After multiplying Equation (15) by the virtual displacement δuk, integrating over V
and using partial integration, we obtain

∫
V

∂j

(
Σjkδuk

)
dV −

∫
V

Σjkδε jk dV +
∫
V

ikδukdV = 0 . (26)

Next, we replace Σjk in the second integral with the aid of the constitutive law (22),

∫
V

∂j

(
Σjkδuk

)
dV −

∫
V

τjkδε jk dV +
∫
V

(∂m µmjk) δε jk dV +
∫
V

ikδukdV = 0 , (27)

or equivalently

∫
V

∂j

[
Σjkδuk + µjik(∂iδuk)

]
dV −

∫
V

[τjkδε jk + µmjk δ
(

∂mεjk

)
] dV

+
∫
V

ikδukdV = 0 .
(28)

We recall from Equations (20), (23) and (24), that the second integral is the virtual work
of internal forces, i.e.,∫

V

∂j

[
Σjkδuk + µjik(∂iδuk)

]
dV − δΠ (i) +

∫
V

ikδukdV = 0 , (29)

with (cf. Equation (4))

Π (i) :=
∫
V

ψ(ε, k) dV . (30)
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In order to recast the virtual work expended by the inertial force i, we recall from
Equations (17)–(19) that

∫
V

ikδukdV = −
∫
V

ρ
..
uk δuk dV +

∫
V

i(noncl)
k δuk dV

= − d
dt

∫
V

ρ
.
uk δuk dV + δ

∫
V

1
2
ρ

.
uk

.
uk dV +

∫
V

i(noncl)
k δuk dV

= − d
dt

∫
V

ρ
.
uk δuk dV + δT(cl) +

∫
V

i(noncl)
k δuk dV,

(31)

where T(cl) is the classical kinetic energy defined in Equation (2). Thus, by taking the time
integral between t1 and t2 of Equation (29), and using the result (31), we find that

t2∫
t1

∫
V

∂j

[
Σjkδuk + µjik(∂iδuk)

]
dVdt − δ

t2∫
t1

Π (i) dt + δ

t2∫
t1

T(cl) dt

+

t2∫
t1

∫
V

i(noncl)
k δuk dVdt = 0 .

(32)

Now, there are two ways to recast the volume integral of the last term. One is according
to Mindlin [7] and leads to boundary conditions involving acceleration terms, whereas
the second way, according to Broese et al. [15], leads to boundary conditions in which
acceleration terms are not present.

3.2. Gradient Elasticity with Acceleration Terms Present in the Boundary Conditions

The aim of Mindlin [7] was to bring Equation (32) to a form corresponding to Equation (1),
or to the more general Equation (10). To achieve this, the last term in Equation (32) is
rewritten using the definition (19):

t2∫
t1

∫
V

i(noncl)
k δuk dVdt =

t2∫
t1

∫
V

γ
(
∂j∂j

..
uk

)
δuk dVdt

=

t2∫
t1

∫
V

∂j
[
γ
(
∂j

..
uk

)
δuk

]
dVdt −

t2∫
t1

∫
V

γ
(
∂j

..
uk

)
δ(∂juk) dVdt

=

t2∫
t1

∫
V

∂j
[
γ
(
∂j

..
uk

)
δuk

]
dVdt −

t2∫
t1

d
dt

 ∫
V

γ
(

∂j
·
uk

)
δ(∂juk) dV

 dt

+

t2∫
t1

∫
V

γ
(

∂j
·
uk

)
δ
(

∂j
·
uk

)
dV dt .

(33)

On the far-right side, the second integral vanishes since ∂jδuk(t1) = ∂jδuk(t2) ≡ 0 in
V, while the last integral can be represented by the variation of nonclassical kinetic energy

T(noncl) :=
∫
V

1
2
γ
(

∂j
·
uk

) (
∂j

·
uk

)
dV . (34)
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Hence, Equation (33) implies

t2∫
t1

∫
V

i(noncl)
k δuk dVdt =

t2∫
t1

∫
V

∂j
[
γ
(
∂j

..
uk

)
δuk

]
dVdt + δ

t2∫
t1

T(noncl) dt , (35)

and by inserting into Equation (32), we obtain

δ

t2∫
t1

[
T(cl) + T(noncl) − Π (i)

]
dt

+

t2∫
t1

∫
V

∂j

[(
Σjk + γ

(
∂j

..
uk

))
δuk + µjik(∂iδuk)

]
dVdt = 0 .

(36)

This has been interpreted by Mindlin to suggest defining a total Cauchy stress tensor
Σ(t) involving acceleration terms,

Σ(t)
jk := Σjk + γ

(
∂j

..
uk

)
, (37)

a virtual work of external forces

δW(e) :=
∫

∂V

nj

(
Σ(t)

jk δuk + µjik(∂iδuk)
)

dS , (38)

and the total kinetic energy

T := T(cl) + T(noncl) . (39)

Then, Equation (36) becomes

δ

t2∫
t1

[
T − Π (i)

]
dt +

t2∫
t1

δW(e)dt = 0 , (40)

which is of the form (10).
To accomplish Mindlin’s approach, the surface integral δW(e) must be resolved further,

since the gradient ∂jδuk is not independent of δuk on ∂V. After lengthy and elaborate
algebraic manipulations, it can be proved (see [7,15]) that

δW(e)
=

∫
∂V

[
Pk δuk + Rk (Dδuk)

]
dS , (41)

where P and R are classical and nonclassical traction vectors, respectively, defined by

Pk := njΣ
(t)
jk − Dj

(
niµijk

)
+ (Dlnl)

(
ninjµijk

)
= njΣjk + γ

(
∂j

..
uk

)
nj − Dj

(
niµijk

)
+ (Dlnl)

(
ninjµijk

)
,

(42)

Rk := ninjµijk . (43)

For a function f(x,t), the normal derivative Df(x,t) and the surface derivative Dif(x, t)
are defined through

Df := nl∂lf , Dif := ∂if − niDf . (44)

This way, δW(e) is interpreted as the virtual work expended by the tractions P and
R, and Equation (40) is assumed to be the appropriate form of Hamilton’s principle for
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the considered material. Since now δu and Dδu are independent of each other on ∂V, the
adjoint boundary conditions suggested by Equation (41) are

either Pk or uk and (45)

either Rk or Duk (46)

have to be prescribed on ∂V.
Altogether, for the gradient elasticity based on the KG-Model, Equations (15)–(19) are

the governing equations of motion and Equations (45) and (46) are the adjoint boundary
conditions proposed by Mindlin. The remarkable feature in the traction boundary condition
(45) is the presence of acceleration terms in P (see Equation (42). Moreover, Σ(t) cannot be
a proper classical Cauchy stress tensor, for it is generally not symmetric (because of the
presence of the acceleration term in Equation (37)).

3.3. Gradient Elasticity without Acceleration Terms Present in the Boundary Conditions

As mentioned in Section 2.2, contact, body and inertial forces are postulated to be objec-
tive and, in addition, constitutive functions of ordinary Cauchy stresses are required to be
frame-indifferent. It can be proved, that the presence of acceleration terms in Equation (42)
renders the traction vector P to be non objective. If someone would get the idea to postulate
P as objective, as in the case of inertial forces, then one would have to conclude that the
constitutive function of stress Σ(t) in Equation (37) will not be frame-indifferent. Either way,
we believe that the presence of acceleration terms in boundary conditions for contact forces
is physically not acceptable and this is, in principle, the criticism made by Broese et al. [15].
These authors proposed an alternative but not equivalent definition for the virtual work
expended by external forces. Considering inertial forces to have the nature of conven-
tional body forces (see [17], Section 21), they proposed to interpret/rewrite Equation (32)
as follows.

