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Abstract: This study employs a systematic and predictive modelling approach to investigate the
structure and properties of multi-component borate glasses. In particular, this work is focused on
understanding the individual and interaction effects of multiple constituents on several material
properties. By leveraging advanced modeling techniques, this work examines how the inclusion
and variation of B2O3, CaF2, TiO2, ZnO, and Na2CO3 influence the glass network, with particular
attention to modifier fractions ≥ 30 mol%. This research addresses the gap in knowledge regarding
the complex behavior of borate glasses in this high modifier fraction range, known as the borate
anomaly, where prediction of glass structure and properties becomes particularly challenging. The
use of a design of mixtures (DoM) approach facilitated the generation of polynomial equations
indicating the influence of mixture components on various responses, enabling the prediction and
optimization of glass properties over broad compositional ranges despite being within the anomalous
region. This methodical approach not only advances our understanding of borate glass systems but
also underscores the importance of predictive modelling in the accelerated design and development
of novel glass materials for diverse applications.
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1. Introduction

Relative to traditional tissue engineering constructs, bioactive glasses are structurally
simple, yet functionally complex materials capable of promoting a range of desirable
material and host responses via the controlled release of multiple therapeutic inorganic
ions (TII) [1,2]. The localized delivery of these bioactive ions offers significant advantages
over other chemical and biochemical compounds (e.g., carbohydrates, lipids, proteins, and
nucleic acids) for drug delivery. These advantages include, but are not limited to, (i) high
thermal stability and thus easier manufacturing, processing, and storage, (ii) the ability
to interact synergistically with other ions, (iii) reduced cost, and (iv) the elimination of
additional drug loading steps as the therapeutic ions are directly incorporated into the
synthesis of the glass itself [3,4]. Similar to typical organic drug biomolecules, such as
growth factors, TIIs have been demonstrated to alter cellular functions and metabolism
as enzyme cofactors and/or by activating ion channels or secondary signaling [3,5]. The
controlled release of TIIs is dependent on the composition of the glass and how each
constituent alters the structural characteristics of the network. Therefore, to understand
how TIIs can be harnessed to modulate various biological responses (e.g., antibacterial,
anti-inflammatory, osteoinductive, and angiogenic processes), one must first understand
the physical, chemical, and structural properties of a given glass system.
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Within the vast landscape of glass compositions capable of eliciting desired material
and host responses, it is noteworthy that a significant focus in the investigation of bioactive
glasses centers around silicate glass networks [6]. Despite their prominence, it is important
to acknowledge that these glass systems present challenges in some indications, such as
slow and incomplete degradation. This is attributed to the low solubility of silica and
the formation of a silica-rich gel layer on the glass surface, which, in turn, restricts the
diffusion of ions into the solution [7–9]. In the context of bone tissue engineering, for
example, this translates into slow and incomplete conversion to hydroxyapatite (HA),
which results in decreased rates of bone formation, longer healing times, and residual
materials at the implant site [9,10]. As a result of such limitations, there exists opportunities
to discover and explore a broader spectrum of glass compositions with distinct degradation
profiles and payloads of TIIs. Contrary to their silicate counterparts, and of increasing
interest in the literature, borate glasses undergo complete degradation, a process that can be
adjusted through the selection of specific TIIs, characterized as either network modifying,
network forming, or intermediate elements, and their inclusion into the molecular network
of the glass [11]. Consequently, borate glasses are gaining increasing interest in biomedical
applications for their ability to act as fully resorbable carrier systems for the controlled and
localized delivery of TIIs [12–14].

Unlike the properties of silicate glasses, which vary monotonically with the network-
modifying fraction of oxides contained within the glass structure, borate glass properties
exhibit extrema in response to specific quantities of network modifier(s) and the presence
of certain basic structural and superstructural units [11]. For instance, upon the addition of
a network modifier to the borate glass network, the trigonal BØ3 structural units convert
to tetrahedral BØ4

− units. This conversion takes place until an added modifier fraction
of approximately 30 mol% has been reached, whereafter, further addition of modifier
leads to the formation of non-bridging oxygens and the subsequent decrease in BØ4

−

units [11,15]. An increased number of four-coordinated boron structural units increases
the connectivity of the glass network, thus providing enhanced hydrolytic stability and
resistance to degradation. In contrast, the formation of non-bridging oxygens leads to a
more disrupted glass network and, hence, a more reactive material. Therefore, the type
and fraction of network-modifying elements included in the network can be tailored to
modulate the structure and dissolution of borate glasses, providing improved control and
predictability over a range of material and host responses.

The non-linear structural behavior exhibited by borate glasses is referred to as the
borate anomaly [11,16]. This behavior is the basis upon which glasses containing a network
modifier fraction greater than 30 mol% are notoriously difficult to predict and thus vastly
understudied [6,11]. Furthermore, the behavior of borate glass systems has primarily been
reported for binary glass substitutions of alkali or alkaline earth network modifiers [11].
Hence, the properties of ternary and quaternary borate glass systems are more poorly
understood, while those of greater complexity, comprising multiple cations and anions
with variable valences and cationic field strengths, are even less predictable.

As such, the ongoing investigation of borate glass systems is currently faced with excit-
ing opportunities for growth. The potential for streamlined development of these materials,
especially those containing more than two components, substitutions from groups beyond
alkali and alkaline earth metals, and modifier fractions exceeding 30 mol%, is substantial.
However, as with other advanced material technologies, the accelerated translation of
these materials towards clinical use has been somewhat hindered by a current lack of
comprehensive knowledge surrounding their structure and properties [17–19]. This limited
understanding is associated with the use of traditional trial-and-error style approaches
and/or one-variable-at-a-time (OVAT) methodologies in the study of glass materials. While
these approaches have played a significant role in the design and development of novel
glass materials, the sequential adjustments of individual variables characteristic of these
methodologies can be extremely time-consuming, resource intensive, and impractical for
investigating extensive combinatorial palettes of glass chemistries. Specifically, trial-and-
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error or OVAT approaches may inadvertently overlook or underestimate the complexity
of multi-component glasses and the likelihood for elements to interact with each other,
forming synergistic relationships within the network that may influence material and host
responses. Hence, this complicates our ability to predict the individual and interaction
effects of glass constituents, especially in systems comprising multiple cations and anions
with variable valences and cationic field strengths. Without the ability to gain insights into
these complex relationships, traditional methodologies may not efficiently navigate the
multidimensional space of compositional factors, thus precluding the simultaneous opti-
mization of multiple variables. In light of these considerations, there is a clear imperative
for more sophisticated and comprehensive approaches to ensure scientific rigor, accuracy,
and sustainability in the design of glass materials [20–22].

Further investigation of borate glass materials is necessary to support their accel-
erated discovery, design, and deployment across a wide range of indications, including
biomedical, nuclear, and industrial applications. Given the complex nature of these sys-
tems, quantifying and predicting the composition–structure–property relationships within
these materials requires comprehensive and systematic evaluation. In this regard, the
Materials Genome Initiative (MGI) advanced a new paradigm for accelerated materials
innovation [19]. The approach of the MGI encourages the combination of experimentation,
theory, and computation to permit the high-throughput screening, prediction, and opti-
mization of new materials and promotes the collaboration of researchers based on shared
access to numerous materials datasets [19,23]. One systematic approach that conforms
to the objectives of the MGI and supports the accurate prediction of materials proper-
ties across broad compositional ranges is the design of mixtures (DoM) approach. This
approach simultaneously integrates experimental methods and advanced modelling to
generate statistically driven polynomial equations that indicate the relative influences
of mixture components, both individually and interactively, on a given response. Using
surface regression methodologies, this approach permits the prediction and optimization of
materials for a wide variety of desirable properties, which, unlike traditional trial-and-error
style approaches, elucidates a more deliberate and streamlined design of materials [24–28].
Accordingly, the primary objective of the current study is to employ a DoM approach to
predict the individual and interaction effects of multiple constituents on the physical and
chemical properties of multi-component, degradable borate glasses with modifier fractions
≥ 30 mol%, a compositional region that is poorly understood and difficult to predict.

