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Abstract: TiB2 and TiC particles were separately introduced to modify the Al-Mg-Si alloy
fabricated by wire-arc additive manufacturing (WAAM) to solve the problem of hot crack-
ing. The results showed that modification of the Al-Mg-Si alloy with TiB2 or TiC particles
completely suppressed the hot cracks found in commercial Al-Mg-Si alloys fabricated by
WAAM due to the transformation from columnar grains to fine equiaxed grains with a
mean diameter of approximately 10 µm. The ultimate strength and yield strength of the
as-deposited Al-Mg-Si/TiB2 (AD-TB) and Al-Mg-Si/TiC (AD-TC) alloys were similar, but
the elongation of the latter one was higher due to its low porosity. The ultimate strength
(353.7 ± 5.0 MPa) and yield strength (309.7 ± 1.9 MPa) of the heat-treated Al-Mg-Si/TiC
(HT-TC) alloy was significantly higher than those (300.8 ± 2.7 MPa and 256.2 ± 2.8 MPa,
respectively) of the heat-treated Al-Mg-Si/TiB2 (HT-TB) alloy. The fatigue resistance of
the HT-TC was better than that of the HT-TB due to less porosity and a more uniform
distribution of TiC particles in the HT-TC alloy.

Keywords: Al-Mg-Si alloy; WAAM; particles; mechanical property; microstructure

1. Introduction
As a rapid forming technology for metal parts, wire-arc additive manufacturing

(WAAM) technology has the advantages of cost-effectiveness, rapid manufacturing rates
and enhanced material efficiency [1,2]. It has attracted significant attention in the manufac-
turing industry due to these advantages and has emerged as a transformative approach for
producing large-scale aluminum components in the aerospace and transportation sectors–
particularly for lightweight parts [3–5]. Recent advancements in WAAM of high-strength
Al alloys have mainly focused on Al-Cu [6], Al-Mg [7,8], and Al-Zn-Mg-Cu [9] alloys.
Al-Mg-Si alloys have advantages such as moderate strength, good corrosion resistance and
a good oxidation effect [10]. Therefore, it is necessary to promote the application of WAAM
technology for Al-Mg-Si alloys.

Hot cracking constitutes a major impediment to the development of WAAM for Al-Mg-
Si alloys [11,12]. Extensive research has been conducted on the issue of hot cracks [13–15].
The reason for the occurrence of hot cracks is that the liquid metal with high purity
crystallizes first, and the metal that crystallizes later contains more impurities, which are
enriched at the grain boundaries. Meanwhile, an eutectic with a low melting point is
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formed, creating a liquid film between the grains. If tensile stress is applied, cracks will
occur [16,17]. In general, the formation of hot cracks is a result of the combined action of
the liquid film and the tensile stress. Solving the hot crack problem of Al-Mg-Si alloys is
necessary to promote the application of WAAM technology for Al-Mg-Si alloys.

Based on the research progress of WAAM manufacturing high-strength Al alloys in
recent years, there are several ways to suppress hot cracks: (1) Adding alloy elements or
effective nucleation particles, which can reduce the tendency of dendrite growth during
solidification and form a fine equiaxed grain structure [18–21]. The main reason is that,
on the one hand, the transformation from columnar grains to equiaxed grains shortens
the feeding channel of liquid metal, making it easier to backfill the liquid metal; On the
other hand, an increase in grain boundary density is beneficial for the transmission and
dispersion of residual stresses, thereby significantly reducing the local stress concentration
and suppressing crack formation. For example, Yuan et al. [20] prepared a TiN-particle
modified Al-Zn-Mg-Cu alloy by the WAAM process, eliminating the coarse columnar
grains, randomizing the orientations, and reducing the average grain size from 459 nm
to 104 nm. Klein et al. [21] demonstrated TiB2-modified Al-Mg-Si alloy WAAM deposits
free from macroscopic cracks, exhibiting fine equiaxed grains (<30 µm) without a crys-
tallographic texture. (2) Optimizing the process parameters in WAAM to control heat
input, which can reduce temperature gradients and thermal stresses to suppress cracks.
For example, Doumenc et al. [22] fabricated crack-free 6061 alloy components by increasing
the WAAM welding speed, while Ma et al. [23] proposed programmable thermal input
WAAM for efficient low-heat-input crack-free fabrication of Al-Mg alloys. (3) Introducing
interlayer friction stir processing (IFSP) during the WAAM process, which can enhance the
microstructural homogeneity and eliminate cracks [24]. For example, Guo et al. [24] com-
pared the microstructure and mechanical properties of WAAM-T6 thin-walled components
with those of WAAM + IFSP-T6 thin-walled components. The samples subjected to IFSP
exhibited a crack-free microstructure, and their tensile strength increased by 223%.