Let δŴ(inert,noncl) denote the virtual work of the inertial force i(noncl),

δŴ(inert,noncl) :=
∫
V

i(noncl)
k δukdV =

∫
V

γ
(
∆

..
uk

)
δukdV, (47)

and reformulate Equation (32) in the form

δ

t2∫
t1

(
T(cl) − Π (i)

)
dt +

t2∫
t1

(
δŴ(e)

+ δŴ(inert,noncl)
)

dt = 0, (48)

where

δŴ(e) :=
∫
V

∂j

(
Σjkδuk + µjik∂i(δuk)

)
dV. (49)

We view Equation (48) to be of the form (11), and recognize δŴ(e) as the proper virtual
work of the external forces and Σjk = Σkj as the proper Cauchy stress tensor, which should
enter into the boundary tractions. By performing similar calculations as for the transition
from Equation (38) to Equations (41)–(43), we can introduce proper boundary tractions P̂
and R̂, so that

δŴ(e)
=

∫
∂V

[
P̂kδuk + R̂kδ(Duk)

]
dS, (50)

where (cf. [15,16])
P̂k := njΣjk − Dj

(
niµijk

)
+ (Dlnl)

(
ninjµijk

)
, (51)

R̂k := ninjµijk. (52)
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Accordingly, the proper boundary conditions read

either P̂k or uk and (53)

either R̂k or Duk (54)

have to be prescribed on ∂V. No acceleration terms are now involved in the boundary
condition for classical traction, but otherwise, the governing equations of motion are the
same as in Equations (15)–(19).

4. Consistent Euler–Bernoulli Beam Theory in Dynamics
4.1. Main Assumptions

The traditional Euler–Bernoulli beam theory relies upon two fundamental assumptions
(see [23], Sections 5.1 and 5.4.2 and [13], p. 90): (1) The material response is isotropic elastic.
(2) Plane cross sections of the beam remain plane and perpendicular to the deformed beam
axis and the shape of the cross sections does not change (no deformation of cross sections).
It is obvious, that no deformation of cross sections is not consistent with isotropic elasticity.
This inconsistency is reflected by the fact that the elasticity law is satisfied in local form,
but, e.g., the equilibrium equations in statics are not satisfied in local form (see [24] and the
references cited there).

To overcome this problem, Sideris and Tsakmakis [24] (see also [25]) proposed to drop
the assumption of isotropy and instead suppose transversal isotropic material behavior
subject to geometrical constraints. This way, they obtained consistent Euler–Bernoulli
beam theories. The main kinematical and constitutive equations of this approach for the
KG-Model can be summarized as follows (see [24]).

Consider the beam in Figure 1, which is of length L, and constant cross section A, with
width 2b and height 2c. The origin of the Cartesian coordinate system {xi} is located on
the left boundary plane, the x1 − x3 plane is a symmetry plane, and the x1− axis is the
centroidal axis of the beam. The beam might be subject to a transverse load, which acts
in the x1 − x3 plane at x3 = ± c, and to axial loads, which act on the boundary planes
x1 = 0 and x1 = L. In addition, problem-specific boundary/reaction forces will apply. The
material response is assumed to be transverse isotropic with vanishing in-plane Poisson
ratios and subject to internal constraints. All assumptions together cause conditions of
plane strain and plane stress with u, ε, Σ being functions only of x1, x3 and

u2 = ε2i = Σ2i = 0. (55)
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Figure 1. Rectangular beam of length L, width 2b and height 2c.

The remaining components of the displacement vector and the strain tensor are
given by

u1 = U(x1, t)− w′(x1, t)x3, u2 ≡ 0, u3 = w(x1, t), (56)

ε11 = U′ − wx′′
3, ε33 = ε13 = 0, (57)
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where U is axial displacement, w(x1, t) is the deflection curve and f′(x1, t) is the derivative
of the function f(x1, t) with respect to x1. The assumed geometrical constraints do not allow
to determine every stress component from the elasticity laws (22)–(24). In fact, we have
(see [24,25])

Σ11 = Eε11 − µ′111 = E
(
U′ − w′x3

)
− l2 E

(
U′′′ − w

′′′′
x3

)
, (58)

τ11 = Eε11 = E
(
U′ − w′′ x3

)
, (59)

µ111 = l2Eε′11 = l2E(U′′ − w′′′ x3), (60)

µ311 = l2E ( ∂3 ε11) = −l2E w′′ , (61)

τ33, τ13,µi33, Σ33, Σ13 : not determinable by constitutive law,

while ψ in Equation (20) becomes

ψ =
1
2

Eε2
11 +

l2

2
E (∂1ε11)

2 +
l2

2
E(∂3ε11)

2. (62)

Every other stress component is vanishing, while E is Young’s modulus in x1-direction.
Only statics has been addressed in Sideris and Tsakmakis [24] and Broese et al. [25], and
therefore only equilibrium equations have come into play in these works. However, the
present paper is concerned with dynamics and hence the equations of motion (15)–(19)
must be used. For the plane stress and plane strain conditions set up above, these reduce to
the two equations

∂1Σ11 + ∂3Σ13 = ρ
..
u1 − γ

..
u′′

1 , (63)

∂1Σ13 + ∂3Σ33 = ρ
..
u3 − γ

..
u′′

3 . (64)

In the remainder of the paper, we shall use frequently the definitions

f1(x1) := EA
(

U′ − l2U′′′
)

, f2(x1) := l2EAU′′ , (65)

f3(x1) := −
(

EI + l2EA
)

w′′ + l2EIw
′′′′

, f4(x1) := l2EIw′′′ . (66)

Furthermore, we denote by I the moment of inertia and we notice that, with respect to
the chosen coordinate system, we have

I =
∫
A

x2
3dS ,

∫
A

x3dS = 0. (67)

When solving equations of the form (63) and (64), the effort can be reduced con-
siderably by simplifying the problem using section and resultant forces. The resulting
equations correspond to a one-dimensional continuum, which is bounded by the points
x1 = 0, x1 = L. Points x1 ∈ (0, L) are interior points and traction boundary conditions
for the three-dimensional body on the planes x3 = ±c are accounted for at any x1 of the
one-dimensional beam continuum as resultants of these tractions. These resultants may
be viewed as body forces for the one-dimensional continuum acting on interior points x1.
Thus, the forces which act on the one-dimensional beam, or any sub-body of it, are section
forces on the boundaries and resultant (body) forces distributed along x1. A convenient
way to introduce these forces is to invoke variational methods.

4.2. Variational Methods of Gradient Elastic Euler-Bernoulli Beams

At the beginning of Section 3.3, it has been argued that the presence of acceleration terms
in the traction boundary conditions is physically unacceptable. Nevertheless, for comparison,
we shall elaborate variational formulations of gradient elastic Euler–Bernoulli beams for both
cases of the KG-Model with and without acceleration terms in the boundary tractions.
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4.2.1. Hamilton’s Principle for the Case Where Acceleration Terms Are Present in the
Traction Boundary Conditions
Approach Based on Hamilton’s Principle Equation (40)

It is instructive first to evaluate Hamilton’s principle (40) by specializing δW(e), Π (i), T
to the assumed Euler–Bernoulli kinematics. Several algebraic manipulations are similar
to those elaborated in Sideris and Tsakmakis [24] and Broese et al. [25], and therefore they
will be only sketched briefly here.

Using steps quite similar to those in Sideris and Tsakmakis [24] (see also [25]), it can

be seen that δW(e) in Equations (41)–(43) can be expressed in terms of section forces N, H,
V, M, m and resultant forces p, q as follows:

δW(e)
=

∫
∂V

[
Pkδuk + Rk(Dδuk)

]
dS

=
[
NδU

]x1=L
x1=0 +

[
HδU′]x1=L

x1=0 +
[
Vδw

]x1=L
x1=0 +

[
Mδ

(
−w′)]x1=L

x1=0

+[mδ(−w′′ )]x1=L
x1=0 +

L∫
0

pδU dx1 +

L∫
0

qδw dx1.

