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Abstract: Developing argyrodite-type, chlorine-rich, sodium-ion, solid-state electrolytes with high
conductivity is a long-term challenge that is crucial for the advancement of all-solid-state batteries
(ASSBs). In this study, chlorine-rich, argyrodite-type Na6−xPS5−xCl1+x solid solutions were suc-
cessfully developed with a solid solution formation range of 0 ≤ x ≤ 0.5. Na5.5PS4.5Cl1.5 (x = 0.5),
displaying a highest ionic conductivity of 1.2 × 10−3 S/cm at 25 ◦C, which is more than a hundred
times higher than that of Na6PS5Cl. Cyclic voltammetry and electrochemical impedance spectroscopy
results demonstrated that the rich chlorine significantly enhanced the ionic conductivity and elec-
trochemical stability, in addition to causing a reduction in activation energy. The Na5.5PS4.5Cl1.5

composite also showed the characteristics of a pure ionic conductor without electronic conductivity.
Finally, the viability of Na5.5PS4.5Cl1.5 as a sodium electrolyte for all-solid-state sodium batteries was
checked in a lab-scale ASSB, showing stable battery performance. This study not only demonstrates
new composites of sodium-ionic, solid-state electrolytes with relatively high conductivity but also
provides an anion-modulation strategy to enhance the ionic conductivity of argyrodite-type sodium
solid-state ionic conductors.

Keywords: Na6PS5Cl; sodium solid electrolyte; all-solid-state batteries; ionic conductivity; high
electrochemical stability

1. Introduction

Sodium-ion batteries (SIBs) have been considered a highly promising alternative to
commercialized lithium-ion batteries (LIBs) due to the natural abundance of sodium re-
sources (2.64 wt% for Na against 0.0017 wt% for Li) and their higher safety levels with
similar charge/discharge mechanism [1]. Unfortunately, conventional SIBs face environ-
mental and safety issues originating from the effumability and leakage of flammable organic
liquid electrolytes [2,3]. Employing solid-state electrolytes (SSEs) instead of liquid organic
electrolytes is a viable solution to the battery issues, since inorganic SSEs are non-volatile
and non-flammable [4–6]. Therefore, the rational design of advanced sodium SSEs has been
treated as a reliable way to achieve high-performance SIBs.

Sodium-based SSEs have been well developed in recent year and can be roughly
divided into oxide-type and sulfide-type SSEs. Oxide-type SSEs such as β-alumina [7,8],
NASICON–type Na1+xZr2SixP3−xO12 [9,10], and Na2M2TeO6 (M = Zn, or Mg) [11–13]
exhibit good ionic conductivity of 10−4–10−3 S/cm. However, their poor interfacial com-
patibilities with electrodes lead to high contact resistances, which hinder the practical
fabrication of all-solid-state sodium batteries at room temperature [14]. In contrast, sulfide
materials are highly mechanically deformable and have excellent interfacial contact with ac-
tive materials simply upon cold pressing [15,16]. The development of sodium-based sulfide
conductors can be dates to 1992, when a homolog of a thio-LISICON-type, sulfide-based
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Na3PS4 sodium-ionic conductor with relatively high ionic conductivity was reported not
long after the discovery of the well-known Li3PS4 lithium-ionic conductor in 1984 [17,18].
Since then, numerous studies have focused on the investigation of sulfide-based SSEs
for SIBs [19–21]. Analogous ionic conductors such as Na3SbS4 have been synthesized
and described in detail [22], while element-doping and defect-introducing strategies have
been utilized to promote their electrochemical performance and air stability [2,15,23–28].
Moreover, inspired by the remarkable super-high ionic conductivity of thio-phosphate-
type Li10GeP2S12 (LGPS, 12 mS/cm) sulfide electrolytes [29–32], a series of Na10MP2S12
(M = Ge, Si, Sn) sulfide compounds was predicted through first-principles calculations,
and new Na-ion conductors, Na10+xSn1+xP2−xS12 (x = 0, 1) with tetragonal phases, have
been successfully synthesized, possessing high ionic conductivity at ambient tempera-
ture [33–36]. However, Sn4+ in the SSE is potentially active when equipped with a highly
reductive sodium metal anode, which might result in interfacial instability [37]. Therefore,
a highly stable sodium SSE with high ionic conductivity is urgently needed.