In contrast to conventional reinforcement strategies utilizing particles such as SiC or
Al2O3, TiB2 and TiC demonstrate superior performance in grain refinement and strength
enhancement, attributed to their distinctive physicochemical characteristics. This advance-
ment successfully resolves the long-standing strength–ductility trade-off associated with
crack mitigation in conventional approaches, providing a materials engineering solution
balancing scientific rigor and industrial viability for WAAM-fabricated lightweight com-
ponents. In this work, TiB2 and TiC particles were separately introduced to modify a
Al-Mg-Si alloy fabricated by WAAM to solve the problem of hot cracking. The microstruc-
tures, mechanical properties and fatigue resistances of the as-deposited and heat-treated
Al-Mg-Si/TiB2 and Al-Mg-Si/TiC alloys were investigated and compared.

2. Experimental Methods
The welding wires of an Al-Mg-Si alloy, Al-Mg-Si alloy with the addition of submicron

sized TiB2 particles and Al-Mg-Si alloy with the addition of nano-sized TiC particles were
used as filler metal for wire-arc additive manufacturing. TiB2 particles were introduced
in the form of an Al-2.3Ti-1B master alloy, while TiC nanoparticles were introduced in the
form of an Al-5wt%TiC master alloy during the melting process. The nominal chemical
compositions of the welding wires are shown in Table 1, and the corresponding printing
parameters of the WAAM process are shown in Table 2. One piece of thin-walled sample
was fabricated for each material.

The microstructures of the Al-Mg-Si alloy, Al-Mg-Si/TiB2 alloy (denoted as TB) and Al-
Mg-Si/TiC alloy (denoted as TC) fabricated by WAAM were analyzed by optical microscope
(OM), field emission scanning electron microscopy (FE-SEM) and transmission electron
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microscopy (TEM). The samples for OM were ground with sandpaper from 600 to 2000 grits,
and then polished with polishing paste. Subsequently, these samples were observed via
an optical microscope (ZEISS Axioskop.A1, Zeiss, Oberkochen, Germany). The samples
for SEM were prepared by mechanical grinding and electrolytic polishing processes, and
then were subjected to morphology observation, energy dispersive spectroscopy (EDS)
and electron backscatter diffraction (EBSD) analysis on a field emission scanning electron
microscope (FE-SEM, ZEISS ∑IGMA, Zeiss, Oberkochen, Germany). The samples for TEM
were ground with sandpaper to a thickness less than 100 µm, and thinned in a double-jet
thinning solution with a HNO3:CH3OH ratio of 3:7 using a double-jet thinning instrument
(model MTP-1A, Jiaoda, Shanghai, China). The double-jet temperature was controlled at
−25 ◦C to −40 ◦C, and the double-jet voltage was 20 V. After thinning, the samples were
cleaned in alcohol and then air-dried naturally. The prepared samples were observed using
an FEI Tecnai G2 F20 TEM (FEI, Hillsboro, OR, USA).