(68)

The potential of the internal forces can be determined from the free energy in Equation (62),

Π (i) =
∫
V

1
2

E
(
ε2

11 + l2(∂1ε11)
2 + l2(∂3ε11)

2
)

dV, (69)

or equivalently, by virtue of Equation (57),

Π (i) =
∫
V

1
2

E
[(

U′ − w′′ x3
)2

+ l2(U′′ − w′′′ x3)
2 + l2(w′′ )2

]
dV. (70)

If U ≡ 0, then the potential (70) reduces to the one, which was essentially the starting
point in the work of Lazopoulos and Lazopoulos [26]. After lengthy manipulations and
repeatedly applying partial integration, we find that

δΠ (i) = [f1δU]x1=L
x1=0 +

[
f2δ U′]x1=L

x1=0 +
[
f′3δw

]x1=L
x1=0 +

[
f3 δ

(
−w′)]x1=L

x1=0

+[f4 δ(−w′′ )]x1=L
x1=0 −

L∫
0

f′1 δU dx1 −
L∫

0

f′′3 δw dx1

(71)

The parts T(cl) and T(noncl), which make up the total kinetic energy T in Equation (39),
are defined in Equations (2) and (34), and can be calculated with the aid of Equation (56):

T(cl) =
∫
V

1
2
ρ

.
uk

.
ukdV =

L∫
0

1
2
ρ

[
A

.
U

2
+ I

( .
w′)2

+ A
.

w2
]

dx1, (72)

T(noncl)
=

∫
V

1
2
γ
(
∂j

.
uk

)(
∂j

.
uk

)
dV =

L∫
0

1
2
γ

[
A

( .
U
′)2

+ I
( .
w′′ )2

+ 2A
( .

w′)2
]

dx1. (73)

After repeated use of partial integration and the divergence theorem, we arrive at
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t2∫
t1

δTdt =

t2∫
t1

(
δT(cl) + δT(noncl)

)
dt

=

t2∫
t1

{
−
[
γA

..
U
′
δU

]x1=L

x1=0
−

[{
(ρI + 2γA)

..
w′ − γI

..
w′′′

}
δw

]x1=L

x1=0
+

[
γI

..
w′′
δ
(
−w′)]x1=L

x1=0

+

L∫
0

[(
−ρA

..
U + γA

..
U

′′)
δU +

(
−ρA

..
w + (ρI + 2γA)

..
w′′ − γI

..
w

′′′′)
δw

]
dx1

dt.

(74)

The next step is to substitute formulas (68), (71) and (74) into Hamilton’s principle (40)
and to apply the fundamental lemmas of calculus of variations. This gives the sectional
constitutive laws

N = f1 + γA
..
U
′
= EA

(
U′ − l2U′′′

)
+ γA

..
U
′
, (75)

H = f2 = l2EAU′′ , (76)

M = f3 − γI
..
w′′ = −

(
EI + l2EA

)
w′′ + l2EIw′′′′ − γI

..
w′′ , (77)

m = f4 = −l2EIw′′′ , (78)

the sectional balance law for V

V =
(
f3 − γI

..
w′′ )′ + (ρI + 2γA)

..
w′

= −
(

EI + l2EA
)

w′′′ + l2EIw
′′′′′ − γI

..
w′′′ + (ρI + 2γA)

..
w′ ⇔

(79)

V − M′
= (ρI + 2γA)

..
w′, (80)

the governing equations of motion for the axial displacement U

p + f′1 − ρA
..
U + γA

..
U

′′
= 0 ⇔ (81)

−ρA
..
U + γA

..
U

′′
+ EAU′′ − l2EAU

′′′′
+ p = 0, (82)

the governing equation of motion for the deflection w

−ρA
..
w + (ρI + 2γA)

..
w′′ − γI

..
w

′′′′
+ f′′3 + q = 0 ⇔ (83)

−ρA
..
w + (ρI + 2γA)

..
w′′ − γI

..
w

′′′′
−

(
EI + l2EA

)
w

′′′′
+ l2EIw

′′′′′′
+ q = 0 (84)

and the boundary conditions

eitherNor U, eitherHorU′, eitherVor w, (85)

eitherMorw′and eithermorw′′ (86)

have to be prescribed at x1 = 0 and x1 = L.

Now, it will be shown that the variational formulation (40), with δW(e), Π (i) and
T = T(cl) + T(noncl) being given in Equations (68), (69), (72) and (73), respectively, can be
converted into an equivalent reduced form.
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Approach Based on the Balance of Linear Momentum for the Beam

Alternatively, one might establish a formulation of Hamilton’s principle on the basis
of the balance equations of linear momentum for the beam in (63) and (64), which can be
rewritten with the help of the stress components Σ(t)

ij defined in Equation (37):

∂1Σ(t)
11 + ∂3Σ(t)

31 = ρ
..
u1, (87)

∂1Σ(t)
13 + ∂3Σ(t)

33 = ρ
..
u3, (88)

with
Σ(t)

11 = Σ11 + γ
( ..

U
′
− ..

w′′ x3

)
, Σ(t)

31 = Σ31 − γ
..
w′, (89)

Σ(t)
13 = Σ13 + γ

..
w′ , Σ(t)

33 = Σ33. (90)

Scalar multiplication of Equations (87) and (88) with the virtual displacement vector
δu (see Equation (56)), and integration over V, yields

∫
V

[(
∂1Σ(t)

11 + ∂3Σ(t)
31

)
δu1

]
+

[(
∂1Σ(t)

13 + ∂3Σ(t)
33

)
δu3

]
dV

−
∫
V

ρ
(
ρ

..
u1δu1 + ρ

..
u3δu3

)
dV = 0.

(91)

In order to replace the stress components by sectional and resultant forces, we intro-
duce the following definitions

Nr :=
∫
A

Σ(t)
11 dS , Hr :=

∫
A

µ111dS, Vr := −
∫
A

(
∂3Σ(t)

31

)
dS , (92)

Mr :=
∫
A

Σ(t)
11 x3dS , mr :=

∫
A

µ111x3dS, (93)

pr := 2b
[
Σ(t)

31

]x3=c

x3=−c
, qr := 2b[Σ33 + (∂1Σ13)x3]

x3=c
x3=−c + γA

..
w′′ . (94)

Using these forces, it is shown in Appendix A that Equation (91) is equivalent to the
following virtual work statement for the beam, which is of the form (12):

δW(inert)
r + δW(e)

r − δΠ(i)
r = 0, (95)

with

δW(inert)
r :=

L∫
0

(
−ρA

..
UδU + ρI

..
w′
δw′ + ρA

..
wδw

)
dx1

−
L∫

0

(
γA

..
U
′
δU′ + γI

..
w′′
δw′′

)
dx1,

(96)

δW(e)
r :=

[
Nr δU

]x1=L
x1=0 +

[
HrδU′]x1=L

x1=0 +
[
Vrδw

]x1=L
x1=0 +

[
Mr δ

(
−w′)]x1=L

x1=0

+[mr δ(−w′′ )]x1=L
x1=0 +

L∫
0

pr δU dx1 +

L∫
0

qr δw dx1,
(97)

Π(i)
r :=

∫
V

1
2

E
[
ε2

11 + l2(∂1ε11)
2
]
dV. (98)
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It is readily seen, by using partial integration, that the time integral of δW(inert)
r between

t1 and t2 can be represented in terms of kinetic energy Tr,

Tr := T(cl) +

L∫
0

1
2
γ

[
A
( .

U
′)2

− I
( .
w′′ )2

]
dx1 (99)

with T(cl) as given in Equation (72), i.e.,

t2∫
t1

δW(inert)
r dt = δ

t2∫
t1

Tr dt. (100)

Thus, by taking the time integral of (95), we arrive at the variational formulation

δ

t2∫
t1

(
Tr − Π(i)

r

)
dt +

t2∫
t1

δW(e)
r dt = 0, (101)

which is of the form (10).
We would like to draw attention to the fact that Π(i)

r in Equation (98) includes one
term less than Π(i) in Equation (66). That is why we consider (101) as a reduced form of the
principle (40).

Now, using partial integration repeatedly, the variation of Π(i)
r may be expressed in

terms of displacement components as follows:

δΠ(i)
r = [f1δU]x1=L

x1=0 +
[
f2δU′]x1=L

x1=0 +
[(

f′3 + l2EAw′′′
)
δw

]x1=L

x1=0

+
[(

f3 + l2EAw′′
)
δ
(
−w′)]x1=L

x1=0
+ [f4 δ(−w′′ )]x1=L

x1=0

−
L∫

0

f′1 δU dx1 −
L∫

0

(
f′′3 + l2EAw

′′′′)
δwdx1.

(102)

Similarly, from Equation (96) we obtain

δW(inert)
r := −

[
γA

..
U
′
δU

]x1=L

x1=0
−

[(
ρI

..
w′ − γI

..
w′′′

)
δw

]x1=L

x1=0
−

[
γI

..
w′′

δw′]x1=L
x1=0

+

L∫
0

(
−ρA

..
U + γA

..
U

′′)
δUdx1 +

L∫
0

(
−ρA

..
w + ρI

..
w′′ + γI

..
w

′′′′)
δw dx1.

