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Abstract: This study experimentally investigated electrically assisted (EA) stress relief annealing for
cold-coiled commercial automotive springs. In EA stress relief annealing, the temperature of a spring
is rapidly increased to the annealing temperature (400 ◦C) and is held constant for a specified time
using a pulsed electric current. Experimental findings show that the effectiveness of the EA stress
relief annealing is superior to that of the conventional stress relief annealing, especially in terms
of process time. The present study suggests that EA stress relief annealing, with properly selected
process parameters, can effectively substitute for time-consuming conventional stress relief annealing
using a furnace for cold-coiled automotive springs.
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1. Introduction

Helical springs manufactured by cold coiling have been widely used for automotive
suspensions. However, cold coiling causes non-uniform residual stress distribution in the
spring, which can significantly reduce product life and cause dimensional variation [1].
Therefore, in the commercial manufacturing process of helical automotive springs, residual
stress associated with cold coiling needs to be appropriately reduced or eliminated by stress
relief annealing to meet the durability requirement. Conventional stress relief annealing
is generally carried out at 400 ◦C for 40 min in a furnace to reduce residual stresses and
eliminate weak spots. However, conventional stress relief annealing is time-consuming,
requires bulky equipment, and increases production costs. Therefore, the automotive
spring industry would welcome a faster and more compact alternative.

Electrically assisted manufacturing (EAM) utilizes the combined effect of resistance
heating and the athermal effect of electric currents [2–4] to control the mechanical behavior
and microstructure of metal alloys. This relatively new approach has been actively re-
searched and evaluated for various practical applications, such as bending [5], blanking [6],
drawing [7,8], forging [9,10], springback reduction [11], and rolling [12]. With the ability to
improve efficiency, accuracy, and material performance, EAM has the potential to replace
various conventional manufacturing processes.

EA stress relief annealing is an EAM technique that uses the thermal and athermal
effects of electric current to improve the efficiency of the annealing process. Nguyen
et al. [13] evaluated the athermal contribution of electric current during EA annealing by
comparing the performance of EA annealing and rapid induction heat annealing. In the
research of Park et al. [14], a semicircular specimen prepared from a cold-coiled automotive
spring was used to confirm the feasibility of EA stress relief annealing. Their experimental
results showed that the effect of EA stress relief annealing could be similar to that of
conventional stress relief annealing using a furnace, even with a significantly shorter
process time and lower energy.
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As a follow-up to the research of Park et al. [14], in the current study we expanded the
EA stress relief annealing concept to full-size commercial automotive springs manufactured
by cold coiling. The effect of EA stress relief annealing parameters on the residual stress
distribution in the full-size spring was evaluated. Additionally, the resulting mechanical
properties of the full-size spring after EA stress relief annealing were compared with those
after conventional stress relief annealing using a furnace.

2. Experimental Set-Up
2.1. Materials

The cold-coiled springs used for the stress relief annealing experiment were manu-
factured from high-strength steel round bars (Si-Cr-V spring steel, supplied by POSCO,
Pohang-si, Republic of Korea) with a diameter of 13.0 mm (chemical composition: property
of the manufacturer). The steel bar was quenched and tempered before being formed into
the shape of the spring [15,16]. All the spring specimens were selected from the same
production run to ensure consistency in the experimental results. The height of each spring
specimen was 368 mm with 4.75 coils, while the upper and lower outer diameters were
slightly smaller than the middle outer diameter, as shown in Figure 1.
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Figure 1. Geometry and dimensions of spring specimens.

2.2. Effectiveness of EA Stress Relief Annealing

For the EA stress relief annealing experiment, a full-size spring specimen was mounted
on an insulating baseplate, and electric current was applied from one tip of the spring to
the other, as described in Figure 2. The electric current was generated by a programmable
electric current generator (Vadal SP-1000U, Hyosung, Seoul, Republic of Korea). In the
EA stress relief annealing experiment, the cold-coiled spring was rapidly heated to the
annealing temperature of 400 ◦C by an initial electric current for 18 s. Then, the specimen
was held at the annealing temperature for a specific holding time by applying a pulsed
electric current with a relatively lower amplitude, as schematically described in Figure 3
and listed in Table 1. As shown in Table 1, the electric current density was defined as the
amount of electric current flowing through a unit cross-sectional area of the spring wire.
After EA stress relief annealing, the spring specimen was cooled to room temperature in air.
For each experimental condition listed in Table 1, at least three specimens were tested to
confirm the repeatability of the result. The temperature history of the specimen during the
test was measured using an infrared thermal imaging camera (T440, FLIR, Täby, Sweden).
The emissivity of the thermal images was calibrated using the temperature measured using
a K-type thermocouple and a data logger (MV-106, Yokogawa, Musashino-shi, Japan) at
the location of 2.5 coils, which was the center of the spring specimen.
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Table 1. EA stress relief annealing parameters.