Argyrodite-type conductors with high ionic conductivity and stable interfacial proper-
ties have been considered as promising electrolytes for all-solid-state batteries due to the
absence of transition-metal species [38,39]. The Li6PS5X lithium-based conductor (X = Cl,
Br, and I) showed their promising properties as an SSE, whereas few reports are available
on its sodium analogs. Nevertheless, in previous reports, an argyrodite-type conductor,
Na6PS5Cl, was synthesized [40]. Unexpectedly, the ion conductivity of Na6PS5Cl was
only 1.2 × 10−5 S/cm, which was significantly lower than that of its Li6PS5Cl analog
(3 × 10−3 S/cm) [41]. The electrochemical window of Na6PS5Cl is only 1.3 V, which makes
it impossible for practical use. Increasing the degree of structure disorder by raising the
halide content of electrolytes can strengthen the diffusivity of ions in the SSE [41,42]. There-
fore, increasing the Cl and Na vacancy contents in Na6PS5Cl is favorable for the promotion
of Cl−/S2− disordering, as well as Na-ion mobility.

In this work, a highly conductive chlorine-rich sodium solid electrolyte, Na5.5PS4.5Cl1.5,
was successfully synthesized by increasing Cl and Na vacancy contents with an outstanding
conductivity of 1.2 × 10−3 S/cm at room temperature, which is almost ten-fold greater than
that of pristine Na6PS5Cl. The introduction of Cl and Na vacancy contents in Na6PS5Cl
induced a significant disordering of S2−/Cl− arrangement, leading to the lowering of the ac-
tivation barriers. Moreover, the electrochemical window of the Cl-rich SSE increased to 2 V,
which makes the SSE a practical candidate for ASSBs. We demonstrated the availability of
the chlorine-rich Na5.5PS4.5Cl1.5 SSE by assembling a Na3V2(PO4)3//Na5.5PS4.5Cl1.5//Na
full battery, indicating the practical application value of the new Na5.5PS4.5Cl1.5 sulfide
electrolyte for ASSBs.

2. Materials and Methods
2.1. Materials Synthesis

Na6−xPS5−xCl1+x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6) was synthesized by a high-
temperature, solid-state reaction method. Stoichiometric Na2S, P2S5, and NaCl (all chemi-
cals with a purity of 99.99%; Macklin Biochemical Co., Ltd., Shanghai, China) were weighed
by chemical stoichiometry in an Ar-filled glovebox (<1 ppm of O2, H2O) and sealed in a
45 mL ZrO2 pot with 15 ZrO2 balls with 10 mm diameters and 40 ZrO2 balls with 5 mm
diameters. The raw materials were ball-milled with a planetary ball mill apparatus (YXQM-
0.45L, Changsha Mitrcn Instrument Equipment Co., Ltd., Changsha, China) at a rotational
speed of 400 rpm for 8 h. Then, the obtained precursors were pelleted at 20–30 MPa in an
Ar-filled glovebox (<1 ppm of O2, H2O), sealed in an evacuated Pyrex tube at pressures
below 2 × 10−3 Pa, and sintered at 450 ◦C for 12 h with a heating rate of 2 ◦C/min. After
naturally cooling to room temperature, the as-synthesized Na6−xPS5−xCl1+x was trans-
ferred to a glovebox and mixed by hand with mortar and pestle for 15 min for further
characterization and battery assembly.
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2.2. Methods