(103)

Substitution of (97), (102) and (103) into (95) and application of the fundamental
lemmas of calculus of variations leads to the sectional constitutive laws

Nr = f1 + γA
..
U
′
= EA

(
U′ − l2U′′′

)
+ γA

..
U
′
, (104)

Hr = f2 = l2EAU′′ , (105)

Mr = f3 + l2EAw′′ − γI
..
w′′ = −EI

(
w′′ − l2w

′′′′)− γI
..
w′′ , (106)

mr = f4 = −l2EIw′′′ , (107)
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the sectional balance law for Vr

Vr = f′3 + l2EAw′′′ + ρI
..
w′ − γI

..
w′′′

= −EIw′′′ + l2EIw
′′′′′

+ ρI
..
w′ − γI

..
w′′′ ⇔

(108)

Vr − M′
r = ρI

..
w′, (109)

the governing equation of motion for the axial displacement U

pr + f′1 − ρA
..
U + γA

..
U

′′
= 0 ⇔ (110)

−ρA
..
U + γA

..
U

′′
+ EAU′′ − l2EAU

′′′′
+ pr = 0, (111)

the governing equation of motion for the deflection w

qr + f′′3 + l2EAw
′′′′ − ρA

..
w + ρI

..
w′′ − γI

..
w

′′′′
= 0 ⇔ (112)

−ρA
..
w + ρI

..
w′′ − γI

..
w

′′′′
− EIw

′′′′
+ l2EIw

′′′′′′
+ qr = 0 (113)

and the boundary conditions

either Nr or U, eitherHr orU′, eitherVr or w, (114)

either Mr orw′and eithermr orw′′ (115)

have to be prescribed at x1 = 0 and x1 = L.
It should be noted that the sectional constitutive laws (104)–(107) can alternatively be

derived from definitions (92) and (93). Also, a bending theory based on Π(i)
r in Equation (98)

has been formulated for the first time in Papargyri-Beskou et al. [27].
The two beam approaches considered in this section are equivalent to each other. To

see this, it suffices to show that the second approach implies the first one. Let p0 be a given
loading function and assume that p = pr = p0. Then, the two equations of motion (82)
and (111) are identical. Further, assume qr to have the form qr = q0 − l2EAw

′′′′
+ 2γA

..
w′′

with q0 being a known external body force. Then, the equation of motion (113) implies
the equation of motion (84) with q = q0. The displacement boundary conditions and
the traction boundary conditions for N, H, m, and Nr, Hr, mr are identical for both
approaches. By comparing Equation (79) with (108) and Equation (77) with (106), we
recognize that V = Vr − l2EAw′′′ + 2γA

..
w′ and M = Mr − l2EAw′′ . Thus, assume that

at the boundaries x1 = 0, L, Vr and Mr have the forms Vr = V0 + l2EAw′′′ − 2γA
..
w′,

Mr = M0 + l2EAw′′ , with V0, M0 being given. Then, to the boundary conditions for Vr
and Mr correspond the boundary conditions V = V0 and M = M0. Note that such bound-
ary conditions include acceleration terms, but this is characteristic of Mindlin’s approach.
Finally, by adding the time integral of

δ

∫
V

1
2

l2E(∂3ε11)
2dV +

[
l2EAw′′′ δw

]x1=L

x1=0
+

[
l2EAw′′ δ

(
−w′)]x1=L

x1=0

−
L∫

0

l2EAw
′′′′
δw dx1 = 0

(116)

and the identity

−δ
t2∫

t1

L∫
0

γA
( .

w′)2
dx1dt +

t2∫
t1

L∫
0

2γA
..
w′′
δwdx1dt − δ

t2∫
t1

[
2γA

..
w′
δw

]x1=L

x1=0
dt = 0 (117)
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to Hamilton’s principle (101), and replacing Vr − l2EAw′′′ + 2γA
..
w′ by V and Mr − l2EAw′′

by M, we can deduce that (101) implies Hamilton’s principle (40) with δW(e), Π (i) and

T = T(cl) + T(noncl) as given in Equation (68), (70), (72) and (73), respectively.

4.2.2. Hamilton’s Principle for the Case Where Acceleration Terms Are Not Present in the
Traction Boundary Conditions

Similar to Section 4.2.1, again, there are two equivalent methods for deriving the

equations of motion. The first one starts with Hamilton’s principle (48), assuming δŴ(e)

and δŴ(inert, noncl) are as defined in Equations (49) and (47), respectively. The main feature
of this method is that it deals with the potential for the internal forces Π (i) in Equation (69).
The second one starts with the equations of linear momentum (63) and (64) and leads to
the reduced form of the potential of internal forces Π(i)

r in Equation (98). The calculations
are quite similar to those in Section 4.2.1. In the examples below, we shall employ only the
equations of motion derived according to the second method. Therefore, only this method
will be discussed here. Accordingly, some quantities are designated with the subscript r.

In the last section, the balance of linear momentum of the beam (Equations (87) and (88)),
expressed in terms of the total Cauchy stress tensor Σ(t), was the start point. Opposite to
this, we now start with the balance of linear momentum in Equations (63) and (64), which
is expressed in terms of the proper Cauchy stress Σ:

∂Σ11 + ∂3Σ13 + i1 = 0, (118)

∂Σ13 + ∂3Σ33 + i3 = 0, (119)

with the components of the inertial force i being given by

i1 = i(cl)
1 + i(noncl)

1 , i(cl)
1 = −ρ ..

u1, i(noncl)
1 = γ

..
u′′

1 , (120)

i3 = i(cl)
3 + i(noncl)

3 , i(cl)
3 = −ρ ..

u3, i(noncl)
1 = γ

..
u′′

3 . (121)

By scalar multiplication of (118) and (119) with virtual displacement (see Equation (56))
and integration over V, we find that∫

V

[(∂Σ11 + ∂3Σ13)δu1 + (∂Σ13 + ∂3Σ33)δu3]dV + δW(inert)
r = 0. (122)

In this equation, δW(inert)
r is the virtual work of the inertial force composed of a

classical and a non-classical term,

δW(inert)
r = δW(inert,cl) + δW(inert,noncl)

r , (123)

δW(inert,cl)
r =

∫
V

i(cl)
i δuidV = −

∫
V

(
ρ

..
u1δu1 + ρ

..
u3δu3

)
dV

= −
L∫

0

(ρA
..
UδU + ρI

..
w′
δw′ + ρA

..
wδw) dx1

= −
[
ρI

..
w′
δw

]x1=L

x1=0
+

L∫
0

[−ρA
..
UδU −

(
ρA

..
w − ρI

..
w′′)

δw] dx1,

(124)
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δW(inert,noncl)
r =

∫
V

i(noncl)
i δuidV =

∫
V

(
γ

..
u′′

1δu1 + γ
..
u′′

3δu3
)
dV

=

L∫
0

(γA
..
U

′′
δU + γI

..
w′′′

δw′) dx1

=
[
γI

..
w′′′

δw
]x1=L

x1=0 +

L∫
0

(
γA

..
U

′′
δU − γI

..
w

′′′′
δw

)
dx1.

(125)

The appropriate definitions of sectional and resultant forces are now

Nr :=
∫
A

Σ11dS, Hr :=
∫
A

µ111dS, Vr := −
∫
A

(∂3Σ13)x3dS, (126)

Mr :=
∫
A

Σ11x3dS, mr :=
∫
A

µ111x3dS, (127)

pr := 2b [Σ13]
x3=c
x3=−c , qr := 2b [Σ33 + (∂1Σ13)x3]

x3=c
x3=−c. (128)

It is worth noting that these definitions apply equally in statics (cf. [25]). With the help
of these definitions, it can be shown (see Appendix B), that Equation (122) implies

δW(inert)
r + δW(e)

r − δΠ(i)
r = 0, (129)

where

δW(e)
r = [Nr δU]x1=L

x1=0 +
[
HrδU′]x1=L

x1=0 + [Vrδw]x1=L
x1=0 +

[
Mrδ

(
−w′)]x1=L

x1=0

+[mrδ(−w′′ )]x1=L
x1=0 +

L∫
0

prδUdx1 +

L∫
0

qrδwdx1.
(130)

Equation (129) is a virtual work principle of the form (12). We recall the well-known
identity (cf. Equation (125))

t2∫
t1

δW(inert,cl)dt = δ

t2∫
t1

1
2
[ρA

.
U

2
+ ρI(

.
w′

)
2
+ ρA

.
w2

]dt = δ

t2∫
t1

T(cl)dt, (131)

and that Equation (123) applies. Thus, time integration of Equation (129) furnishes

δ

t2∫
t1

(
T(cl) − Π (i)