2. Material and Methods
2.1. Material Design and Synthesis

The compositions for each glass were established using Design-Expert Software (Ver-
sion 13). A DoM I-optimal quadratic model was utilized based on five components (B2O3,
CaF2, TiO2, ZnO, Na2CO3). Specifically, the I-optimal algorithm was chosen to accommo-
date this complex mixture, comprising multiple components with varying compositional
ranges. Furthermore, this algorithm chooses formulations (i.e., runs) that minimize the
integral of prediction variance across the design space, making it the recommended algo-
rithm for optimization of the materials. A quadratic model was necessary to gain insight
into not only the individual effects of each component (as provided with a linear model),
but also the second-order interaction effects. Various test melts were conducted to confirm
the compositional constraints of each constituent (Table 1). Based on these constraints,
the model yielded a total of 23 randomized glass formulations for investigation (Table 2),
consisting of 15 model points, 4 lack of fit points, and 4 replicates. Replicate compositions
were included to verify reproducibility in glass synthesis and characterization processes
and to increase the predictive power of the model. Using standard analysis of variance
(ANOVA), a quadratic Scheffe polynomial equation was fitted to each measured response
based on the following equation:



Materials 2024, 17, 2073 4 of 24

Y = β1A + β2B + β3C + β4D + β5E + β12AB + β13AC + β14AD + β15AE + β23BC +
β24BD + β25BE + β34CD + β35CE + β45DE

where A to E represent the compositional factors, β1–5 coefficients represent the effect of
the individual compositional factors A to E, and β12–45 are the coefficients of regression,
which represent the effects of the interactions between the compositional factors A to E [29].
This response surface regression model approach was used to quantitatively determine the
relative impacts of each glass constituent, both individually and interactively, on variable
material properties, such as density, Tg, and fraction of B3 and B4 structural units.

Table 1. Mixture components and design constraint summary.

Component Units Minimum
[mol%]

Maximum
[mol%] Coded Low Coded High Mean Std. Dev.

B2O3 Mol% 45 70 +0 ↔ 45 +0.55 ↔ 70 59.69 7.65
CaF2 Mol% 0 20 +0 ↔ 0 +0.44 ↔ 20 11.70 7.08
TiO2 Mol% 0 10 +0 ↔ 0 +0.22 ↔ 10 5.32 3.90
ZnO Mol% 5 20 +0 ↔ 5 +0.33 ↔ 20 13.28 5.78

Na2CO3 Mol% 5 15 +0 ↔ 5 +0.22 ↔ 15 10.01 4.06

Table 2. Compositions of the 23 glasses (mol%), as identified by the constraints outlined in Table 1.
Within the table there are four replicate compositions consisting of 1 and 12, 3 and 6, 4 and 5, and 17
and 21.

B2O3 CaF2 TiO2 ZnO Na2CO3

1 70.00 13.47 3.10 5.00 8.43
2 45.00 20.00 10.00 20.00 5.00
3 54.61 11.44 10.00 13.33 10.62
4 63.26 2.08 4.76 20.00 9.90
5 63.26 2.08 4.76 20.00 9.90
6 54.61 11.44 10.00 13.33 10.62
7 64.78 6.38 8.83 5.00 15.00
8 64.75 8.65 6.16 15.43 5.00
9 45.00 20.00 7.77 12.23 15.00
10 70.00 0.00 10.00 12.75 7.25
11 55.24 13.99 5.78 19.99 5.00
12 70.00 13.47 3.10 5.00 8.43
13 50.44 14.34 0.22 20.00 15.00
14 68.01 3.17 1.36 12.46 15.00
15 60.00 20.00 0.00 5.00 15.00
16 53.20 17.96 9.74 5.00 14.10
17 56.49 20.00 2.01 13.54 7.97
18 60.00 20.00 10.00 5.00 5.00
19 55.00 0.00 10.00 20.00 15.00
20 69.82 6.73 0.00 18.44 5.00
21 56.49 20.00 2.01 13.54 7.97
22 65.89 16.23 0.00 12.88 5.00
23 57.01 7.56 2.86 17.57 15.00

Glasses were synthesized via the traditional melt quenching technique. Succinctly,
analytical-grade boric anhydride, calcium fluoride, titanium (IV) oxide, zinc oxide, and
sodium carbonate reagents (Sigma-Aldrich, Burlington, MA, USA) were weighed out in
accordance with compositions listed in Table 2 and homogenized for 1 h prior to being
transferred to 50 mL Pt-Rh crucibles (XRF Scientific, Montreal, QC, Canada) for melting [30].
The crucible was placed in a high-temperature box furnace (Carbolite, RHF 16/3) and
followed a two-step thermal process; materials were heated from room temperature to
850 ◦C (10 ◦C/min) and held for 2 h for calcination, then ramped from 850 ◦C to 1200 ◦C
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(10 ◦C/min) and held for 1 h for melting. Each melt was quenched using stainless steel
plates, and the resulting frit was ground and sieved (ASTM E-11 [31] compliant sieves)
to obtain particles in size ranges of <90 µm, 90–710 µm, and > 710 µm diameter (Superla
Sieve™, Newark Wire Cloth Company, Clifton, NJ, USA). Glasses were stored in desiccated
conditions until the time of subsequent analysis.

2.2. Particle Size Analysis

A Malvern Mastersizer 3000 laser diffraction particle size analyzer was used as per the
manufacturer’s instructions. Samples of each glass, sieved to 90–710 µm, were suspended
in deionized water to obtain an obscuration value for the suspension between 5 and 8%. The
glass suspension was then measured using both a blue (λ = 470 nm) and a red (λ = 632.8 nm)
laser. Each glass suspension was measured five times (n = 5), and particle size distribution
data were reported as the mean diameter Dx90, Dx50, and Dx10 (particle diameters at 90%,
50%, and 10% cumulative size, respectively).

2.3. X-ray Diffraction

X-ray diffraction analysis was performed using a Bruker D2 phaser (Bruker, Billerica,
MA, USA) equipped with a Lynx-Eye 1D detector (linear array). Powder specimens of each
composition were loaded into a PMMA sample holder and analyzed in the region between
10◦ ≤ 2θ ≤ 60◦ with a step size of 2θ = 0.03 and a step time of 2 s. XRD spectra were
analyzed using Bruker Diffrac.Eva (https://www.bruker.com/en/products-and-solutions/
diffractometers-and-x-ray-microscopes/x-ray-diffractometers/diffrac-suite-software/diffrac-
eva.html) to calculate the relative fraction of crystalline material in each sample by eval-
uating the amorphous baseline to crystalline peak separation. Where applicable, Diffrac.Eva
software was used to identify crystalline phases through peak matching against
reference databases.

2.4. Density

An AccuPyc 1340 helium pycnometer (Micromeritics, Norcross, GA, USA) equipped
with a 1 cm3 insert chamber was used to determine the density of each glass composition
as per manufacturer instructions [32]. Briefly, 0.5–0.6 g of glass powder was used for
each measurement, and each measurement consisted of 10 fill and purge cycles (run in
triplicate). The results were reported as the average ± standard deviation (SD) of three
replicate measurements.

2.5. Differential Scanning Calorimetry

A simultaneous thermal analysis Luxx 409 PC STA with Auto-Sampler (Netzsch-
Geratebau-GMBH, Exton, PA, USA) was used to analyze each glass composition. Ap-
proximately 20–30 mg of glass powder was weighed out, placed into Pt-Rh crucibles, and
heated at 10 ◦C/min from 30 to 1000 ◦C (Standard Test Method for Assignment of the Glass
Transition Temperatures by Differential Scanning Calorimetry, ASTM E1356 [33]). Proteus
Thermal Analysis software (Version 8.0.2) was used to determine the extrapolated glass
transition temperature (Tg) (inflection).