Powder XRD measurements were conducted using a diffractometer equipped with
CuKα1 radiation (XRD-6010, Shimadzu, Tokyo, Japan) to ascertain the phase compositions
of the synthesized powders. Prior to XRD measurements, samples were prepared in a glove
box and sealed with polyimide film (Dongguan Meixin Co., Ltd., Dongguan, China) to
shield them from moisture during the measurements. The diffraction data were collected
in the 2θ range of 15◦ to 50◦ with step widths of 0.01◦. The morphology and elemental
mapping analyses for the composite powders were obtained using energy-dispersive X-ray
spectroscopy (EDS, Bruker QUANTAX, Berlin, Germany), and the obtained samples were
examined using a scanning electron microscope (SEM) (JEOL Ltd., JSM-6390, Tokyo, Japan).

The ionic conductivities of the cylindrical solid electrolyte (SE) pellets were assessed us-
ing the AC impedance technique with a cell (stainless steel/SE/stainless steel), employing
pressurizable sealing molds and measured between 25 and 85 ◦C. This measurement was
repeated two or three times, applying 15 mV in the frequency range of 7 MHz to 1 Hz and
utilizing a potentiostat electrochemical interface (Bio-Logic SAS, VSP-300, Claix, France).
SE pellets with a diameter of 10 mm were fabricated under a pressure of 303 MPa using a
polyaryletherketone mold. Electrochemical window measurements were conducted using
sodium/solid electrolyte/sodium cells. Typically, 100 mg of SE was pressed at 150 MPa
to form a solid pellet. Na metal foil (purity: 99.9%, thickness: 0.1 mm, diameter: 5 mm;
99.9%, MTI Corporation, Shenzhen, China) was placed on the top side of the electrolyte
pellet and further pressed at 150 MPa. The electrochemical stability of Na6−xPS5−xCl1+x
series was determined over a wider potential window, and a cyclic voltammetry (CV) test
was conducted at a scan rate of 0.1 mV/s between −2.5 and 2.5 V for comparison of the
voltage stability region. The stack pressure applied during the tests was about 5 MPa.

An all-solid-state battery employing the obtained chlorine-rich sodium-ionic conduc-
tor with the highest ionic conduction as the electrolyte was assembled under a pressure
of 6 MPa within an Ar-filled glovebox to evaluate its charge–discharge performance. The
battery assembly method and the utilized cathode materials were akin to those documented
in previous reports [43]. The details are as follows: Na metal foil served as the anode,
while a composite mixture comprising Na3V2(PO4)3 (NVP) and Na5.5PS4.5Cl1.5 (NPSC-6)
(NVP:NPSC-6 = 7:3) was employed as the cathode. Prior to use, a sieve with a 10 µm
mesh was utilized to eliminate large-particle-size powder in Na5.5PS4.5Cl1.5. A pellet with a
diameter of 10 mm was produced by cold pressing approximately 100 mg of Na5.5PS4.5Cl1.5
powder. Subsequently, Na foil (purity: 99.9%; thickness: 0.1 mm; diameter: 5 mm; 99.9%;
MTI Corporation, Shenzhen, China) with a Cu mesh (purity: >99.9%; thickness: 0.045 mm;
diameter: 8 mm; pore size: 0.4 mm × 1.5 mm; MTI Corporation, Hefei, China) was succes-
sively pressed onto one side of the pellet. On the opposite side of the pellet, the cathode
composite (8 mg) with Al mesh (purity > 99.9%; thickness: 0.055 mm; diameter: 10 mm;
pore size; 0.4 mm × 1.5 mm; MTI Corporation, Hefei, China) and an Al foil current collector
(thickness: 0.1115 mm; diameter: 10 mm; purity: >99.9%, MTI Corporation, Hefei, China)
were then pressed. Charge–discharge measurements were conducted at 25 ◦C, between
1.4 and 1.8 V, and with a current density of 0.03 mA cm−2 (0.05 C) using the LANHE
CT2001A charge–discharge system (Wuhan LAND Electronics Co., Wuhan, China). The
stack pressure applied during the tests was about 5 MPa.