)
dt +

t2∫
t1

(
δW(e)

r + δW(inert,noncl)
r

)
dt = 0, (132)

which is a variant of Hamilton’s principle of the form (11).
On the other hand, we can invoke in Equation (129) the result (102) for δΠ(i)

r and the
result (123), (124)3 and (125)3 for δW(inert)

r , and by applying the fundamental lemmas of
calculus for variations to infer the sectional constitutive laws

Nr = f1 = EA
(

U′ − l2U′′′
)

, (133)

Hr = f2 = l2EAU′′ , (134)

Mr = f3 + l2EAw′′ = −EI
(

w′′ − l2w
′′′′)

, (135)

mr = f4 = −l2EIw′′′ , (136)
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the sectional balance law for Vr

Vr = f′3 + l2EAw′′′ + ρI
..
w′′ − γI

..
w′′′

= −EIw′′′ + l2EI w
′′′′′

+ ρI
..
w′ − γI

..
w′′′ ⇔

(137)

Vr − M′
r = ρI

..
w′ − γI

..
w′′′ , (138)

the governing equation of motion for the axial displacement U

pr + f′1 − ρA
..
U + γA

..
U

′′ ⇔ (139)

−ρA
..
U + γA

..
U

′′
+ EAU′′ − l2EAU

′′′′′
+ pr = 0, (140)

the governing equation of motion for the deflection w

qr + f′′3 + l2EA w
′′′′ − ρA

..
w + ρI

..
w′′ − γI

..
w

′′′′
= 0 ⇔ (141)

−ρA
..
w + ρI

..
w′′ − γI

..
w

′′′′
− EIw

′′′′
+ l2EI w

′′′′′′
+ qr = 0 (142)

and the boundary conditions

either Nr or U, either Hr orU′, either Vr or w, (143)

either Mr or w′and either mr or w′′ (144)

have to be prescribed at x1 = 0 and x1 = L .
We see from Equations (104)–(113) and (133)–(142), that differences between the two

approaches only exist in the boundary conditions for the sectional forces; some contain
acceleration terms while others do not.

5. Examples

The proper aim of the examples is to demonstrate with reference to bending loading
that the presence of acceleration terms in the boundary conditions may have significant
qualitative and quantitative effect on the predicted responses. Note, however, that Euler–
Bernoulli beam theories are especially tempting for they render the equations of motion
one-dimensional. That naturally arouses interest to compare with each other predicted re-
sponses according to one-dimensional tension/compression and bending loadings. For our
purposes, it suffices to perform the comparison only with respect to the beam approaches,
which rely upon the reduced form of the potential of internal forces. Additionally, we shall
concentrate on the following three versions of the theory.

Version 1: γ = 0, i.e., nonclassical acceleration terms are omitted.
Version 2: γ ̸= 0, nonclassical acceleration terms are present in both the equations of

motion and the traction boundary conditions.
Version 3: γ ̸= 0, nonclassical acceleration terms are present only in the equations of

motion.
In the case of Version 1, the equations of motion follow from (140) and (142) by setting

γ = 0, while the boundary conditions are the same as for Version 3. Furthermore, the
definitions of sectional and resultant distributed forces for Version 1 are the same as for
Version 3. The predicted responses will be presented in dimensionless form by employing
the definitions

x̃ :=
x1

L
, t̃ :=

c∗

L
t ,

∂( )

∂x̃
= ( ), x̃ ,

∂( )

∂̃t
= ( ), t̃ , Ũ :=

U
L

, w̃ :=
w
L

, Ñ :=
N

EA
, (145)

Ṽ :=
V

EL2 , M̃ :=
M

EL3 , γ̃ :=
γc∗2

EL2 , c∗ =

√
E
ρ

, Ã :=
A
L2 , Ĩ :=

I
L4 , l̃ :=

l
L

, ω̃ :=
ωL
c∗

. (146)
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Here, N = Nr, V = Vr, M = Mr for Versions 1, 3, while N = Nr, V = Vr , M = Mr for
Version 2. We shall compare the three versions with each other for the case of a cantilever
beam and for harmonically with time-varying loading conditions. In all calculations, the
values of Ã = 15 ·10−4 and Ĩ = 2.813 ·10−9 have been chosen.

5.1. Uniaxial Tension/Compression Loading
5.1.1. Governing Equations

Consider a cantilever beam, subject only to axial load, so that w = 0, and let pr = pr = 0.
Then, from Equation (111) or (140), we find that

− ρ
..
U + γ

..
U

′′
+ EU′′ − l2E U

′′′′
= 0, (147)

or in dimensionless form

−Ũ,̃t̃t +γ̃Ũ,x̃x̃̃t̃t +Ũ,x̃x̃ −l̃2Ũ,x̃x̃x̃x̃ = 0. (148)

If γ̃ = 0, then (148) represents the equation of motion for Version 1 and if γ̃ ̸= 0, then
(148) is the equation of motion for versions 2, 3.

A comprehensive discussion of Equation (148), with respect to size effects and the con-
vergence behavior for l̃ → 0 , has been provided in Broese et al. [15], but with nonclassical
boundary conditions different from those we shall assume in the present paper. Especially,
the interest here is focused on homogenous nonclassical traction boundary tractions. The
important loading condition is at x1 = L and has the form BAeiωt, with ω being an operat-
ing frequency, BA being a displacement-or force-like amplitude and i being the imaginary
unit. This kind of loading suggests assuming for the solution of Equation (148) the form

Ũ
(
x̃, t̃

)
= Ũ0(x̃) eiω̃t̃ . (149)

After substitution of this into Equation (148), and elimination of the factor eiω̃t̃, we ob-
tain

ω̃Ũ0 +
(

1 − γ̃ω̃2
)
(Ũ0),x̃x̃ −l̃2(Ũ0),x̃x̃x̃x̃ = 0, (150)

which, along with a set of boundary conditions, can be solved by employing standard
methods. Having available solution of displacement (149), it is straightforward to establish
solutions of sectional forces from the corresponding formulae. We will now discuss force
and displacement-controlled loadings for a cantilever beam.

5.1.2. Force Controlled Loading

The boundary conditions for Versions 1, 3 are U(0, t) = 0, Hr(0, t) = Hr(L, t) = 0 and
N(L, t) = FAeiωt, where FA = constant is a force amplitude. From these, we can gain bound-
ary conditions for the differential Equation (150) by taking Equations (133), (134) and (149)
into account, eliminating the factor eiωt, and using dimensionless variables. In particular,
the dimensionless expression of the boundary condition for N becomes Ñ

(
1, t̃

)
= F̃Aeiω̃t̃,

with F̃A = FA
EA . Moreover, it is readily seen from Equation (133), that, for Versions 1, 3,

Ñ = Ñ0(x̃) eiω̃t̃, with Ñ0 = (Ũ0),x̃ −l̃2(Ũ0),X̃X̃X̃. With the help of Equations (104) and (105)
and using similar manipulations as for Versions 1, 3, it is straightforward to establish
corresponding boundary conditions and distributions of Ñ0 for Version 2, where again
Ñ = Ñ0(x̃)eiω̃t̃. Altogether, we have the following boundary conditions and distributions
of Ñ0.

Versions 1, 3

B.C. :
[
Ũ0

]
x̃=0

= [(Ũ0),x̃x̃ ]x̃=0 = [(Ũ0),x̃x̃ ]x̃=1 = 0,

[(Ũ0),x̃ −l̃2(Ũ0),x̃x̃x̃ ]x̃=1 = F̃A. (151)
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Solution Ñ0 : Ñ0(x̃) = (Ũ0),x̃ −l̃2(Ũ0),x̃x̃x̃ (152)

Version 2
B.C. :

[
Ũ0

]
x̃=0

= [(Ũ0),x̃x̃ ]x̃=0 = [(Ũ0),x̃x̃ ]x̃=1 = 0,

[
(

1 − γ̃ω̃2
)
(Ũ0),x̃ −l̃2(Ũ0),x̃x̃x̃ ]x̃=1 = F̃A. (153)

Solution Ñ0 : Ñ0(x̃) =
(

1 − γ̃ω̃2
)
(Ũ0),x̃ −l̃2(Ũ0),x̃x̃x̃ . (154)

Resulting distributions of Ũ0 and Ñ0 are illustrated in Figures 2 and 3. In addition,
corresponding distributions predicted by classical elasticity are shown in these figures.
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It is well known that gradient elasticity includes parameters which control length-
scale effects captured by the constitutive theory. In the case of Version 1 (γ̃ = 0), the only
material parameter responsible for length scale effects is the internal material length l̃.
Figure 2 illustrates the effect of l̃ on the predicted model responses for the case of Version 1.
It can be seen that for small values of frequencies as, e.g., ω̃ = 1.5, all distributions of
Ũ0 are monotonically increasing, do not intersect for x̃ > 0 and indicate the gradient
stiffening effect in comparison to the classical solution. The stiffening effect is increasing
with increasing values of l̃. All corresponding Ñ0-distributions, shown in Figure 2b, are
monotonically decreasing, do not intersect for x̃ < 1 and are below the classical one. Thus,
the distributions of Ũ0 and Ñ0 indicate a common intersection point, respectively.