The mechanical properties of the Al-Mg-Si alloy, TB and TC components fabricated by
WAAM were evaluated by hardness tests and tensile tests. The samples for the hardness
tests were ground with sandpaper and polished to ensure the surface was smooth and flat.
The hardness test was carried out on a hardness tester (200HVS-5, Huayin, Yantai, China)
according to GB/T 4340.1 [25], where the load was 1 kg and the holding time was 15 s.
The average value and error were calculated based on more than five measured results.
Solution treatment was applied prior to aging to dissolve the primary second phase into
the aluminum matrix and achieve a supersaturated solid solution. The aging hardening
curves of the Al-Mg-Si alloy were determined at an aging temperature of 175 ◦C after
solution treatment at 530 ◦C for 1 h, and hardness at the aging time of 12 h reached the peak
value, i.e., the T6-treatment (also denoted as T6). The as-printed samples and peak-aged
samples along the travelling direction (0◦ direction) were prepared for tensile tests. The
size of the tensile samples was calculated according to GB/T 228.1 [26], where the thickness
of the tensile sample was 3 mm and the gauge length was 30 mm. The tensile samples
were polished with 600-grit sandpaper to ensure the surface was smooth and flat. The
tensile tests were carried out with a CT5105 testing machine (SUNS, Shenzhen, China), and
the tensile speed was set at 1 mm/min. A 25 mm extensometer was used to measure the
strain generated during the tensile process. The average values of the tensile results of four
samples from each alloy were taken as the final tensile result, and the error was calculated.
The three alloys were all sampled at similar locations of the components.

Table 1. The nominal chemical composition of the filler wire (wt.%).

Alloys Mg Si Cu Fe Cr Ti B C Al

Al-Mg-Si 1.1 0.6 0.25 0.14 0.15 / / / Bal.
TB 1.1 0.6 0.25 0.14 0.15 0.87 0.39 / Bal.
TC 1.1 0.6 0.25 0.14 0.15 0.87 / 0.22 Bal.

Table 2. The printing parameters for the WAAM process.

Designation WAAM Deposition Parameters

Wire feed speed (m/min) 6.5
Current (A) 144
Voltage (V) 18

Shileding gas flow rate (L/min) 25
Filling speed (mm/s) 10
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3. Results
3.1. Microstructure of the As-Deposited Alloys

Figure 1 shows the macroscopic morphologies of the Al-Mg-Si alloy, TB and TC
prepared by WAAM. It shows distinct cracks in the Al-Mg-Si alloy (indicated by red
arrows), while no cracks are observed in the TB or TC.
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Figure 1. Thin-walled alloy components prepared by WAAM: (a) Al-Mg-Si, (b) TB, (c) TC.

Figure 2 shows the OM microstructure of the as-deposited Al-Mg-Si alloy (denoted
as AD Al-Mg-Si alloy), as-deposited Al-Mg-Si/TiB2 alloy (denoted as AD-TB) and as-
deposited Al-Mg-Si/TiC alloy (denoted as AD-TC) manufactured by WAAM. It can be
found that the AD Al-Mg-Si alloy has several micro-cracks throughout the whole im-
age, which is consistent with the results of Figure 1a. For AD-TB and AD-TC, the grain
microstructure is composed of fine equiaxed grains due to the addition of particles that
act as the nucleus of heterogeneous nucleation. Figure 3 shows the EBSD images and
corresponding grain size distributions of the AD Al-Mg-Si alloy, AD-TB and AD-TC. It
clearly illustrates the comparison between the columnar grains in the AD Al-Mg-Si alloy
(Figure 3a) and fine equiaxed grains in the AD-TB (Figure 3b) and AD-TC (Figure 3c). The
average grain size of the AD Al-Mg-Si alloy is about 73.4 µm, while those of the AD-TB
and AD-TC are very close, around 11.2 µm and 9.9 µm, respectively. The formation of
fine equiaxed grains can reduce the thermal stress caused by solidification shrinkage and
reduce the possibility of hot cracking, and therefore suppress the occurrence of the hot
cracks that are found in the original Al-Mg-Si alloy.
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Figure 2. OM microstructure: (a) Al-Mg-Si, (b) TB, (c) TC.

Figure 4 shows the Kernel Average Misorientation (KAM) value distribution of the AD
Al-Mg-Si alloy, AD-TB and AD-TC. The KAM values for the AD Al-Mg-Si alloy, AD-TB and
AD-TC are measured as 0.41◦, 2.10◦, and 1.39◦, respectively. The local orientation difference
at the grain boundary of the AD Al-Mg-Si alloy is high, while the AD-TB and AD-TC
alloys exhibit more uniform local misorientation distributions. Moreover, the KAM value
can be approximated as the dislocation angle (ϑ) to calculate the geometrically necessary
dislocation density (ρGND). The calculation formula is as follows [27]:

ρGND =
2ϑ

ub
(1)
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where u is the unit length and its value is 1.5 µm and b is the Burgers vector and its value
is 0.286 nm. The ρGND of the AD Al-Mg-Si alloy, AD-TB and AD-TC are 3.24 × 1013/m2,
1.66 × 1014/m2 and 1.09 × 1014/m2, respectively. A higher ρGND in alloys indicates greater
residual stress [28]. These results show that the residual stress of the AD-TB and AD-TC
alloys is similar and larger than that of the AD Al-Mg-Si alloy. The reason may be associated
with the Al-Mg-Si alloy generating hot cracks during the solidification process and releasing
most of the residual stress.
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Figure 3. EBSD images and corresponding grain size distributions of three alloys: (a,d) Al-Mg-Si
alloy, showing the columnar grains with an average grain size of 73.4 µm; (b,e) TB, showing the fine
equiaxed grains with an average grain size of 11.2 µm; (c,f) TC, showing the fine equiaxed grains
with an average grain size of 9.9 µm.
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Figure 4. KAM distributions of three as-deposited alloys: (a) Al-Mg-Si alloy, showing the average
KAM value of 0.41◦; (b) TB, showing the average KAM value of 2.10◦; (c) TC, showing the average
KAM value of 1.39◦.

Figure 5 shows the polar figure of the AD Al-Mg-Si alloy, AD-TB and AD-TC. The
results show that the maximum texture strength of the AD Al-Mg-Si alloy, AD-TB and
AD-TC are 10.8, 1.59 and 2.55, respectively. Figure 5a reveals distinct <111> and <100>
fiber textures in the Al-Mg-Si alloy, indicating the formation of preferential crystallographic
orientations along the deposition direction during rapid solidification of the additive
manufacturing process. On the other hand, AD-TB and AD-TC did not show significant
preferred orientations (Figure 5b,c).
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Figure 5. Polar figures of three as-deposited alloys: (a) Al-Mg-Si alloy, (b) TB, (c) TC.

Figure 6 shows the SEM microstructure morphology of the as-deposited Al-Mg-Si,
TB and TC alloys. For the Al-Mg-Si alloy (Figure 6a), pronounced segregation of Mg and
Si is observed at the grain boundaries, forming a coarse primary Mg2Si phase, while Cu
remains uniformly dispersed in the α-Al matrix. In contrast, the introduction of TiB2 or TiC
particles significantly homogenizes the precipitate distribution. As shown in Figure 6b,c,
the reinforcing particles act as preferential nucleation sites for fine Mg-Si precipitates,
suppressing solute segregation along the grain boundaries.

Figure 7 shows the XRD patterns of three as-deposited alloys. The dominant α(Al)
peaks and the primary β(Mg2Si) phase peaks were found in the as-deposited Al-Mg-Si
alloy. Meanwhile, in addition to the α(Al) peaks and the primary β(Mg2Si) phase peaks,
the TiB2 phase peak (PDF#75-0967) and TiC phase peak (PDF#32-1383) were also evident in
the TB and TC (Figure 7b), respectively. The peak intensity of these two modified particle
phases was relatively low due to their low content.

Figure 8 shows TEM images of the AD-TB. The needle-shaped second phase in
Figure 8a,b could be identified as the primary β-Mg2Si phase, evaluated by the corre-
sponding selected area electron diffraction (SEAD) pattern and by the result of the XRD
pattern. The size of these primary β-Mg2Si phases is very large, and the length of most
phases are above 1 µm. In addition, there are also some other particles in the grain of the
AD-TB as shown in Figure 8c. Large numbers of these particles gathered together to form
a cluster, and the size of these particles ranged from 50 nm to 1000 nm, as speculated by
Figure 8e, which is the zoom area of Figure 8c. The SEAD pattern of these particle is shown
in Figure 8d, and the lattice constant as well as the crystal structure of these particles is in
good agreement with the TiB2 phase (PDF#75-0967), which is also found in the XRD result
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(Figure 7). This suggests that the added TiB2 particles are not dispersed in the alloy, which
may have adverse effects on the properties of the alloy.
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Figure 8. TEM images of AD-TB alloy: (a,b) morphology at grain boundaries; (c) morphology of the
internal grains; (d) SEAD of (c); (e) TiB2 particles are reunited.