First Pulse (Heating) Repeated Pulse (Holding)
Holding Time

(min)Current Density
(A/mm2)

Duration
(s)

Current Density
(A/mm2)

Duration
(s)

Period
(s)

13.75 18 7.15 1 5 0, 1, 3, 5, 10

To evaluate the effectiveness of EA stress relief annealing, a conventional stress relief
annealing experiment was carried out in which a spring was annealed in a laboratory
furnace using a commercial heat treatment schedule provided by the spring manufacturer.
The temperature reached the annealing temperature (400 ◦C) after about 20 min and was
held constant for an additional 20 min. Then, the sample was removed from the furnace and
cooled in air. Therefore, the total process time for the conventional stress relief annealing
experiment was approximately 40 min. During conventional stress relief annealing, the
specimen temperature was measured using a K-type thermocouple at the center of the
spring specimen.

The performance of stress relief annealing was evaluated by measuring the residual
stress distribution in the spring after annealing. An X-ray diffractometer (MSF/PSF-3M,
Rigaku, Tokyo, Japan) was used to measure residual stress distribution along the length of
the spring at the inner surface of as-coiled, EA stress relief-annealed, and conventionally
annealed springs. Thereafter, the mechanical property of the spring specimen was evaluated
by measuring the Vickers hardness profile (HM-100, Mitutoyo, Kawasaki city, Japan) along
the diameter of the cross-section at the center of the spring specimen (2.5-coil location) with
a measurement distance of 0.25 mm and a load of 9.8 N.
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2.3. Effect of Energy Release Rate

The effect of electric energy rate, which was defined by the energy input divided by
the duration of initial electric current during the heating to the annealing temperature of
400 ◦C, was evaluated by a series of EA stress relief annealing experiments with the same
total energy input but at different electric current densities and durations. The effect of
electric energy rate was evaluated in a single-pulse mode, as schematically described in
Figure 4. The test parameters are listed in Table 2. No temperature hold at the annealing
temperature was attempted for simplicity of the study. Once the specimen temperature
reached the annealing temperature, the specimen was cooled to room temperature in air.
The total energy input by electric current was calculated using the following formula:

E = ΣI2R∆t = R.ΣI2t = ρ
L
A

ΣI2∆t (1)

where E is total electric energy (J), I is electric current (A), R is resistance (Ω), and ∆t is
the duration of electric current (s). The total energy E for the energy rate test was selected
to match the electric energy input during the initial heating of the above experiment for
effectiveness of EA stress relief annealing.
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Table 2. EA stress relief annealing parameters for energy rate test.

Number of Pulses Current Density
(A/mm2)

Duration
(s)

Total Energy
(J/Ω)

1 15.75 15 65.52
1 11.15 30 65.71
1 7.91 60 66.15
1 5.58 120 65.71

3. Results and Discussion
3.1. Effectiveness of EA Stress Relief Annealing

The specimen temperature rapidly increased to the annealing temperature and was
held nearly constant during the remaining process time, as shown in Figure 5a. In com-
parison, the conventional annealing approach required approximately 20 min to reach
the annealing temperature prior to an additional 20 min at the annealing temperature
(Figure 5b). A major advantage of EA stress relief annealing over conventional annealing is
the ability to reach the target temperature very rapidly due to the Joule heating effect of
the current.
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(b) compared with conventional heating in the furnace (40 min process times).

The residual stress along the length at the inner surface of the as-coiled spring specimen
is tensile stress, which adversely affects the durability of the spring by reducing its fatigue
life. Additionally, the helical spring design in the present study has varying outer diameters
and pitches along the length. Thus, the as-coiled spring had a significantly varying inner
residual stress distribution along the length, as shown in Figure 6. As a result of stress
relief annealing, the residual stress distribution of the spring specimen became much more
even (less fluctuation along the length of the spring), regardless of the annealing method.
In addition, the residual stress decreased as the holding time of EA stress relief annealing
increased. Most importantly, in EA stress relief annealing, even with a holding time of
less than 1 min, the residual stress reached a distribution similar to that of conventional
annealing for 40 min. This clearly confirms the superior efficiency of EA stress relief
annealing over the conventional method using a furnace. The superiority of EA stress relief
annealing can be explained by the combined effect of elevated temperature by resistance
heating and the athermal effect of electric current, which additionally enhances the mobility
of metal atoms [17].
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conventionally annealed springs.