3. Results and Discussion
3.1. Physical Characterization of Na6−xPS5−xCl1+x

Na6−xPS5−xCl1+x (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, or 0.6, denoted as NPSC-0, NPSC-1,
NPSC-2, NPSC-3, NPSC-4, NPSC-5, and NPSC-6, respectively) samples were prepared
by a solid-state reaction. The XRD patterns of the NPSC-0 sample were similar to those
of the related argyrodite-type Cu6PS5Br, which displayed a monoclinic phase with a Cc
space group [44,45]. A structural model of atomic Na6PS5Cl was simulated by replacement
of Cu and Br in Cu6PS5Br with Na and Cl through structural refinement using Vesta
software (version 3) [46], as displayed in the inset of Figure 1a. Two different Na+ sites were



Materials 2024, 17, 1980 4 of 11

tetrahedrally coordinated. The Na1 site was surrounded by four S atoms, while the Na2 site
was encircled by three S atoms and one Cl atom. The obtained NPSC-0 product was a solid
block with chartreuse color (Figure 1b), while the outer and inner layers turned yellow
in the NPSC-5 sample (Figure 1c,d). Comparisons of XRD patterns with those of other
related compounds (such as tetragonal Na3PS4, cubic Na3PS4, and NaCl) are displayed
in Figure S1, proving that no Na3PS4 or NaCl impurities were included in the NPSC-0
sample. With the increase in x in Na6−xPS5−xCl1+x, the (400) peak gradually shifted to

lower 2θ angles, while the (
-
222) peak migrated to higher 2θ angles, indicating the formation

of solid solutions in Na6−xPS5−xCl1+x. Further introduction of additional chlorine into
the Na6−xPS5−xCl1+x structure caused exsolvation of NaCl impurity at x = 0.6 (Figure S2),
resulting a decrease in ionic conductivity. Thus, under the present experimental synthesis
conditions, it was shown that Na5.5PS4.5Cl1.5 (x = 0.5) is the limit of solid solution formation
in the Na6−xPS5−xCl1+x system. In other words, Na6−xPS5−xCl1+x formed solid solutions
in the range of 0 ≤ x ≤ 0.5.
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Figure 1. (a) XRD patterns of the Na6PS5Cl sample and argyrodite-Cu6PS5Br (inset represents the
crystal structure model of Cu6PS5Br). (b,c) Digital images of the synthesized Na6−xPS5−xCl1+x

(x = 0 and 0.5) solid block. (d) Comparison of inner color of Na6−xPS5−xCl1+x (x = 0 and 0.6 samples.
(e) XRD patterns of Na6−xPS5−xCl1+x (x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5, denoted as NPSC-0, NPSC-1,
NPSC-2, NPSC-3, NPSC-4, and NPSC-5, respectively). (f) Enlarged XRD patterns in the 2θ range of
28–32◦ from the dotted boxes in (e), the arrows clearly show regular shifting in one direction with
increasing Cl content, indicating the formation of solid solutions.

The morphology analysis results showed that the particle sizes of the NPSC-0, NPSC-1,
NPSC-2, NPSC-3, NPSC-4 and NPSC-5 samples were in the range of 5 to 50 µm, which was
gradually reduced with the increase in the Cl−/S2− ratio, as shown in Figures 2a and S3.
The elemental mapping analyses shown in Figure 2b–f indicate the presence and uniform
distribution of Na, P, S, and Cl elements within the NPSC-5 sample.
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Figure 2. (a) SEM image of NPSC-5 sample. (b–f) EDS element mapping of Na, P, S, and Cl in
NPSC-5 sample.