No regular tendencies in the distributions of Ũ0 and Ñ0 can be recognized, or even
the opposite may happen, for sufficiently large values of ω̃. In particular, new intersection
points in the graphs may occur and positions of intersection points can change depending
on the applied frequency. Since the relationships for large values of ω̃ are similar to those
reported in Broese et al. [15], they will not be further discussed here.
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and (b,d) distributions of Ñ0.

In the case of Versions 2 and 3 (γ̃ ̸= 0), length scale effects can be controlled besides
by l̃, also by γ̃ (see Figure 3). Apparently, for both versions, and for the sufficiently small
frequency ω̃ = 1.5, the Ũ0- and Ñ0-distributions, for l̃ = constant, look similar to the ones
for Version 1 in Figure 2. Moreover, the Ũ0-distributions increase with increasing values
of γ̃, and can exceed the one predicted by classical elasticity. This, in turn, indicates that,
for l̃ = constant, the nonclassical acceleration terms controlled by γ̃, cause (dynamical)
softening in the material behavior. However, it must be emphasized that the amounts of
these distributions are considerably smaller for Version 3. This behavior carries over to the
Ñ0-distributions as well. Altogether, the predicted responses by Version 2 and Version 3 are
qualitatively similar to each other but, depending on the γ̃-values, significant quantitative
differences can occur.

5.1.3. Displacement Controlled Loading

All the boundary conditions and the solutions for Ñ0 are the same as in the last section,
except for the boundary condition at x̃ = 1 for the sectional force Ñ, which is now replaced
by the displacement boundary condition Ũ

(
1, t̃

)
= ŨAeiω̃t̃, ŨA = constant.

Versions 1, 3

B.C. :
[
Ũ0

]
x̃=0

= [(Ũ0),x̃x̃ ]x̃=0 = [(Ũ0),x̃x̃ ]x̃=1 = 0 ,
[
Ũ0

]
x̃=1

= ŨA (155)

Solution Ñ0 : Ñ0(x̃) = (Ũ0),x̃ −l̃2(Ũ0),x̃x̃x̃ . (156)
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Version 2

B.C. :
[
Ũ0

]
x̃=0

= [(Ũ0),x̃x̃ ]x̃=0 = [(Ũ0),x̃x̃ ]x̃=1 = 0 ,
[
Ũ0

]
x̃=1

= ŨA. (157)

Solution Ñ0 : Ñ0(x̃) =
(

1 − γ̃ω̃2
)
(Ũ0),x̃ −l̃2(Ũ0),x̃x̃x̃ . (158)

Predicted distributions for Version 1 (γ̃ = 0) and classical elasticity for the above
displacement-controlled boundary conditions are depicted in Figure 4 for frequency ω̃
and ŨA = 5·10−3. The general observations concerning Ũ0-responses are similar to those
for force-controlled loading. Clearly, due to the imposed boundary conditions, the Ũ0-
distributions intersect now at x̃ = 1 as well. It can be recognized from Figure 4a, that for the
sufficiently small value ω̃ = 1.5, only small quantitative differences are visible, which could
be expected because of the assumed displacement boundary conditions. In the related
Ñ0-distributions only small quantitative differences are visible as well (cf. Figure 4b).
However, there is the remarkable qualitative difference that, now, these distributions do
intersect for some 0 < x̃ < 1. For sufficiently large values of ω̃ no regular tendencies
in the predicted responses can be stated. As the differential Equation (148) for Ũ0 and
the associated boundary conditions (155) and (157) are identical for Versions 2 and 3, the
predicted Ũ0-distributions according to both versions are identical as well. The graphs of
Ũ0-distributions in Figure 5 attest, for the small frequency ω̃ = 1.5, only small quantitative
differences for various values of γ̃. After magnification of Figure 5, it becomes clear that
these distributions increase with increasing values of γ̃ but are always below the one
predicted by classical elasticity. On the other hand, observing closely the Ñ0-distributions
in Figure 6, it becomes clear that these distributions for Version 2 decrease with increasing
values of γ̃ and intersect the one predicted by classical elasticity for some x̃ ∈ (0, 1).
Comparison with Ñ0-distributions for Version 3, depicted in Figure 6b, reveal for Version 2
smaller values of Ñ0 than for Version 3. In addition, by increasing the value of γ̃, these
distributions in Figure 6b are increasing. This observation is the opposite of the one made
in Figure 6a.
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Concluding this section, we can state that there are significant quantitative and quali-
tative differences for the considered tension/compression loading conditions.

5.2. Cantilever Beam under Dynamical Transverse Load
5.2.1. Governing Equations

Consider, now, the cantilever beam to be loaded only transversely so that U ≡ 0,
and suppose that, qr = qr ≡ 0. For this case, we find from Equation (113) (or from
Equation (142)) that

−ρA
..
w + ρI

..
w′′ − γI

..
w

′′′′
− EIw

′′′′
+ l2EI w

′′′′′′
= 0. (159)
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The dimensionless form of it reads

−Ãw̃,̃t̃t +Ĩw̃,̃t̃tx̃x̃ −γ̃̃Iw̃,̃t̃tx̃x̃x̃x̃ −Ĩw̃,x̃x̃x̃x̃ +l̃2̃Iw̃,x̃x̃x̃x̃x̃x̃ = 0. (160)

Obviously, for γ̃ = 0, Equation (160) represents the equation of motion for Version 1,
and for γ̃ ̸= 0 it represents the equation of motion for Versions 2, 3. We assume that, at
x1 = L, the beam is subject to transverse load, force or deflection controlled, of the form
Beωit, where againω is an operating frequency, B is a force-or deflection-like amplitude and
i is the imaginary unit. This suggests for the solution of Equation (160) to make the Ansatz

w̃
(
x̃, t̃

)
= w̃0(x̃)eiω̃t̃. (161)

After substitution of (161) into (160), and elimination of the factor eiω̃t̃, we arrive at

Ãω̃
2
w̃0 − ω̃2̃I(w̃0),x̃x̃ +Ĩ

(
γ̃ω̃2 − 1

)
(w̃0),x̃x̃x̃x̃ +l̃2̃I(w̃0),x̃x̃x̃x̃x̃x̃ = 0, (162)

which, along with a set of boundary conditions, can be solved by employing standard
methods. Distribution of sectional forces can be established by inserting into corresponding
formulae the solutions w̃

(
x̃, t̃

)
. In the subsequent sections, we will discuss force and

deflection controlled bending of the cantilever beam.

5.2.2. Force Controlled Bending

The manipulations in the current and the next section are similar to those in
Sections 5.1.2 and 5.1.3, respectively. We suppose for Versions 1, 3 the boundary con-
ditions w(0, t) = 0, w′(0, t) = 0, mr(0, t) = mr(L, t) = 0, Mr(L, t) = 0 and V(L, t) =
Vr(L, t) = FAeiωt, where again FA = constant is a force amplitude. From these boundary
conditions, we can deduce boundary conditions for the differential Equation (162) by taking
into account Equations (135)–(138) and (161), and eliminating the factor eiω̃t̃. In particular,
the boundary condition for Ṽ becomes Ṽ

(
1, t̃

)
= F̃Aeiω̃t̃, where now F̃A := FA

EL2 . Also,

we can deduce from Equations (135) and (137) that, for Versions 1, 3, Ṽ = Ṽ0(x̃)eiω̃t̃,
M̃ = M̃0(x̃)eiω̃t̃, with Ṽ0(x̃) = −ω̃2̃I(w̃0),x̃ + Ĩ

(
γ̃ω̃2 − 1

)
(w̃0),x̃x̃x̃ +l̃2̃I(w̃0),x̃x̃x̃x̃x̃ and

M̃0(x̃) = −Ĩ(w̃0),x̃x̃ +l̃2 Ĩ(w̃0),x̃x̃x̃x̃.
With the help of Equation (106)–(108), and using similar manipulations as for Versions

1, 3, we can deduce corresponding boundary conditions and distributions Ṽ0, M̃0 for
Version 2. Altogether, we have the following.