On the other hand, Figure 9 shows TEM images of AD-TC. Similar to AD-TB, there are
also some primary β-Mg2Si phases with a large size on the grain boundary and in the grain
of the AD-TC. In addition, dislocations were evident in the AD-TC, and the number density
of its dislocations was higher than that of the dislocations in the AD-TB. Figure 10 shows
the TEM images and the corresponding EDS mapping of the AD-TC to show different
second phases. The results of the EDS mapping (Figure 10d–i) suggest that there are Al2Cu
phase and TiC particles in addition to the primary β-Mg2Si phase. Figure 10b,c illustrate
the morphology of the TiC particles. Compared to the TiB2 particles in the AD-TB, the TiC
particles in the AD-TC are more dispersed, and the size of the TiC particles is about 100 nm
to 200 nm.
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Figure 9. TEM images of the AD-TC: (a) BF image showing the precipitates on the grain boundary and
in the grain; (b,c) BF image and corresponding SAED pattern showing the precipitates in the grain.
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Figure 10. (a) TEM images of the AD-TC alloy showing different second phases; (b,c) the morphology
and size of the TiC particles; (d–i) EDS mapping corresponding to (a) for Al, Mg, Si, Cu, Ti and C,
respectively.

3.2. Microstructure of the T6-Treated Alloys

Figure 11 shows the EBSD images, corresponding grain size distributions and KAM
distributions of T6-treated Al-Mg-Si/TiB2 alloy (denoted as T6-TB) and T6-treated Al-Mg-
Si/TiC alloy (denoted as T6-TC). The result indicates that the average grain sizes of the
T6-TB and T6-TC alloy were 11.1 µm and 13.1 µm, respectively, which are very close to the
corresponding as-deposited alloys. This implies that the effect of T6 heat treatment on the
grain size of the as-deposited alloys is not significant. In addition, the average KAM values
of the T6-TB and T6-TC are 0.36◦ and 0.32◦, respectively, which are significantly lower than
those of the corresponding as-deposited alloys. Moreover, the geometric necessary dislo-
cation densities (ρGND) of the T6-TB and T6-TC are 2.85 × 1013/m2 and 2.53 × 1013/m2,
respectively, which are also significantly lower than those of the corresponding as-deposited
alloys. This result also supports the hypothesis that the heat treatment alleviated the local
residual stress of the alloys [28].
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Figure 11. EBSD images, corresponding grain size distributions and KAM distributions of two
T6-treated alloys: (a,c) TB, showing the fine equiaxed grains with an average grain size of 11.1 µm
and average KAM value of 0.36◦; (b,d) TC, showing the fine equiaxed grains with an average grain
size of 13.1 µm and average KAM value of 0.32◦.

Figure 12 shows the TEM images of the T6-TB alloy. There are many dense, fine needle-
like and spherical precipitates in T6-TB, which are identified as the metastable β′′ (Mg5Si6)
phase with an average size of 28.4 ± 3 nm. The phase identification is also further supported
by the high-resolution TEM (HRTEM) images (Figure 13d–f) and corresponding Fast Fourier
Transform (FFT) patterns. The indexed images exhibited remarkable consistency with the
precipitation characteristics previously reported by Zhao et al. [29]. Figure 13 shows the
TEM images of T6-TC. Similar to T6-TB, there are also many dense, fine needle-like and
spherical precipitates with an average size of 18.1 ± 2.5 nm in T6-TC. These precipitates
are also identified as the metastable β′′ (Mg5Si6) phase by the SEAD pattern, HRTEM and
corresponding Fast Fourier Transform (FFT).
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Figure 12. TEM images of the T6-TB: (a) BF image showing the precipitates on the grain boundary
and in the grain; (b,c) BF image and corresponding SAED pattern showing the precipitates in the
grain; (d–f) HETEM images of the precipitates and the corresponding FFT. Figure 12e,f are the zoom
area of yellow box and red box in Figure 12d, respectively.
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Figure 13. TEM images of the T6-TC: (a) BF image showing the precipitates on the grain boundary
and in the grain; (b,c) BF image and corresponding SAED pattern showing the precipitates in the
grain; (d–f) HETEM images of the precipitates and the corresponding FFT. Figure 13e,f are the zoom
area of yellow box and red box in Figure 13d, respectively.
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3.3. Mechanical Properties