3.2. Electrochemical Performance of Na6−xPS5−xCl1+x Electrolyte

The electrochemical stability of Na6−xPS5−xCl1+x was determined for comparison
of the voltage stability region, the results of which are shown in Figure 3. The NPSC-0
sample showed a small stable region only at 1.33 V (Figure 3a). With the increase in x in
Na6−xPS5−xCl1+x, the voltage stability region widened gradually. When x = 0.1, the stable
region was at 1.52 V; when x = 0.2, the stable region shifted to 1.68 V. It kept increasing
to 1.79 and 1.91 V in the NPSC-3 and NPSC-4 samples, respectively. The NPSC-5 sample
exhibited a maximum stable voltage of 2.02 V, indicating that promoting the Cl content in
Na6−xPS5−xCl1+x favors the widening of the operating potential window.
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Figure 3. CV curves of (a) Na/NPSC-0/Na, (b) Na/NPSC-1/Na, (c) Na/NPSC-2/Na, (d) Na/NPSC-
3/Na. (e) Na/NPSC-4/Na, and (f) Na/NPSC-5/Na with Na6−xPS5−xCl1+x as analytical materials
(x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5, denoted as NPSC-0, NPSC-1, NPSC-2, NPSC-3, NPSC-4, and NPSC-5,
respectively) and a scan rate of 0.1 mV/s.

Figure 4 illustrates the complex impedance spectra of the uniaxially cold, isostatic
pressed powder samples obtained in the study. The impedance plots exhibit a semicircle
pattern accompanied by a spike observed at high and low frequencies, respectively [43].
These features correspond to the total resistance (combining bulk and grain boundary
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contributions) and electrode resistances [47]. The semicircle represents ionic transport
within the materials, while the spike is indicative of ion-blocking behavior at the interfaces
between the electrodes and electrolyte. The equivalent circuits used for impedance analysis,
as depicted in Figure S4, were derived from the ZView program [47]. Additionally, the
semicircles observed at higher frequencies, displaying capacitances of 10−10 F, suggest total
resistance, with a combined contribution from both bulk and grain boundaries [48].
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noted as NPSC-0, NPSC-1, NPSC-2, NPSC-3, NPSC-4, and NPSC-5, respectively) obtained at 25 ◦C.
(b) Impedance plots of the complex impedance responses of (b) NPSC-0, (c) NPSC-1, (d) NPSC-2,
(e) NPSC-3, (f) NPSC-4, and (g) NPSC-5 samples measured at 25, 45, 65, and 85 ◦C, respectively.