2.6. 11B MAS NMR
11B magic angle spinning (MAS) NMR spectra were acquired using a 16.4 T Bruker

Avance NMR spectrometer (11B Larmor frequency = 224.67 MHz) equipped with a 2.5 mm
HX probe head operating in single resonance mode. 11B parameters were calibrated on
solid NaBH4, which was also used as a secondary chemical shift reference (−42.1 ppm
relative to BF3·Et2O). All samples were spun at 20 kHz MAS frequency, producing 64 scans.
A single 0.63 µs pulse was used for all experiments, corresponding to a pulse angle of
roughly 15◦ in a nearby cubic environment of NaBH4. Spin lattice relaxation times were
determined separately for the B3 and B4 groups using a saturation recovery sequence and
were found to be around 6–9 s. The pulse repetition times were chosen to be 5 s. The

https://www.bruker.com/en/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.html
https://www.bruker.com/en/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.html
https://www.bruker.com/en/products-and-solutions/diffractometers-and-x-ray-microscopes/x-ray-diffractometers/diffrac-suite-software/diffrac-eva.html
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boron background was removed by subtracting the spectrum of the used empty rotor
from the sample spectra. After baseline correction with a spline function, the peak heights,
widths, and integral values were determined for the B3 and B4 groups using XWinNMR’s
native tools.

2.7. Optimization and Validation

A response surface optimization study using Design-Expert Software (Version 13)
was conducted to predict two new desirable glass compositions tailored to meet a set of
optimization criteria (listed in Table 3). The optimization criteria for the two formula-
tions (denoted as optimized glass A and B) were chosen to yield solutions with distinct
compositions. This design permits a comprehensive investigation of model predictabil-
ity across two glass systems exhibiting variable structure and properties. For instance,
it was preferred that optimized glass A feature a B2O3 content at the upper end of the
compositional constraints (70 mol%), thus representing a composition on the upper limit of
the anomalous region (i.e., modifier fraction = 30 mol%), as defined by the binary borate
glass literature [11,15]. In contrast, optimized glass B was preferred to have a B2O3 content
within the specified compositional range (45 to 70 mol%), thus representing a composition
within the anomalous region. Design-Expert software systematically generated numerous
potential solutions based on the optimization criteria selected.

Table 3. Criteria for optimized glass formulations.

Optimization Criteria

Factor/Response Units Lower
Limit

Upper
Limit Importance

Goal:
Optimized

Glass A

Goal:
Optimized

Glass B

B2O3 Mol% 45 70 3 Maximize In range
CaF2 Mol% 0 20 3 In range In range
TiO2 Mol% 0 10 3 In range In range
ZnO Mol% 5 20 3 In range In range

Na2CO3 Mol% 5 15 3 In range In range
Density g/cm3 2.4 3.1 5 Target = 2.5 Target = 2.9

%B4 % 23.59 42.41 3 Minimize Maximize
Tg

◦C 471.6 563.8 3 Target = 540 Target = 510
Crystallinity % 0.86 19.62 3 Minimize Minimize

The two optimal glass formulations were chosen based on the desirability score
assigned to each solution. The desirability score serves as an objective function, ranging
from zero (outside of the limits) to one (at the goal), and is contingent on how closely
the lower and upper limits align with the actual optimum. The numerical optimization
process identifies a point that maximizes the desirability function. Therefore, at both
optimized settings, the solution with the highest desirability score was selected as the
preferred candidate.

The two chosen optimized formulations were synthesized using the same parameters
as the initial 23 glasses. Subsequently, density, DSC, and 11B MAS NMR analyses were
repeated on the optimized glasses using the same parameters as the initial 23 glasses.
Furthermore, XRD analysis was conducted on the optimized glasses to verify the absence
of identifiable crystalline species, with a doubled step time to account for the use of a low
background sample holder. The actual experimental values were compared to the predicted
values of the model using a two-sided confidence interval of 95% to validate the predictive
power of the model. If actual values fell within the 95% prediction intervals, this indicated
that the model predicted accurately at those optimized settings.
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3. Results
3.1. Glass Synthesis

All compositions were successfully synthesized and formed flowable melts capable of
being poured and quenched. The quenched glasses varied in opacity. Compositions #7,
10, and 19 were almost entirely white opaque materials upon quenching, which were later
verified as partially crystalline materials via XRD analysis, exhibiting % crystallinities of
12%, 17%, and 15%, respectively.

3.2. Particle Size Analysis

Each glass was processed to meet the particle size distribution of 90–710 µm. The Dx10,
Dx50, and Dx90 values for each glass composition were measured (Table 4) to confirm
repeatability and reproducibility in the glass processing.

Table 4. Material characterization results for particle size, density, crystallinity, glass transition
temperature, and boron structural units for each glass composition.

Dx(10)
[µm]

Dx(50)
[µm]

Dx(90)
[µm]

Density
[g/cm3]

% Crystallinity
[%]

Tg
[◦C] %B3 %B4 B3:B4

1 120 332 731 2.50 1.7 537.5 66.3 33.6 1.97
2 114 278 605 3.17 1.7 532 66.1 33.9 1.95
3 145 372 755 2.85 3.1 518.8 64.7 35.3 1.83
4 128 319 658 2.73 3.5 503.6 69.2 30.7 2.25
5 104 259 593 2.73 3.8 517 69.5 30.5 2.28
6 111 268 565 2.84 3.2 516.6 64.3 35.7 1.80
7 113 299 638 2.48 12 494.1 66.4 33.5 1.98
8 122 329 676 2.63 3.7 545.6 69.3 30.7 2.25
9 119 302 626 2.83 1.5 471.6 63.9 36.1 1.77
10 154 380 742 2.43 16.9 487.2 76.4 23.6 3.24
11 130 337 677 2.94 2.7 551 64.3 35.7 1.80
12 111 291 647 2.47 2.2 532.6 65.9 34.1 1.93
13 118 319 697 2.90 1.9 482.1 63.8 36.2 1.76
14 151 407 769 2.57 1.8 499.5 66.7 33.3 2.00
15 135 367 725 2.64 2.7 516.6 57.6 42.4 1.36
16 104 261 574 2.77 3.2 504.7 61.0 39.0 1.57
17 134 334 666 2.88 1.9 527.6 61.4 38.6 1.59
18 147 373 734 2.68 2.8 563.6 63.4 36.6 1.73
19 124 302 589 2.80 15 490.9 67.2 32.8 2.05
20 120 334 656 2.63 2.4 541.3 70.4 29.5 2.38
21 98.4 218 458 2.81 2.1 535.3 61.4 38.6 1.59
22 132 330 658 2.66 1.8 563.8 64.0 36.0 1.78
23 136 377 728 2.74 2.3 495.1 64.0 36.0 1.78

3.3. Density

Density values ranged from 2.43 to 3.17 g/cm2 (Figure 1A, Table 4). A quadratic model
with statistical significance, as represented in Table 5, was developed to understand the
relative influence of glass constituents, both individually and interactively, on glass density.
Examination of the coefficients relating to the model suggests that factors contributing to an
increase in the density response, ranked in order of magnitude, are B2O3*Na2CO3 > TiO2 >
ZnO > CaF2*Na2CO3 > CaF2 > ZnO*Na2CO3 > B2O3 > TiO2*Na2CO3 > B2O3*CaF2. Factors
that contribute to a decrease in density, ranked in order of magnitude, are TiO2*ZnO >
B2O3*TiO2 > Na2CO3 > CaF2*TiO2 > CaF2*ZnO > B2O3*ZnO. A 3D surface plot (Figure 1A)
representing the density response with respect to the variable concentrations of each
glass constituent is also shown. The strongest correlation observed from the density data
was an increase in density with decreasing B2O3 content (Figure 1B). Full model details,
including coded coefficients and ANOVA outputs (R2, adjusted R2, predicted R2, C.V. (%),
and adequate precision), are provided in Table 5. The predicted R2 is within reasonable
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agreement with the adjusted R2 (i.e., the difference between the two values is less than 0.2),
and the adequate precision (i.e., signal-to-noise ratio) is greater than 4 for every response,
indicating the predictive power of the models.
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R2, C.V. (%), and adequate precision is also included. The predicted R2 for each response is within
reasonable agreement to the adjusted R2 (i.e., difference of <0.2) and the adequate precision values
are greater than 4.