Figure 14 shows the stress–strain curves and the mechanical property results of
three as-deposited alloys. Due to the presence of severe crack defects, the Al-Mg-Si alloy
exhibits anomalous mechanical properties with relatively low ultimate tensile strength
(UTS) and elongation (EL). Moreover, the UTS of TB and TC are very close, while TC
demonstrates significantly higher EL than TB. The UTS, yield strength (YS) and EL of
TB are 167.5 ± 4.0 MPa, 87.4 ± 1.2 MPa and 11.3 ± 0.4, respectively, while those of TC
are 165.8 ± 4.5 MPa, 74.5 ± 1.1 MPa and 17.4 ± 0.8, respectively. The detailed mechanical
property result values are shown in Figure 14b.
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Figure 14. Stress–strain curves and the mechanical property results of three as-deposited alloys:
(a) stress–strain curves, (b) mechanical property results.

Due to the presence of the cracks in the AD Al-Mg-Si alloy, the solution and aging
treatment were conducted only on TB and TC. Figure 15 shows the stress–strain curves
and the mechanical property results of T6-TB and T6-TC. They suggest that the UTS
(353.7 ± 5.0 MPa) and YS (309.7 ± 1.9 MPa) of T6-TC are higher than those (300.8 ± 2.7 MPa
and 256.2 ± 2.8 MPa, respectively) of T6-TB, but the EL (5.3 ± 0.4%) of T6-TC is lower
than that (8.1 ± 0.2%) of T6-TB. The detailed mechanical property results are shown in
Figure 15b. Compared with the as-deposited alloys, the increase in strength and decrease
in elongation of the two T6-treated alloys are attributed to the precipitation strengthening
caused by the precipitation of precipitates during the T6 treatment. The difference in the
mechanical properties between T6-TB and T6-TC should be associated with the added
particles, which will be discussed in detail in the next section.
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Figure 15. Stress–strain curves and the mechanical property results of two T6-treated alloys:
(a) stress–strain curves, (b) mechanical property results.

In addition, Table 3 summarizes the comparison of mechanical properties (UTS, YS,
and EL) of WAAM-fabricated Al-Mg-Si alloys between this work and previous works. It
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implies the superiority of the UTS and YS for the TiC particle modified Al-Mg-Si alloy
and a good combination of strength and ductility for the TiB2 particle modified Al-Mg-Si
alloy in this work. It is worth noting that the high strength and elongation of the Al-Mg-Si
alloy reported by reference [24] were mainly attributed to the introduction of a friction stir
technology between layers.

Table 3. Comparison of mechanical properties between this work and previous works on WAAM-
fabricated Al-Mg-Si alloys.

Alloys
Ultimate Tensile

Strength Rm
/MPa (Stedv)

Yield Strength
RP0.2/MPa

(Stedv)

Elongation
A5/(%)
(Stedv)