The ionic conductivity of Na6−xPS5−xCl1+x as analytical material was characterized
using the AC impedance method. All the impedance spectra contained formed semicircle
pattern at high frequencies attributed to the charge-transfer resistance and an inclined line
at low frequencies associated with diffusion processes in the electrodes. With the increase
in x in Na6−xPS5−xCl1+x (0 ≤ x ≤ 0.5), the semicircle diminished gradually, leading to
a reduction in resistances by introducing rich Cl contents and facilitating Na+ diffusion
in Na6−xPS5−xCl1+x (Figure 4a). The calculated ionic conductivities rose gradually with
increasing content of Cl, namely 9.4 × 10−5 S/cm for NPSC-0, 1.4 × 10−4 S/cm for NPSC-1,
2.1 × 10−4 S/cm for NPSC-2, 4.2 × 10−4 S/cm for NPSC-3, 7.9 × 10−4 S/cm for NPSC-4, and
1.2 × 10−3 S/cm for NPSC-5. The ionic conductivity of the NPSC-5 sample (Na5.5PS4.5Cl1.5
with x = 0.5) showed the highest ionic conduction, which was over a hundred times higher
than that of Na6PS5Cl (1.0 × 10−5 S/cm [40]), proving the importance of increasing the
Cl content for Na+ migration. The NPSC-06 sample displayed a lower ionic conductivity
value (2.9 × 10−4 S/cm) than that of NPSC-5 (Figure S4), which could be attributed to the
low ionic conductivity of NaCl impurity (Figure S2). The whole testing and disassembly
process of the steel/NPSC-5/steel configuration was completed in one shot, which can be
observed in Video S1.
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All the obtained samples exhibited linear relationships with ionic conductivity in the
range of 25–85 ◦C. Figure 5a illustrates the temperature dependence of ionic conductiv-
ity. All obtained samples exhibited linear relationships between ionic conductivity and
reciprocal temperature within the studied temperature range, indicating adherence to the
Arrhenius law. By applying the Arrhenius equation (σT = σ0exp(−Ea/kBT), where σ0
references a pre-exponential factor) [49], the activation energy (Ea) of Na6−xPS5−xCl1+x
(x = 0, 0.1, 0.2, 0.3, 0.4, and 0.5) for total conduction was determined from the slope of the
plots. In Figure 5b, the composition dependence of the samples’ activation energies (Ea)
are depicted. AC impedance analysis results revealed that the ionic conductivity of all
chlorine-rich Na6−xPS5−xCl1+x samples was higher than that of the primordial Na6PS5Cl
(x = 0) sample, with ionic conductivity increasing from x = 0 to 0.5. These findings indicate
that a rise in chlorine contents can enhance the ionic conductivity of Na6PS5Cl with a
decrease in Ea. Table S1 summarizes the ionic conductivities and Ea values reported in
the literature, as well as the values obtained in this study. Compared with the reported
Na6PS5Cl (0.01 × 10−3 S/cm) [40], the modified Na5.5PS4.5Cl1.5 exhibited superior ionic
conductivity of 1.2 × 10−3 S/cm, which is the same order of magnitude as the Na11Sn2PS12
sulfide electrolyte (4 × 10−3 S/cm) reported in [35] and the vacancy-contained Na3SbS4
(3 × 10−3 S/cm) reported in [22]. Therefore, Na5.5PS4.5Cl1.5 (x = 0.5, NPSC-5) shows very
high values of ionic conductivity among the typical sodium ion conductors that have
been reported.
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3.3. Electrochemical Performance of NVP//NPSC-5//Na ASSB

Na5.5PS4.5Cl1.5 (x = 0.5, NPSC-5) showed the highest ionic conductivity and lowest
activation energy in the Na6−xPS5−xCl1+x system, so the electrochemical performance
of a laboratory-grade, pressurized NVP//NPSC-5//Na cell with NPSC-5 as a sodium
solid electrolyte and commercial Na3V2(PO4)3 (NVP, 99.9%, MTI Corporation, Shenzhen,
China) and Na metal foil as cathode and anode, respectively, was determined, as de-
picted in the schematic diagram in Figure 5a. Since NVP can offer a 1.6 V voltage plateau
through the V3+/V2+ redox reaction, which lies within the voltage stability region of
the NPSC-5 electrolyte, the galvanostatic charge–discharge of the NVP//NPSC-5//Na
ASSB was tested in the potential range of 1.4–1.8 V at a current density of 0.05 C. All
charge–discharge profiles exhibited a 1.6 V plateau, corresponding to the phase transition
of Na3V2(PO4)3/Na4V2(PO4)3 with one Na+ intercalation/deintercalation from the host
lattices [50]. The right figure in Figure 6a shows a physical electronic photograph of an
assembled all-solid-state sodium-ion battery that can normally light up an LED light bulb
at room temperature, indicating that NPSC-5 is a pure sodium-ionic conductor material
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with negligible electronic conductivity and functions as a solid electrolyte. The additional
plateau at about 1.42 V shown in Figure 6b can be attributed to the formation of a stable
NPSC-5/Na interface during the first cycle, which was similar to reports of other electro-
chemical investigations sodium ASSBs [2,51–53]. The NPSC-5/Na interface resulted in a
low coulombic efficiency (58%) during the first cycle (The initial discharge capacity was
about 81.9 mAh/g, whereas the charge capacity was only 47.3 mAh/g). The second charge
and discharge capacities were 43.1 mAh/g and 42.2 mAh/g, respectively, indicating the
rebound of coulombic efficiency (98%). The 10th cycle displayed charge and discharge
capacities of 34.3 and 33.7 mAh/g, respectively; nearly 73% of the initial charge capacity
was retained, and the coulombic efficiency was maintained at 98%, demonstrating that
the synthesized material facilitated the cyclic charging and discharging capabilities of the
battery. The energy density of the full cell was about 70 Wh/Kg based on the mass of the
active cathode. Further modifications, such as to the tips for battery assembly, compositing
the NVP cathode with graphene, or replacing the Na disc with a Na-Sn alloy to improve
the performance of the NVP//NPSC-5//Na ASSB, should be analyzed and explored in
depth in the future.
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Figure 6. (a) Illustration of a Na3V2(PO4)3//NPSC-5//Na ASSB. (b) A digital picture of a
Na3V2(PO4)3//NPSC-5//Na ASSB working at room temperature to make an LED diode bead
light up. (c) Galvanostatic charge–discharge curves of a Na3V2(PO4)3//NPSC-5//Na ASSB at 25 ◦C
with a charge–discharge speed of 0.05 C (1 C = 60 mA/g).