Response Regression Model R2 Adjusted R2 Predicted R2 C.V. (%) Adequate
Precision

Density

1.87 * B2O3 + 2.88 * CaF2 + 5.05 * TiO2 + 3.91 * ZnO + −0.66 *
Na2CO3 + 0.73 * B2O3CaF2 + −3.33 * B2O3TiO2 + −0.21 *

B2O3ZnO + 5.68 * B2O3Na2CO3 + −2.01 * CaF2TiO2 + −0.53 *
CaF2ZnO + 3.66 * CaF2Na2CO3 + −3.46 * TiO2ZnO + 1.07 *

TiO2Na2CO3 + 2.70 * ZnONa2CO3

0.99 0.98 0.83 0.92 36.69

%
Crystallinity

10.08 * B2O3 + 34.51 * CaF2 + 115.20 * TiO2 + 24.56 * ZnO +
114.15 * Na2CO3 + −64.99 * B2O3CaF2 + −50.99 * B2O3TiO2 +
−51.33 * B2O3ZnO + −157.37 * B2O3Na2CO3 + −284.31 *

CaF2TiO2 + −57.53 * CaF2ZnO + −203.37 * CaF2Na2CO3 +
−145.93 * TiO2ZnO + −159.41 * TiO2Na2CO3

+ −186.40 * ZnONa2CO3

0.99 0.97 0.85 17.08 27.01

Tg

442.42 * B2O3 + 461.74 * CaF2 + 569.54 * TiO2 + 525.10 * ZnO +
673.09 * Na2CO3 + 489.77 * B2O3CaF2 + −115.04 * B2O3TiO2 +

194.12 * B2O3ZnO + −161.92 * B2O3Na2CO3 + 200.86 *
CaF2TiO2 + 10.17 * CaF2ZnO + −467.98 * CaF2Na2CO3 + 65.39 *
TiO2ZnO + −535.48 * TiO2Na2CO3 + −509.61 * ZnONa2CO3

0.99 0.97 0.91 0.92 24.14

%B3

94.53 * B2O3 + 60.04 * CaF2 + 74.86 * TiO2 + 75.23 * ZnO + 52.91
* Na2CO3 + −65.06 * B2O3CaF2 + −12.24 * B2O3TiO2 + −46.87 *
B2O3ZnO + −54.87 * B2O3Na2CO3 + −9.13 * CaF2TiO2 + −0.91
* CaF2ZnO + 13.00 * CaF2Na2CO3 + −20.20 * TiO2ZnO + −0.19

* TiO2Na2CO3 + 15.02 * ZnONa2CO3

0.99 0.99 0.93 0.59 60.79

%B4

5.46 * B2O3 + 39.96 * CaF2 + 25.14 * TiO2 + 24.77 * ZnO + 47.08 *
Na2CO3 + 65.06 * B2O3CaF2 + 12.23 * B2O3TiO2 + 46.87 *

B2O3ZnO + 54.87 * B2O3Na2CO3 + 9.13 * CaF2TiO2 + 0.91 *
CaF2ZnO + −13.00 * CaF2Na2CO3 + 20.20 * TiO2ZnO + 0.19 *

TiO2Na2CO3 + −15.02 * ZnONa2CO3

0.99 0.99 0.93 1.13 60.79

B3:B4

4.65 * B2O3 + 2.24 * CaF2 + 6.26 * TiO2 + 2.44 * ZnO + 0.43 *
Na2CO3 + −7.67 * B2O3CaF2 + −3.86 * B2O3TiO2 + −3.51 *

B2O3ZnO + −4.85 * B2O3Na2CO3 + −7.82 * CaF2TiO2 + −0.82 *
CaF2ZnO + 2.17 * CaF2Na2CO3 + −5.17 * TiO2ZnO + −6.06 *

TiO2Na2CO3 + 1.31 * ZnONa2CO3

0.99 0.99 0.89 2.17 54.56
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3.4. X-ray Diffraction (XRD)

XRD analysis revealed varying degrees of crystallinity, ranging from 1.5% to 16.9%
(Table 4). All glasses were free of identifiable crystalline species except samples #7, 10,
and 19. The XRD spectra of these three samples showed sharp, visible peaks (Figure 2).
Peak matching revealed that these crystalline peaks were characteristic of various titanium
crystals (Table 6). Crystallinity data were used to derive a quadratic model with statistical
significance (Figure 3, Table 5). The factors that contribute to an increase in crystallinity,
ranked in order of magnitude, are TiO2 > Na2CO3 > CaF2 > ZnO > B2O3. Factors that
contribute to a decrease in crystallinity, ranked in order of magnitude, are CaF2*TiO2 >
CaF2*Na2CO3 > ZnO*Na2CO3 > TiO2*Na2CO3 > B2O3*Na2CO3 > TiO2*ZnO > B2O3*CaF2 >
CaF2*ZnO > B2O3*ZnO > B2O3*TiO2. An additional finding with respect to the crystallinity
of the glasses was an apparent effect between the TiO2:CaF2 concentration and crystallinity.
To examine this effect, components B: CaF2 and C: TiO2 were removed from the axes of
the 3D surface plot for crystallinity to permit visualization of the response surface upon
adjusting these two constituents (Figure 4A–C). As shown in Figure 4A–C, the crystallinity
of the glasses is at its maximum when the CaF2 content is minimized (0 mol%) and the
TiO2 content is maximized (10 mol%). In contrast, the crystallinity is low when the CaF2
content is maximized (20 mol%) and the TiO2 content is maximized, or, similarly, if the
CaF2 content is maximized and the TiO2 content is minimized (0 mol%). In addition, the
difference between TiO2 content and CaF2 content was modelled to investigate whether
there was a correlation between crystallinity and TiO2–CaF2 (Figure 4D).
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Table 6. Identification of crystals precipitated in samples #7, 10, 19.

Sample No. COD ID Chemical Name

7 COD 5000223 Titanium oxide—anatase
10 COD 1511015 Ti B0.024 O2

COD 1534781 TiO2
19 COD 9004142 Titanium oxide—rutile

COD 1511015 Ti B0.024 O2

3.5. 11B MAS NMR

A representative 11B MAS NMR line spectra is provided in Figure 5C. The peaks
represent the B3 (12–20 ppm) and B4 ((−3)–5 ppm) units in the sample. The 11B MAS NMR
data for %B3 were fitted to a quadratic model with statistical significance (Table 5). The
%B3 values ranged from 57.6 to 76.4% (Table 4). The strongest correlation observed from the
11B MAS NMR data was an increase in the B4 fractions and a decrease in the B3 fractions
with increasing quantities of CaF2 (Figure 5A). Analysis of the coefficients derived from the
coded equation for this response indicate that the glass constituents that contribute to an
increase in %B3, ranked in order of magnitude, are B2O3 > ZnO > TiO2 > CaF2 > Na2CO3 >
ZnO*Na2CO3 > CaF2*Na2CO3. The glass constituents that contributed to a decrease in %B3,
ranked in order of magnitude, are B2O3*CaF2 > B2O3*Na2CO3 > B2O3*ZnO > TiO2*ZnO >
B2O3*TiO2 > CaF2*TiO2 > CaF2*ZnO > TiO2*Na2CO3.