Al-0.48Mg-0.54Si-0.25Ti-0.04B [21] 283.5 ± 2.6 262.8 ± 1.7 5.9 ± 0.8

Al-0.87Mg-1.05Si [22] 344 ± 43 189 ± 38 /

Al-0.96Mg-0.58Si-0.23Cu-0.02Fe [24] 336 314 13

T6-TB (this work) 300.8 ± 2.7 256.2 ± 2.8 8.2 ± 0.4

T6-TC (this work) 353.7 ± 2.7 309.7 ± 1.9 5.3 ± 0.4

3.4. Fracture Morphology

Figure 16 shows the fracture morphologies of AD-TB and AD-TC. It can be found that
there are numbers of pore defects on the fracture surface of AD-TB (Figure 16a), while there
are almost no pores on the fracture surface of AD-TC (Figure 16b). High porosity defects
in AD-TB should be the main reason why the elongation of AD-TB is lower than that of
AD-TC. In addition to the pores, a high density of fracture dimples is also evident in both
alloys (Figure 16c,d), which indicates that these two alloys exhibit ductile fractures and
good plasticity.
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Figure 16. Fracture morphology of the as-deposited alloys: (a,c) TB, (b,d) TC.
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Figure 17 shows the fracture morphologies of T6-TB and T6-TC. The dimples were
shallower for the T6-treated alloys compared to the as-deposited alloys. Moreover, the
fracture surface of T6-TC is rougher than that of T6-TB (Figure 17a,b), and is somewhat
close to intergranular fractures. Higher magnification fracture morphologies (Figure 17c,d)
indicate that there are also some fine particles on the fracture surfaces of the two alloys,
which may be associated with the precipitates. The shallower dimples and these fine
particles in the T6-treated alloys is also evidence that the elongation of the T6-treated
alloy is lower than that of the as-deposited alloys. In addition, the number and density
of the dimples on the fracture surface of T6-TB is higher than that of the dimples on the
fracture surface of T6-TC. This suggests that the plasticity of T6-TB is better than that of
T6-TC, which is in good agreement with the results of the mechanical properties shown in
Figure 15.
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Figure 17. Fracture morphology of the T6-treated alloys: (a,c) TB, (b,d) TC.

3.5. Fatigue Crack Propagation Behavior

The relationship between crack length (a) and fatigue cycle times (N) of the two T6-
treated alloys was plotted as shown in Figure 18a. It can be found that the fatigue life of
T6-TB (4.14 × 104 cycles) is close to but lower than that of T6-TC (9.05 × 104 cycles). The
critical crack sizes of T6-TB and T6-TC are very close, which are 20.8 mm and 21.5 mm,
respectively. These results indicate that the fatigue resistance of T6-TC is better than that
of T6-TB.

Fatigue crack propagation is generally divided into three stages according to its
propagation rate: low speed propagation zone (I), stable propagation zone (II) and fast
propagation zone (III). Figure 18b shows the relationship between the crack growth rate
da/dN and stress intensity factor range ∆K, which can be fitted using a Paris model [30]:

da/dN = C(∆K)m (2)

where C and m are material constants. It can be found that the fatigue crack growth rate
of T6-TB is always higher than that of T6-TC under the same ∆K. Under the condition of
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∆K = 17.7 MPa·m1/2, the fatigue crack growth rate of T6-TB reached the minimum value,
while that of T6-TC reached the maximum value. Generally, the internal stress has a greater
influence on fatigue crack growth in the lower ∆K range [31]. According to the KAM value
shown in Figure 11 and the calculated geometrically necessary dislocation density, the
stress of T6-TB was greater than that of T6-TC. Therefore, when the ∆K range is low, the
stress of T6-TB is higher than that of T6-TC. The crack growth rate of T6-TB is higher than
that of T6-TC. Table 4 shows the parameters fitted by a Paris model and the fatigue crack
growth threshold ∆Kth (the value of ∆K when da/dN = 10−7 mm/cycle). It suggests that the
fitting correlation coefficients R are 0.926 and 0.934 respectively, indicating that the fitting
curve is reliable. The ∆K corresponding to the first experimental data of the two alloys
are 10.35 and 10.87, both of which are greater than the values of ∆Kth, indicating that the
fatigue crack growth region corresponding to the curve is the stable expansion region (II).
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Table 4. Fitted parameters by a Paris model.