The hardness distribution of EA stress relief annealing specimens also decreased as
holding time increased (Figure 7). Naturally, the hardness on the outside of the cross-section
was larger than that at the center due to the plastic deformation from cold coiling. The
effect of EA stress relief annealing on the micro-hardness of spring specimen was also
more substantial than that of conventional annealing. This result suggests that even a
holding time of 10 min was excessive for EA stress relief annealing. The experimental
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results of the present study showed that EA stress relief annealing was feasible with
a substantially shorter process time and considerably lower energy than conventional
furnace-based processes.
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3.2. Effect of Energy Release Rate

In the energy release rate experiment, the peak temperature decreased with an increase
in the duration of current density due to the heat transfer to the ambient air despite the
same energy input, as shown in Figure 8. The peak temperatures were in the range of
363 to 407 ◦C below the recrystallization temperature for the spring steel. After the peak
temperature, the specimens were cooled in air to room temperature, and the cooling rates
were similar.
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The residual stress measurement results show that the energy release rate significantly
affects the spring residual stress, as shown in Figure 9. Based on the comparison between
the results with similar peak temperatures (407 and 403 ◦C), the results indicate that the
efficiency of EA stress relief annealing was lower with higher electric current density
combined with shorter duration to apply the same electric energy. This result suggests
that for the process parameter range selected in the present study, among the two main
factors deciding the efficiency of the EA stress relief annealing, the effect of elevated
temperature decreased more significantly due to the shorter heating time (shorter exposure
of the specimen to the elevated temperature) than the effect of increased electric current
density [18]. Consequently, these results strongly suggest that the EA stress relief annealing
parameters (current density and duration) should be properly combined to optimize the
performance of EA stress relief annealing.
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3.3. Validation of the Effectiveness of EA Stress Relief Annealing

The EA stress relief-annealed spring with a holding time of 30 s was employed for
the fatigue test (without shot peening). The fatigue life of the EA-annealed spring was
similar to that of a conventionally annealed spring (~12,000 cycles) under the same loading
condition (stress amplitude from 200 to 1200 MPa) (Figure 10). Most spring specimens
were fractured at the 1.5-coil position, as shown in Figure 10a,b. Optical microscopy of
fracture surfaces showed that the crack originated from the inner surface and propagated
over the spring cross-section for both cases (Figure 11). The initial fatigue crack can grow
in areas of high tensile residual stress. Previous studies have shown that tensile residual
stress distributed on the inner surface of the spring tends to accelerate the initiation and
progression stages of the fatigue process [15,19]. Micro-cracks were observed on the fracture
surfaces at high magnification, which is characteristic of the brittle fracture mechanism
(Figure 11(a.4,b.4)).

The similar fatigue life of the EA-annealed spring to that of the conventionally an-
nealed spring suggests that an additional process, typically shot peening (used to introduce
compressive residual stress on the surface of the spring), will be still necessary even with
EA stress relief annealing. However, the superiority of EA stress relief annealing over
conventional annealing with a furnace is still valid and impressive, since the approximately
30 s long EA stress relief annealing resulted in a fatigue life comparable to the 40 min long
conventional annealing.
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3.4. Combined EA Rapid Heating and Hot Setting

EA stress relief annealing can also be combined with a hot setting in automotive spring
production. The hot setting (plasticization) allows the spring to achieve the correct free
length. Conventionally, the stress relief-annealed spring was heated again in the furnace,
moved to the compressor, and quickly compressed at a temperature of 330 ◦C. This process
is time-consuming and requires a lot of accompanying equipment. In the EA hot setting, a
custom-made fixture was installed in a programable press to fix the specimen at both ends,
as illustrated in Figure 12. A hot setting process to adjust the free length of the spring was
successfully conducted as a part of the EA stress relief annealing.
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As shown in Figure 13, the spring specimen was EA stress relief annealed at about
400 ◦C with a holding time of 30 s. Then, during air cooling after annealing, the spring
specimen was fully compressed at a speed of 30 mm/s at a temperature of 330 ◦C, a typical
hot setting condition. After compression, the specimen was kept in the fully compressed
position for 10 s and then released at the same speed. As a result, the free height of the spring
specimen successfully reached the target value of hot setting (Figure 14). By combining the
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EA stress relief annealing and EA hot setting in a single step, the manufacturing process of
the cold-coiled automotive spring can be further simplified with a shorter cycle time.
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4. Conclusions

The present study demonstrated the EA stress relief annealing concept for cold-coiled
helical automotive springs. The effectiveness of the proposed EA process was assessed
through a comparison with the outcomes of conventional stress relief annealing. The
experimental findings unequivocally indicate that EA stress relief annealing can be superior
to a conventional stress relief process with notable reductions in processing time and energy
consumption. Furthermore, the fatigue analysis results confirmed that the EA stress relief
annealing satisfied the industrial specifications for commercial automotive springs.
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