4. Conclusions

In summary, halide-rich solid solutions of argyrodite-type Na6−xPS5−xCl1+x were
synthesized and formed solid solutions in the range of 0 ≤ x ≤ 0.5. Increasing Cl− contents
effectively reduced the activation barrier and increased the Na-ion mobility, as well as
electrochemical stability. The optimal solid solution composition of Na5.5PS4.5Cl1.5 exhib-
ited particularly high Na-ion conductivity in the Na6−xPS5−xCl1+x in this work, namely
1.2 mS/cm at 25 ◦C, which is more than a hundred times higher than that of Na6PS5Cl
with a regular composition. Meanwhile, Na5.5PS4.5Cl1.5 is more suitable for high-voltage
cathodes than Na6PS5Cl due to its wider voltage stability region up to 2 V, and the smooth
charge–discharge cycling performance of Na3V2(PO4)3//Na5.5PS4.5Cl1.5//Na at room
temperature verifies that the obtained material is a pure sodium-ion conductor and its
potential as a sodium-ionic solid electrolyte for all-solid-state sodium batteries. To date,
the reported sulfide electrolyte, Na11Sn2PS12 (4 × 10−3 S/cm) [35] and vacancy-contained
Na3SbS4 (3 × 10−3 S/cm) [22] have exhibited excellent conductivity. Both references pro-
posed the strategy of designing Na vacancy for the improvement of conductivity. Therefore,
we suppose that the ionic conductivity of Na5.5PS4.5Cl1.5 could be further promoted by
designing Na vacancy in the crystal structure.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma17091980/s1, Figure S1: Comparison of XRD patterns for
Na6PS5Cl, cubic Ag15P4S16Cl, tetragonal Na3PS4, cubic Na3PS4, and NaCl; Figure S2: XRD patterns of
NPSC-5 and NPSC-6 samples and standard-NaCl; Figure S3: SEM images of (a) NPSC-0, (b) NPSC-1,
(c) NPSC-2, (d) NPSC-3, and (e) NPSC-4 samples; Figure S4: The equivalent circuit used to extract
the value of resistance from EIS spectra with two semicircles. All EIS spectra of Na6−xPS5−xCl1+x, in
general, exhibit two semicircular patterns. The conductivity was computed from the resistance using
the following formula: Conductivity = Thickness/(Area × Resistance); Figure S5: Impedance plot
of NPSC-6 sample at 25 ◦C; Table S1: Comparison of ionic conductivity and activation energy (Ea)
obtained in this study with those previously reported; Video S1: Impedance test of NPSC-5 sample.
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