Similarly, the data for %B4 were fitted to a quadratic model with statistical significance
(Table 5). The %B4 values ranged from 23.6 to 42.4% (Table 4). The factors that contribute
to an increase in %B4, ranked in order of magnitude, are B2O3*CaF2 > B2O3*Na2CO3 >
Na2CO3 > B2O3*ZnO > CaF2 > TiO2 > ZnO > TiO2*ZnO > B2O3*TiO2 > CaF2*TiO2 > B2O3
> CaF2*ZnO > TiO2*Na2CO3. The factors that contribute to a decrease in %B4, ranked in
order of magnitude, are ZnO*Na2CO3 > CaF2*Na2CO3.

Lastly, analysis of the B3:B4 ratio (Figure 5B) produced a statistically significant
quadratic model (Table 5), with values ranging from 1.358 to 3.24 (Table 4). The factors that
contributed to an increase in B3:B4, ranked in order of magnitude, are TiO2 > B2O3 > ZnO >
CaF2 > CaF2*Na2CO3 > ZnO*Na2CO3 > Na2CO3. The factors that contributed to a decrease
in B3:B4, ranked in order of magnitude, are CaF2*TiO2 > B2O3*CaF2 > TiO2*Na2CO3 >
TiO2*ZnO > B2O3*Na2CO3 > B2O3*TiO2 > B2O3*ZnO > CaF2*ZnO.

Additionally, the experimental fraction of trigonally coordinated boron was plotted
against the intended B2O3 concentration in the glasses (Figure 5D). The 2% error bars
(vertical axis) account for potential variations in the NMR data when determining the
relative fraction of B3. As shown in Figure 5D, the data points are very scattered, and
therefore, the correlation between B2O3 content and boron coordination is somewhat
ambiguous. To investigate this scattering further, NMR spectra for samples with identical
B2O3 concentrations but varying concentrations of additive components were overlayed
to compare the B3 and B4 sites (e.g., position and shape) and investigate the impact of
varying modifiers on glasses with constant B2O3 content. Two representative overlay plots
are shown in Figure 6A,B, wherein the B3:B4 ratios clearly varied across samples. Although
some variation between samples was expected due to differences in the modifying elements
and their concentrations, these deviations warranted further investigation.
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Figure 5. (A) 3D surface plot depicting the ratio of B3:B4 structural units relative to varying amounts
of each constituent in the series. (B) Correlations graphs of %B4 vs. CaF2 content. (C) Representative
11B MAS NMR spectra for the glasses under investigation (sample #1). (D) Experimentally obtained
concentration of B3 versus intended B2O3 concentration for each glass in the series.

Because these glasses are highly complex, consisting of several different cations as well
as oxygen and a fluoride, a typical B3 to O:B correlation could not be used. Alternatively,
the B3 content was plotted against the overall cation charge per boron atom based on the
intended and actual compositions (Figure 7). For pure B2O3, the charge per boron is 3, and
one would expect to see 100%B3. Similarly, for tetrahedrally coordinated boron, one would
see 0%B3. Based on this, a slope of −100%/charge is expected. However, as shown in
Figure 7, the slopes correlating with the raw NMR data were −4.6 and −4.3, respectively.
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Figure 6. Overlay plots of glass samples having the same concentration of B2O3, but varying
concentrations of additive elements. (A) Overlay plot of sample #1, 12, 10, all having 70 mol% B2O3

(note: samples #1 and 12 are replicate compositions). (B) Overlay plot of sample #9 and 2, both having
45 mol% B2O3.
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Figure 7. Fraction of B3 versus the overall cation charge per boron atom based on the intended
composition of each glass (blue) and the actual, experimental composition of each glass (orange).

3.6. Differential Scanning Calorimetry

Tg values ranged from 471.6 ◦C to 563.8 ◦C (Table 4). These values were fitted to a
quadratic model with statistical significance (Figure 8A, Table 5). Analysis of the coefficients
derived from the coded equation describing this model indicates that the glass constituents
contributing to an increase in Tg, ranked in order of magnitude, are Na2CO3 > TiO2 > ZnO >
B2O3*CaF2 > CaF2 > B2O3 > CaF2*TiO2 > B2O3*ZnO > TiO2*ZnO > CaF2*ZnO. Constituents
that contribute to a decrease in Tg, ranked in order of magnitude, are TiO2*Na2CO3 >
ZnO*Na2CO3 > CaF2*Na2CO3 > B2O3*Na2CO3 > B2O3*TiO2. The strongest correlation
observed from DSC data was an increased Tg with decreasing Na2CO3 content (Figure 8B).
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Figure 8. (A) 3D surface plot representing the Tg response across the compositional ranges of each
constituent in the series. (B) Correlation graph of Tg vs. Na2CO3 content.

As shown by the coefficients in the coded equations in Table 5, the individual and
interaction terms associated with a given constituent can have opposing impacts. To
provide enhanced clarity on the overall impact of a single constituent on a given response,
a graphical correlation table is depicted in Figure 9.
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3.7. Optimization and Validation

The two optimal glass formulations derived from the optimization criteria outlined in
Table 3 are shown in Table 7. The predicted values for density, %B3, %B4, Tg, as well as
desirability scores for each optimized formulation, are also included in Table 7.

Table 7. Composition of optimized formulations and predicted values for select parameters.

Glass B2O3 CaF2 TiO2 ZnO Na2CO3
Density
[g/cm3] %B3 %B4 Tg [◦C] Desirability

A 70.0 8.1 3.2 13.7 5.0 2.5 70.7 29.2 539.9 0.902
B 51.9 20.0 3.5 14.8 9.81 2.9 62.2 37.8 510.0 0.942

XRD analysis confirmed that both optimized glasses were free from identifiable crys-
talline species. The actual experimental values derived from density, DSC, and 11B MAS
NMR analyses of optimized glasses A and B are listed in Tables 8 and 9, respectively, as
well as the predicted values of the model and the 95% prediction interval lower and upper
limits. As shown in Tables 8 and 9, the actual values are within the 95% prediction interval
for density and Tg. However, the results for %B3 and %B4 fall outside the model’s pre-
diction interval, indicating that the %B3 and %B4 models are not predicting as accurately
as desired.

Table 8. Predicted and actual values for density, Tg, %B3, and %B4 responses for optimized glass
A. Actual values that fall within the 95% prediction interval indicate that the model for that given
response is predicting accurately at the optimized settings. Actual values that do not fall within the
95% prediction interval are highlighted in red.

Optimized Glass A

Response Predicted 95% Prediction
Interval Low Actual 95% Prediction

Interval High

Density [g/cm3] 2.5 2.428 2.548 2.571

Tg [◦C] 539.9 526.464 534.2 553.602

B3 [%] 70.75 69.637 69 71.853

B4 [%] 29.25 28.147 31 30.363

Table 9. Predicted and actual values for density, Tg, %B4, and %B3 responses for optimized glass
B. Actual values that fall within the 95% prediction interval indicate that the model for that given
response is predicting accurately at the optimized settings. Actual values that do not fall within the
95% prediction interval are highlighted in red.

Optimized Glass B

Response Predicted 95% Prediction
Interval Low Actual 95% Prediction

Interval High

Density [g/cm3] 2.9 2.831 2.874 2.971

Tg [◦C] 510 496.5 511 523.159

B3 [%] 62.19 61.118 60 63.296

B4 [%] 37.81 36.704 40 38.882

4. Discussion

The non-linear behavior exhibited in borate glass systems is referred to as the bo-
rate anomaly and is the reason why the structure and properties of borate glasses with
modifier fractions greater than 30 mol% are very difficult to predict [11,16]. The difficulty
in predicting the composition–structure–property relationships of borate glasses in this
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high modifier fraction range introduces a significant hurdle in advancing the optimization
of glass compositions beyond conventional limits. In essence, addressing the challenges
posed by the borate anomaly has the potential to unlock new avenues for innovation in
glass science and broaden the scope of materials with enhanced functionalities.