Versions 1, 3

B.C. : [w̃0]x̃=0 = [(w̃0),x̃ ]x̃=0 = [(w̃0),x̃x̃x̃ ]x̃=0 = [(w̃0),x̃x̃x̃ ]x̃=1

= [(w̃0),x̃x̃ −l̃2(w̃0),x̃x̃x̃x̃ ]x̃=1 = 0,
(163)

[
−ω̃2̃I(w̃0),x̃ +Ĩ

(
γ̃ω̃2 − 1

)
(w̃0),x̃x̃x̃ +l̃2̃I(w̃0),x̃x̃x̃x̃x̃

]
x̃=1

= F̃A. (164)

Solution Ṽ0 : Ṽ0(x̃) = −ω̃2̃I(w̃0),x̃ +Ĩ
(
γ̃ω̃2 − 1

)
(w̃0),x̃x̃x̃ +l̃2̃I(w̃0),x̃x̃x̃x̃x̃ . (165)

Solution M̃0 : M̃0(x̃) = −Ĩ(w̃0),x̃x̃ +l̃2̃I(w̃0),x̃x̃x̃x̃ . (166)

Version 2

B.C. : [w̃0]x̃=0 = [(w̃0),x̃ ]x̃=0 = [(w̃0),x̃x̃x̃ ]x̃=0 = [(w̃0),x̃x̃x̃ ]x̃=1

= [̃I
(
γ̃ω̃2 − 1

)
(w̃0),x̃x̃ +l̃2(w̃0),x̃x̃x̃ ]x̃=1 = 0,

(167)
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[
−ω̃2̃I(w̃0),x̃ +Ĩ

(
γ̃ω̃2 − 1

)
(w̃0),x̃x̃x̃ +l̃2̃I(w̃0),x̃x̃x̃x̃x̃

]
x̃=1

= F̃A. (168)

Solution Ṽ0 : Ṽ0(x̃) = −ω̃2̃I(w̃0),x̃ +Ĩ
(
γ̃ω̃2 − 1

)
(w̃0),x̃x̃x̃ +l̃2̃I(w̃0),x̃x̃x̃x̃x̃ . (169)

Solution M̃0 : M̃0(x̃) = −Ĩ
(

1 − γ̃ω̃2
)
(w̃0),x̃x̃ +l̃2̃I(w̃0),x̃x̃x̃x̃ . (170)

By comparing Figure 7 with Figure 2, it can be recognized that the w̃0- and Ṽ0-distributions
are essentially similar to the Ũ0- and Ñ0-distributions, respectively, the only difference being
that the w̃0-distributions are convex whereas the Ũ0-distributions are concave.
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Figure 7. Force control loading. Model responses according to Version 1 for various values of l̃ and
w̃ = 0.05, F̃A = 5·10−9. Distributions of (a) w̃0 and (b) Ṽ0.

Also, similar to the uniaxial loading cases in Figure 3a,c, for the small frequency
ω̃ = 0.05, and for keeping l̃ constant, by increasing values of γ̃, the w̃0-distributions
predicted by Versions 2, 3 are increasing, which indicates that dynamic gradient softening
can occur (see Figure 8a,c). However, the amounts of the w̃0-distributions predicted by
Version 3 are smaller than those predicted by Version 2. Furthermore, for forced controlled
loadings, in the case of Version 3, there is a noticeable qualitative difference between the
Ũ0-distributions in Figure 3c and the w̃0-distributions in Figure 8c: All w̃0-distributions are
bounded from above by the classical one, in opposite to the Ũ0-distributions.
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5.2.3. Deflection Controlled Bending

All the boundary conditions and the solutions Ṽ0, M̃0 are the same as in the last
section, except for the boundary conditions at x̃ = 1 for the sectional forces Ṽ, which are
now replaced by the deflection boundary conditions w̃

(
1, t̃

)
= w̃Aeiω̃t̃, w̃A = constant.

Versions 1, 3

B.C. : [w̃0]x̃=0 = [(w̃0),x̃ ]x̃=0 = [(w̃0),x̃x̃x̃ ]x̃=0 = [(w̃0),x̃x̃x̃ ]x̃=1

= [(w̃0),x̃x̃ −l̃2(w̃0),x̃x̃x̃x̃ ]x̃=1 = 0, [w̃0]x̃=1 = w̃A.
(171)

Solution Ṽ0 : Ṽ0(x̃) = −ω̃2̃I(w̃0),x̃ +Ĩ
(
γ̃ω̃2 − 1

)
(w̃0),x̃x̃x̃ +l̃2̃I(w̃0),x̃x̃x̃x̃x̃ . (172)

Solution M̃0 : M̃0(x̃) = −Ĩ(w̃0),x̃x̃ +l̃2̃I(w̃0),x̃x̃x̃x̃ . (173)

Version 2

B.C. : [w̃0]x̃=0 = [(w̃0),x̃ ]x̃=0 = [(w̃0),x̃x̃x̃ ]x̃=0 = [(w̃0),x̃x̃x̃ ]x̃=1

= [( Ĩ
(
γ̃ω̃2 − 1

)
(w̃0),x̃x̃ +l̃2(w̃0),x̃x̃x̃x̃ ]x̃=1, [w̃0]x̃=1 = w̃A.

(174)

Solution Ṽ0 : Ṽ0(x̃) = −ω̃2̃I(w̃0),x̃ +Ĩ
(
γ̃ω̃2 − 1

)
(w̃0),x̃x̃x̃ +l̃2̃I(w̃0),x̃x̃x̃x̃x̃ . (175)

Solution M̃0 : M̃0(x̃) = −Ĩ
(

1 − γ̃ω̃2
)
+ l̃2̃I(w̃0),x̃x̃x̃x̃ . (176)
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Figure 9 illustrates predicted w̃0- and Ṽ0-distributions according to Version 1 (γ̃ = 0)
and classical elasticity for w̃ = 0.05 and w̃A = 5·10−3. Except for the differences in the cur-
vatures, the w̃0– distributions in Figure 9a look similar to the Ũ0-distributions in Figure 4a.
However, there are significant qualitative and quantitative differences between the Ṽ0-
distributions in Figure 9b and the Ñ0-distributions in Figure 4b. The most important one is
that there are no intersections between the graphs of the curves in Figure 9b. The remarks
concerning the predicted responses according to Versions 2, 3 in Figures 10 and 11 are
similar to those for the uniaxial loadings in Figures 5 and 6.
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Figure 10. Displacement controlled loading. Identical w̃0-distributions for Versions 2 and 3; w̃ = 0.05,
ŨA = 5·10−3, l̃2 = 0.04.

The main conclusion which can be drawn from the calculated responses in the present
and the last section is that, depending on the imposed boundary conditions, both similarities
and differences in the predicted distributions due to uniaxial and bending loadings may
occur. The most important observation, however, is that if γ ̸= 0, then significant qualitative
and quantitative differences in the predicted responses can occur, depending on whether
acceleration terms are present in the boundary conditions or not.
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6. Concluding Remarks

The explicit gradient elasticity proposed by Mindlin [7] was an important step toward
modeling nonlocalities and length scale effects in the material response. The original
formulation of this theory is characterized by the presence of acceleration terms in the
boundary tractions. It was argued in [15] that such boundary tractions are physically
unacceptable as they are not objective. The argumentation against boundary tractions
including acceleration terms has been extended in the present paper within the context of
the principle of material frame indifference. It is shown that if this principle is assumed
to hold, then boundary tractions including acceleration terms are not acceptable since
either these tractions will not be objective, or the response functions of the associated
stresses will not satisfy the principle of material frame indifference. The differences in
the model responses, according to the two different forms of boundary tractions, are
not negligible. In fact, it has been demonstrated with reference to uniaxial and bending
loadings, that significant qualitative and quantitative differences may occur between the
corresponding model responses. Different to [15], homogenous nonclassical boundary
tractions are assumed here in the calculated examples, which, for the time being, seems
to be physically more realistic. Besides force controlled loading histories, displacement
controlled ones have also been considered and compared with each other. Thus, the present
paper, compared with the analysis given [9,10], offers a more comprehensive discussion
of the boundary conditions, and in addition, for the first time, it provides a consistent
Euler–Bernoulli beam theory for bending in dynamics.
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Appendix A

Substitution of Equation (56) into Equations (89) and (91) gives∫
V

(
∂1Σ(t)

11

)
δUdV +

∫
V

(
∂1Σ(t)

11

)
x3δ

(
− w′)dV +

∫
V

(
∂3Σ(t)

31

)
δUdV

∫
V

(
∂1Σ(t)

11

)
δUdV +

∫
V

(
∂1Σ(t)

11

)
x3δ

(
−w′)dV +

∫
V

(
∂3Σ(t)

31

)
δUdV

−
∫
V

ρ
( ..
u1δu1 +

..
u3δu3

)
dV = 0.