Recognizing the limitations of traditional trial-and-error or OVAT approaches in
understanding the constituent interactions that occur within such complex glass systems
has encouraged a shift towards adopting more advanced methodology. As such, a DoM
approach was taken for this investigation. This approach stands out for its ability to discern
both the individual and interaction effects of each glass constituent on material properties,
thus offering a more profound understanding of the convoluted relationships that exist
within a glass system. Moreover, it permits rapid screening across broad compositional
ranges, thus directly supporting the accelerated design, development, and deployment
of novel glass materials. The glass system under investigation in this work was designed
(from a compositional standpoint) within an interesting region of the borate anomaly
where structural behavior is not well defined [11]. Specifically, these glasses have modifier
fractions ranging between 30 and 55 mol%. While this region offers the opportunity
to experiment within a wide range of structural constraints, the variability in network
properties makes it extremely difficult to predict. This challenge is exacerbated by the
inclusion of multiple elements belonging to various groups (i.e., groups 1, 2, 4, 12, 13, 17)
and exhibiting variable physical properties.

As shown in Table 5, the DoM statistical modelling approach has permitted the gener-
ation of polynomial equations with coded coefficients that indicate the relative influence
of each constituent on variable responses. These equations are dependent on the design
constraints listed in Table 1, wherein the concentrations of each constituent (in mol%) are
constrained to add to a fixed total (i.e., 100 mol%), meaning that the value of a given con-
stituent is necessarily dependent on the values of the others. These polynomial equations
are extremely valuable predictive tools and clearly illustrate that the complex interactions
that occur between glass constituents can have massive implications on material structure
and properties. To gain insight into whether a given constituent is causing an increase
or decrease in a response, the polynomial equation should be used in conjunction with
the correlations table (Figure 9) and the 3D surface plots. The correlations table is a direct
visualization of the inputs versus the outputs (i.e., data versus data), independent of any
model. This table is extremely valuable in identifying any correlations that exist between
two properties or between property and composition. Alternatively, the 3D surface plots
are a visual representation of a given response relative to the variable concentrations of
each constituent in the glass. The 3D surface plots alone demonstrate the non-linearity
and unpredictability of relationships within these complex glass systems. This graphical
representation not only showcases the complexity of the system but also highlights the
utility of predictive modelling approaches. Specifically, these systematic methods simulta-
neously predict the individual and interaction effects of multiple constituents on material
properties over vast compositional ranges, providing a comprehensive understanding that
transcends linear interpretations.

As shown in Figure 1B, there was a linear correlation observed between density and
B2O3 content in these glasses, wherein the density increased with decreasing B2O3 content.
This behavior can also be seen in the 3D surface plot representing the density response
(Figure 1A), wherein the surface contour is at its lowest point and component A: B2O3 is at
its maximum. This trend may be explained by the increasing fraction of modifying elements
that is associated with a decreasing B2O3 content, as these modifying elements have higher
atomic masses compared to boron (e.g., the atomic mass of B is 10.811 g/mol while the
atomic masses of Ti, Zn, Ca, and F are 47.867, 65.38, 40.078, and 18.998 g/mol, respectively).
Similar findings have been reported in the literature with respect to the effect of ZnO [34]
and TiO2 [35] on increasing the density of borate glasses. This is further supported by the
relative impact of each modifying element on density, as per the coded equation in Table 5,
wherein the constituents with larger atomic masses (e.g., TiO2 and ZnO) had the greatest
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individual impacts on increasing density, as would be expected. Furthermore, titanium and
zinc are classified as intermediate elements according to Sun and Dietzel’s classifications,
meaning they can act as glass network modifiers or glass network formers depending
on the glass composition [16]. For instance, titanium has been shown to exist in [TiO4],
[TiO5]2−, and [TiO6]2− coordination states, wherein it assumes different roles based on its
structure and the type of glass network [36]. Specifically in borate glass networks, titanium
has been reported to exist as a network former in the TiO4 tetrahedral state and a network
modifier in the TiO6

2− octahedral state [26,29,30,37–39]. Similarly, in borate glass networks,
zinc has been shown to act as a network former in the fourfold coordination state and a
network modifier in the sixfold coordination state [40–45]. Therefore, it is possible that
these constituents increased the density of these glasses by (1) assuming a network-forming
role, thus contributing to building the basic framework of the glass, or (2) acting as a
network modifier and forming crosslinks between existing borate units, thus increasing
the network connectivity of the glass. For instance, in a borate glass network, the addition
of TiO2 up to 15 mol% was reported to cause a substitution of BO3

3− units with Ti4+ units
due to the small ionic radius and large electric charge of Ti4+ ions [46]. This resulted
in the formation of B–O–Ti bonds rather than B–O–B bonds and was reported to cause
increased network connectivity. Alternatively, a study by El-Falaky and Guirguis found
that the addition of ZnO up to 35 mol% to a borate glass caused a decrease in tetrahedrally
coordinated boron, as ZnO4 assumed the role of a network former and gradually replaced
borate units. This resulted in an increase in the number of bonds per unit volume, an
increased packing density, and a decreased molar volume [44]. These findings reiterate
how glass structural behavior varies depending on the number of modifying elements,
the properties of these modifying elements, and the concentrations of each element in the
network, further emphasizing the importance of understanding the influence that each
constituent has on material properties, both individually and interactively.

Another interesting finding observed in this work was the correlation between the
appearance of quenched glass samples and their measured % crystallinities. The quenched
glass samples varied in appearance, some being completely transparent, and others with
varying fractions of white, opaque coloring mixed throughout. XRD analysis confirmed the
absence of identifiable crystalline species in all samples, except for samples # 7, 10, and 19.
These three samples had the largest fractions of white opaque coloring and had the highest
% crystallinities, according to XRD analysis. Peak matching of the XRD spectra pertaining
to these three samples revealed the presence of various titanium crystals, such as anatase
and rutile, indicating that titanium is likely phase separating into crystalline phases. Similar
findings have been reported in the literature with respect to the role of titanium in inducing
crystallization in various glasses and glass ceramics [36,38,46–51]. In fact, titanium is
widely acknowledged as an effective nucleating agent and is believed to act as a catalyst for
initiating crystallization centers that induce controlled bulk crystallization and subsequent
volume crystallization [38]. Interestingly, as shown in Figure 4, there appeared to be an
effect between the CaF2/TiO2 ratio and the crystallinity of the glasses, wherein samples
with the greatest % crystallinities included higher concentrations of TiO2 compared to CaF2.
This effect was further supported by the correlation between crystallinity and TiO2–CaF2,
wherein an increased % crystallinity was correlated with an increased difference between
TiO2 and CaF2. This suggests that the presence of CaF2 may have hindered the formation of
titanium crystalline phases within the glasses. The potential Ti crystalline phase separation
in the glasses under investigation was further evidenced through 11B MAS NMR findings.