(A1)

The first term can be calculated with the aid of the constitutive law (58), (59) and (89)
and the definitions (92):∫

V

(
∂1Σ(t)

11

)
δUdV =

∫
V

∂1

(
Σ(t)

11 δU
)

dV −
∫
V

Σ(t)
11 δU′dV

=

L∫
0

∂1
(
NrδU

)
dx1 −

∫
V

Σ11δU′dV −
∫
V

γ
( ..

U
′
− ..

w′′ x3

)
δU′dV

=
[
Nr δU

]x1=L
x1=0 −

∫
V

Eε11δU′dV +
∫
V

µ′111δU
′dV −

L∫
0

γA
..
U
′
δU′dx1

=
[
Nr δU

]x1=L
x1=0 −

∫
V

Eε11δU′dV +
∫
V

∂1

∫
A

µ111dS δU′dx1 −
∫
V

µ111δU′′ dV

−
L∫

0

γA
..
U
′
δU′dx1

=
[
Nr δU

]x1=L
x1=0 +

[
Hr δU′]x1=L

x1=0 −
∫
V

(
Eε11δU′ + µ111δU′′

)
dV −

L∫
0

γA
..
U
′
δU′dx1.

(A2)

The second term in Equation (A1) can be evaluated in a similar fashion:∫
V

(
∂1Σ(t)

11 x3

)
δ
(
−w′)dV =

∫
V

∂1

[
Σ(t)

11 x3δ
(
−w′)]dV −

∫
V

Σ(t)
11 x3δ(−w′′ )dV

=

L∫
0

∂1
[
Mrδ

(
−w′)]dx1 −

∫
V

Eε11x3δ(−w′′ )dV +
∫
V

µ′111x3δ(−w′′ )dV

−
∫
V

γ
( ..

U − ..
w′′ x3

)
x3δ(−w′′ )dV

=
[
Mr δ

(
−w′)]x1=L

x1=0 + [mr δ(−w′′ )]x1=L
x1=0 −

∫
V

[Eε11x3δ(−w′′ ) + µ111δ(−w′′′ )]dV

−
L∫

0

γI
..
w′′
δw′′ dx1.

(A3)
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The third term in Equation (A1) gives

∫
V

(
∂3Σ(t)

31

)
δUdV =

L∫
0

2b
[
Σ(t)

31

]x3=c

x3=−c
δUdx1 =

L∫
0

prδUdx1. (A4)

For the other integrals in Equation (A1) including stress components, we have∫
V

(
∂3Σ(t)

33

)
δwdV +

∫
V

(
∂3Σ(t)

13

)
x3δ

(
−w′)dV +

∫
V

(
∂1Σ(t)

13

)
δwdV

L∫
0

2b[Σ33]
x3=c
x3=−c δwdx1 −

L∫
0

∂1


∫
A

(
∂3Σ(t)

31

)
x3dS δw

dx1

+

L∫
0

∂1

∫
A

(
∂3Σ(t)

31

)
x3dS

δwdx1 +

L∫
0

∫
A

(
∂1Σ(t)

13

)
δw dSδx1

=

L∫
0

2b[Σ33]
x3=c
x3=−c δwdx1 +

[
Vr δw dx1

]x1=L
x1=0

+

L∫
0

∂1

∫
A

[
∂3

(
Σ13 − γ

..
w′)x3dS

]δwdx1 +

L∫
0

∂1

∫
A

(
Σ13 + γ

..
w′)dS

δwdx1

=

L∫
0

2b[Σ33]
x3=c
x3=−c δwdx1 +

[
Vr δw dx1

]x1=L
x1=0

+

L∫
0

∂1

∫
A

(∂3 Σ13)x3dS

δwdx1 +

L∫
0

∂1

∫
A

Σ13dS

δwdx1 +

L∫
0

γA
..
w′′
δwdx1

=
[
Vrδw

]x1=L
x1=0 +

L∫
0

(
2b[Σ33]

x3=c
x3=−c + 2b[∂1Σ13]

x3=c
x3=−c + γA

..
w′′

)
δwdx1

=
[
Vrδw

]x1=L
x1=0 +

L∫
0

qrδwdx1.

(A5)

Keeping in mind the relations (56) for the displacement components, the last integral
in Equation (A1), including acceleration terms, becomes

−
∫
V

ρ
( ..
u1δu1 +

..
u3δu3

)
dV = −

L∫
0

(
ρA

..
UδU + ρI

..
w′

δw′ + ρA
..
wδw

)
dx1, (A6)

where, once more, partial integration has been applied.
Summing the results (A2)–(A6), and collecting terms, we may rewrite Equation (A1)

in the following form:[
NrδU

]x1=L
x1=0 +

[
HrδU′]x1=L

x1=0 +
[
Vrδw

]x1=L
x1=0 +

[
Mrδ

(
−w′)]x1=L

x1=0 +
[
mrδ

(
−w′)]x1=L

x1=0

+

L∫
0

pr δUdx1 +

L∫
0

qr δwdx1 −
∫
V

(
Eε11δε11 + µ111δ ε

′
11
)
dV

−
L∫

0

(
ρA

..
UδU + ρI

..
w′
δw′ + ρA

..
wδw

)
dx1 −

L∫
0

(
γA

..
U
′
δU + γI

..
w′′
δw′′

)
dx1 = 0.

(A7)
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If µ111 is replaced by the constitutive law (60), then this equation implies Equation (95).

Appendix B

We observe that Equation (120) can be recast with the aid of Equation (56) as follows

∫
V

(∂1Σ11)δUdV +
∫
V

(∂1Σ11)x3δ
(
−w′)dV +

∫
V

(∂3Σ13)δUdV

+
∫
V

(∂3Σ13)x3δ
(
−w′)dV +

∫
V

(∂1Σ13)δwdV

+
∫
V

(∂3Σ33)δwdV + δW(in)
r = 0.

(A8)

The calculation of the integrals containing stress components is based on the definitions
(126)–(128) and is quite similar to corresponding calculations in the last section (cf. also [25]).

The results are∫
V

(∂1Σ11)δUdV = [NrδU]x1=L
x1=0 +

[
HrδU′]x1=L

x1=0 −
∫
V

(
Eε11δU′ + µ111δU′′

)
dV

−
∫
V

µ111δU′′ dV,
(A9)

∫
V

(∂1Σ11)x3δ
(
−w′)dV =

[
Mrδ

(
−w′)]x1=L

x1=0 + [mrδ(−w′′ )]x1=L
x1=0

−
∫
V

[Eε11x3δ(−w′′ ) + µ111x3δ(−w′′′ )dV,
(A10)

∫
V

(∂3Σ13)δUdV =

L∫
0

pr δUdx1 (A11)

∫
V

(∂3Σ33)δwdV +
∫
V

(∂3Σ13)x3δ
(
−w′)dV +

∫
V

(∂1Σ13)δwdV =

[Vrδw]x1=L
x1=0 +

L∫
0

qr δwdx1.

(A12)

Substitution of these results into Equation (A8), and collecting terms, leads to

[NrδU]x1=L
x1=0 +

[
HrδU′]x1=L

x1=0 + [Vrδw]x1=L
x1=0 +

[
Mrδ

(
−w′)]x1=L

x1=0 + [mrδ(−w′′ )]x1=L
x1=0

+

L∫
0

pr δUdx1 +

L∫
0

qr δwdx1 + δW
(in)
r

=
∫
V

(
Eε11δε11 + µ111δε

′
11
)
dV = δΠ(i),

(A13)

with Π(i)
r being defined in Equation (98).
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