The 11B MAS NMR data in Figure 5D show the percentage of trigonally coordinated
boron plotted against the intended B2O3 content in the glasses. Contrary to what is known
in the binary borate glass literature with respect to changes in boron coordination with
varying the B2O3 content, there were no identifiable trends between the B3 fraction and the
B2O3 content for these glasses. Furthermore, the data points in Figure 5D appeared to be
very scattered. To investigate the cause of the scattering, the NMR spectra for samples with
identical B2O3 concentrations but varying concentrations of additive components were
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overlayed to compare the position and shape of the B3 and B4 sites (representative plots
shown in Figure 6A,B). These overlay plots, in combination with Figure 5B, demonstrate
how, even across samples having identical B2O3 content, the B3:B4 ratios varied, which can
be attributed to the differences in modifier type and concentrations. For instance, these
variations may be a result of some of the Ti4+ being exchanged with cations with +2 or
+1 charge. Such substitutions could disrupt the charge balance in the network, leading to
changes in the overall structure, connectivity, and stability of the glass. For example, the
substitution of a Ti4+ cation with a Na+ cation may result in a decrease in O–Ti–O crosslinks
between borate structural groups and an increased formation of non-bridging oxygens,
wherein the smaller Na+ network-modifying cations fit more easily into the cages/sites of
the existing network, and the Ti4+ cations may preferentially assume a network-forming
role in forming crosslinks between borate units. A graphical representation illustrating
the potential structural modifications induced by the inclusion of network modifiers, such
as Na+, can be found in previous work [11]. Furthermore, compositional differences be-
tween intended and actual concentrations arising from changes during the melting process
could potentially contribute to the observed deviations. However, the change in cation
charges and the small compositional changes that could arise between intended and actual
compositions under normal circumstances are not sufficient to fully explain the scatter in
the data. Similar deviations were observed when the B3 content was plotted against the
overall cation charge per boron atom based on intended and actual compositions (Figure 7).
Evidently, both plots show trendlines far from the predicted slope of −100%/charge and
are almost flat. Two possible occurrences that may explain the deviations from expected be-
havior are as follows: (i) The sample composition changed dramatically from the intended
composition, and (ii) phase separation is occurring within the glasses. With regards to the
former, one possible cause for differences in the intended versus actual compositions is
that the majority of fluorine included in these glasses was lost during glass synthesis. It
is possible that BF3 formed from the initial components, which is a gaseous compound at
room temperature and has a boiling point of −100.3 ◦C. If BF3 burned off during melting,
this would result in a decreased concentration of both B and F (and potentially other com-
ponents) in the samples, thus altering the content of B3 and B4 units in the network. With
regards to the latter, phase separation could explain the significant variations observed
in the shape and position of the boron signal for 3 and 4-fold coordinated sites in these
samples. Specifically, if a non-boron-containing crystal formed, the relative concentration
of boron in the remaining glassy matrix would be higher than anticipated. Conversely, if
it were a boron-containing crystal, the relative concentration of boron in the glassy phase
would be lower than predicted. These differences in boron content throughout the crystal
and glassy phases and, consequently, the variations in boron content between predicted
and actual concentrations could lead to the fluctuations in %B3 and B4 signals observed in
these glasses.

An additional factor that is likely to contribute to the confounding nature of the borate
network structure in these glasses is the inclusion of two intermediate elements, TiO2 and
ZnO. Interestingly, the coefficients for ZnO and TiO2 with respect to %B3 (and %B4) were
very similar (e.g., +75.23 * ZnO and +74.86 * TiO2), indicating that these constituents had a
similar impact on this response, despite their different cationic charges and field strengths.
Based on Sun’s single bond strength criterion, Ti and Zn have very similar bond strengths
(i.e., 73 and 72 kcals, respectively), indicating that both elements may assume similar
roles within the network. Furthermore, these two elements have the highest cationic field
strengths of all additive elements in the glasses, indicating that they may dictate structural
changes to satisfy their own requirements. For example, the inclusion of TiO2 may favor
the substitution of B–O–B bonds for B–O–Ti bonds, wherein Ti4+ forms ionic crosslinks
between borate units. Alternatively, titanium may have disrupted the borate network by
forming [TiO6]2− octahedrons in which non-bridging oxygens were increasingly formed,
and as a result, the fraction of tetrahedrally coordinated boron decreased. The effect
of titanium on boron coordination in a titanium- and fluorine-containing borate glass
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was previously investigated, wherein the increase in TiO2 content up to approximately
25 mol% was associated with a decrease in the proportion of tetrahedrally coordinated
boron, thus indicating a transformation from B4 to B3 structural units in regions enriched
with TiO2 [52]. The following Ti coordination change was thought to be the catalyst for this
transformation: TiO4/2 + 2B(O,F)4 → Ti(O,F)6 + 2BO3. FTIR analysis findings suggested that
this coordination change was associated with an increased presence of network-forming
TiO4 units at low concentrations of TiO2 (up to ~10 mol% TiO2) and network modifying
TiO6

2− units at higher concentrations of TiO2 (~13 to 20 mol% TiO2). In addition, similar
findings were reported by Lakshmi and Cole [53] in a separate titanium and fluorine-
containing borate glass. Specifically, FTIR analysis revealed that with increasing TiO2
content (up to 0.7 mol%), the intensity of the band assigned to TiO6 octahedral units
increased, while the reverse trend ensued for the band assigned to TiO4 tetrahedral units.
Similarly, with increasing TiO2 content, the intensity of the band assigned to BO3 units
grew at the expense of the BO4 unit band. Based on these findings, the authors suggested
that titanium assumed the role of a network modifier in the glasses.

With respect to the role Zn has in modulating borate glass structure, it too can enter
the glass network in various coordination states, thus altering the network differently
depending on its structure. When functioning as a network modifier, Zn2+ ions disrupt
B–O–B bonds, thus decreasing the number of bridging oxygens in the network. Conversely,
when zinc assumes a network former role, it can take the form of ZnO4 structural units,
wherein zinc is covalently bonded with four oxygen ions [43]. In a borate glass, the addition
of ZnO up to 35 mol% was shown to decrease the boron coordination number as ZnO4 units
replaced boron atoms in the network [44]. Similarly, for binary zinc–borate glasses, Topper
et al. [34] reported that with the addition of ZnO, there was an increasing population of
high field strength tetrahedral Zn2+ units, which led to the depolymerization of larger
borate arrangements due to the increasing number of high charge density borate anions.
The authors noted, however, that the increased number of strong Zn4–O–B crosslinks
partially offset the disruption of the B–O–B bonds. Furthermore, in a separate study on
zinc-containing borate glasses, Cetinkaya et al. found that in samples containing greater
than 5 wt. % ZnO, zinc acted as a network former. This finding was based on the presence
of bands belonging to ZnO4 structural units in samples containing greater than 5% ZnO
and the absence of these bands otherwise. In addition, the relative intensities of peaks
corresponding to bridging oxygens were lower for sample BZ5 (5 wt.% ZnO) and increased
for samples BZ10 and BZ15 (10 and 15 wt.% ZnO), thus further supporting the above-
mentioned findings.

Based on the coefficients of the coded equations generated from 11B MAS NMR
analysis, one could assume that, directionally, both TiO2 and ZnO are primarily contributing
to an increase in %B3. However, this relationship is not so straight forward, as there are no
strong correlations that exist between either of these constituents and boron coordination,
and the 3D surface plots show variable responses depending on the relative amounts of the
other components. Despite gaining directional information on the influence of these TIIs,
the impact of both intermediate elements on boron coordination is somewhat unclear, and
further studies may be necessary to ascertain the complex structural relationships that exist
in a multi-component borate glass network containing two intermediate elements.

The strongest correlation observed for the boron coordination was an increased con-
centration in %B4 (and a decrease in %B3) with increasing CaF2 content (Figure 5A). This
is evidenced by the 3D surface plot for the B3:B4 ratio (Figure 5B), wherein the ratio is
larger where component B:CaF2 is at a minimum. According to the coded equation for
%B4 (Table 5), CaF2 also had the largest individual impact on increasing the response.
These findings collectively suggest that CaF2 plays a significant role in modulating the
borate network structure. However, the way this constituent affects the network is complex,
owing to the presence of both fluorine and calcium in the starting reagent. In the context
of fluorine, it has been demonstrated, through NMR analysis of aluminosilicate glasses,
that fluorine ions can replace bridging oxygens around silicate tetrahedral units, thereby
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creating non-bridging, dangling bonds and causing a significant reduction in the glass
transition temperature [46]. Similarly, in the borate glass literature, fluorine ions have
been shown to substitute the oxygen around trigonal boron atoms due to the similarity
in ionic radii between oxygen and fluorine [37]. This substitution results in the formation
of non-bridging oxygens and thus increases the fraction of B3 units, contrary to what
was observed in this glass system. Alternatively, additional studies have demonstrated
fluorine’s preference for forming bonds with other modifier elements present in the net-
work, wherein the replacement of bridging oxygens by nonbridging fluorine ions was not
detected [54]. While the mechanism by which fluorine may have induced the increased
formation of B4 units in these glasses is not entirely clear, it is important to consider the
possible discrepancies between the intended and actual fluorine content in these glasses.
As previously discussed, and evidenced through 19F MAS NMR analysis, there was an
absence of fluorine signal in the samples, indicating that the majority of fluorine may
have been burned off in the melting process in gaseous BF3 form. If this were in fact the
case, it is possible that the correlation between %B3 and CaF2 was primarily a result of
the calcium. In this regard, Ca2+ ions may have increased the conversion of boron from
a 3-coordinated state to a 4-coordinated state by fitting into the interstices of the borate
network and balancing the negative charges on neighboring BO4

− groups [16]. As a result
of this interaction, the network’s connectivity and viscosity increase. Furthermore, in binary
borate glass networks, the addition of CaO up to a maximum of approximately 40 mol% has
been shown to increase the glass network connectivity and increase the formation of BO4

−

tetrahedral units at the expense of BO3 units, whereafter the reverse trend ensues [55,56].
In conjunction with density, XRD, and NMR analyses, the thermal characteristics of

the glass networks were also assessed. When comparing the relative effects of each glass
constituent on the glass transition temperature of the materials, the individual term with
the largest coefficient, and thus the greatest impact on Tg, was Na2CO3 (Table 5). This
coefficient is positive, indicating that Na2CO3 contributed to an increase in Tg. However, to
understand the overall impact of Na2CO3 on Tg, the interaction terms must be considered.
Interestingly, the coefficients corresponding to interaction terms containing Na2CO3 were
all negative, indicating that Na2CO3 in combination with the other constituents had a
relatively greater negative impact on the glass transition temperature (i.e., contributed to a
decrease in Tg). This was further supported by the strong correlation observed between
Tg and Na2CO3 content, wherein there was a decreased Tg value with increasing Na2CO3
content (Figure 8B). Furthermore, this effect was verified by adjusting the concentration of
component E: Na2CO3 in the 3D surface plot, wherein the surface clearly shifted to higher
temperatures at the lowest Na2CO3 content and vice versa. These combined findings
demonstrate the complex role that sodium may have in these networks and how that
role may differ when in combination with other constituents. This is a great example of
why it is crucial to understand not only the individual effects of glass constituents, but
also the complex, and evidently influential, synergistic effects that may occur between
them. With regards to the mechanism by which Na2CO3 may cause a decrease in glass
transition behavior, sodium has previously been used as an effective flux in glass materials,
thus increasing the ease of melting and homogenization processes [57]. This is because,
past a certain concentration, the introduction of electropositive cations of alkali metals,
such as Na+, is known to break up the interlinked borate network by converting bridging
oxygen atoms into non-bridging oxygen ions [58]. This conversion decreases the network
connectivity of the glass and thus alters its thermal characteristics, such as viscosity and
glass transition temperature. However, based on the principles of the borate anomaly in
binary Na2O–B2O3 glasses, increasing the sodium content initially induces the formation
of BO4

− tetrahedral units at the expense of BO3 units until the fraction of modifier hits a
maximum, whereupon non-bridging oxygens begin to form [11]. Because (1) the glasses
under investigation contain modifier fractions ranging from 30–55 mol% that include
variable concentrations of alkaline, alkaline–earth, transition metal, and halogen elements,
and (2) there were no evident correlations between Na2CO3 content and %B4 and %B3,
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it is difficult to ascertain the role of Na2CO3 in modulating B3 and B4 fractions and how
that might affect the thermal properties of these glasses. Although the boron coordination
is often assumed to be correlated to the glass transition temperature [59], there was no
correlation between the glass transition temperature and %B3 or %B4 in these glasses.
These results indicate that the mechanism by which Na2CO3 caused a decrease in Tg was
not related to the relative fractions of B3 and B4 units in the network. As such, an alternative
theory for the decreased Tg values is that, upon increasing the Na2CO3 content, B–O bonds
are increasingly substituted by lower bond dissociation energy Na–O bonds in the network.
For instance, the addition of Na2O up to 50 mol% has previously been shown to decrease
the glass transition temperature in Na2O–ZnO–B2O3 glasses, wherein authors attributed
this decrease to the low bond association energy of Na–O bonds (257 kJ/mol) compared to
B–O bonds (806 kJ/mol) [60].

Among the many benefits of employing predictive modelling approaches in the design
and development of novel glass materials, perhaps one of the most impactful is the ability
to predict and optimize new formulations tailored to specific properties. Optimization
studies offer a systematic and strategic approach to enhancing the functionality and perfor-
mance of novel materials. These studies allow researchers to fine-tune compositions with
precision, ensuring that the material properties align optimally with desired outcomes. By
leveraging surface regression methodologies, we can not only navigate the complexities of
multidimensional systems but also discover optimal solutions within vast compositional
spaces using limited time and resources. By identifying the most favorable compositions
and configurations, these studies streamline the materials discovery process, paving the
way for quicker translation of novel materials into practical applications. In the current
investigation, the optimization and validation study was used to assess the predictive
capabilities of the models by comparing the measured properties of optimized solutions
against the predicted values of the model. As shown in Tables 8 and 9, the actual values
derived from density and DSC analyses of the two optimized glasses are within the 95%
prediction interval, confirming that the density and Tg models are predicting accurately
at both optimized settings. However, the results arising from 11B MAS NMR analysis
fell outside the model’s 95% prediction interval, indicating that the %B3 and %B4 models
were not predicting as accurately as desired. Although the models generated for %B3 and
%B4 and B3:B4 were statistically significant, the 11B MAS NMR results (specifically the
observed data scattering and deviation from expected behavior) suggested that the changes
in borate network structure were difficult to accurately predict in these systems. This was
somewhat expected given the unpredictable nature of the borate glass structure within the
anomalous region. In light of these findings, it is worth noting that the measured values
for %B3 and %B4 were provided with a ±2 to account for measurement error/variability
in chemical shift. If the ±2 error is applied to the actual values pertaining to %B3 and
%B4, there is a scenario in which these values fall within the 95% prediction interval for
both optimized glasses. An additional consideration is that the optimization study was
limited by conducting only one confirmation run to confirm the accuracy of the models. In
future work, both optimized formulations should be synthesized and characterized at least
three times to account for any possible variations in glass synthesis, measurement error, or
human error. Ultimately, the results of the current optimization study demonstrate that
by employing a predictive modelling approach, it was possible to accurately predict the
individual and interaction effects of various glass constituents on the density and thermal
properties of these complex, multi-component glasses. Although the optimization and
validation results suggested that the models generated from 11B MAS NMR analysis were
not predicting as accurately as desired, the models still provide directional information on
the individual and interaction effects of each constituent on the borate network structure.

5. Conclusions

The application of a predictive modelling approach, based on Design of Mixtures
(DoM), has successfully elucidated the individual and interaction effects of B2O3, CaF2,
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TiO2, ZnO, and Na2CO3 on the structure and properties of oxyhalide borate glasses with
modifier fractions ≥ 30 mol%. This study highlights the non-linear and complex relation-
ships that exist within multi-component glass systems, particularly within the anomalous
region of borate glasses. Subsequent to developing statistically significant models for
various material characteristics, the authors illustrated how to predict and optimize new
glass compositions tailored for specific properties, offering new insights into the design and
development of soluble glass networks. Although some challenges in predicting changes in
the borate network structure are acknowledged, the study demonstrates the effectiveness
of systematic predictive modelling in overcoming traditional barriers in glass science. Such
advancements will open new avenues for the accelerated discovery and development of
novel glasses for a wide range of applications. Future work will focus on further elucidat-
ing the observed phenomena, particularly the scattering in 11B MAS NMR data and the
potential loss of fluorine during synthesis, to refine our predictive capabilities and expand
our understanding of these complex materials.
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