Samples C m R ∆Kth

T6-TB 7.943 × 10−10 4.75746 0.926 2.76
T6-TC 1.245 × 10−11 6.20116 0.934 4.262

Figure 19 shows the fatigue fracture morphology of the two T6-treated alloys in
different stages. Figure 19a,d show the fracture morphology of the low-speed expansion
zone (I) of T6-TB and T6-TC, respectively. It can be found that the number of pores in
T6-TB is significantly higher than that in T6-TC. This should be one of main factors that
increases the rate of fatigue crack propagation of T6-TB. The presence of pores creates
localized stress concentration zones within the material, providing preferential sites for
crack initiation [32,33]. Following crack initiation, the local stress field around the pores
can deflect the crack propagation direction, alter the crack path, and thereby accelerate
the propagation rate, ultimately reducing the fatigue life [34]. Figure 19b,e show the
fracture morphology in the stable expansion zone (II) of two T6-treated alloys, and they
indicate that there are some fatigue striations in both alloys. In addition, there are also
some fatigue cracks on the fracture surface of T6-TB with a size greater than 20 µm,
which are the main cracks that eventually lead to fracture of the material. The T6-TC
fracture has some secondary cracks (SC) with a size of 10–15 µm, and the existence of
secondary cracks can absorb part of the energy and slow down the growth of the main
cracks. Figure 19c,f show the fracture morphology in the fast propagation zones (III) of
the two alloys. Compared with other regions, the fracture morphology in this zone is
rougher, mainly dominated by dimples, and there are more fine particles in the dimples,
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which will lead to easier propagation of fatigue cracks in this region. T6-TB has a small
number of shallow fracture dimples, but the T6-TC specimens have fewer fracture defects
and more and deeper dimples, which also confirms that T6-TC has better fatigue resistance.
Comparative fractographic analysis reveals that pores in the T6-TB alloy accelerate fatigue
crack propagation, whereas TiC particles in the T6-TC alloy induce interfacial delamination
to form multi-level secondary cracks. This reduces the driving force at the main crack tip,
significantly retarding propagation and notably enhancing crack tip shielding effects.
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Figure 19. Fatigue fracture morphology of two T6-treated alloys in different stages: (a–c) TB, (d–f) TC
(the red arrows show the direction of crack growth).

4. Discussion
4.1. Comparison of the Grain Refinement Mechanism of the Alloys Modified by Two
Different Particles

The results of Figure 3 indicate that the alloy grains were significantly refined under
the effect of the modification with TiB2 and TiC particles. The refining mechanism of TiB2

particles is well studied by previous studies, which suggested that TiB2 particles have a
high lattice matching degree with the α-Al matrix, serving as an efficient hetero-nucleation
point of α-Al, promoting nucleation and refining grains [35,36]. However, most of the
TiB2 particles were found to be enriched at the grain boundaries in the present work (as
shown in Figure 20a), and the grain refinement mechanism of TiB2 particles may also be
associated with hindering of grain boundary migration [37]. This enrichment facilitates
Zener pinning, significantly inhibiting grain boundary migration [38]. The pinning effect
retains stability even under elevated-temperature thermal cycling, thereby effectively
impeding grain coarsening and maintaining a refined equiaxed grain structure [39]. For the
grain refinement mechanism of TiC particles, it is reported that the lattice matching degree
between TiC and α-Al is low, and the heterogeneous nucleation efficiency is low [19,40].
Meanwhile, there are some works that have shown that nano-sized TiC particles can also act
as heterogeneous nucleation sites to refine the grain [41]. The nano-sized surface curvature
of TiC particles significantly reduces the nucleation energy barrier, enabling them to act
as high-density heterogeneous nucleation sites within the melt, thereby promoting the
formation of fine intragranular equiaxed crystals [42]. Additionally, uniformly dispersed
TiC particles restrict grain growth by hindering dislocation motion and inducing lattice
distortion [43].
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Figure 20. (a) The TiB2p distributed at the grain boundary and (b) the TiCp inside the grain.

In this study, nano-TiC particles of a smaller size were used, and the particles were
more evenly dispersed in the grain (as shown in Figure 20b), which could provide more
nucleation sites. The diffusion coefficients of particles of different sizes in an Al matrix are
different. Stokes–Einstrin diffusion coefficients are given as follows [44]:

D =
kT

6πµr
(3)

where D is the diffusion coefficient, k is the Boltzmann constant, T is the temperature, µ is the
solvent viscosity, and r is the radius of the diffused particle [44]. Since the composition of the
base alloy used and the processing parameters for subsequent preparation are all the same,
the values of T and µ for the two alloys in Equation (3) can be approximately equal here.
According to Equation (3), it can be concluded that the diffusion coefficient D of particles
in liquid metal increases with the decrease of particle diameter r, indicating that nano-
TiC particles are more easily dispersed in the material, with a more uniform distribution
and a better thinning effect. Figure 21 shows the microstructure evolution during the
solidification of the TB and TC. At the initial stage of solidification, both particles can
form crystal nuclei by adsorbing melt atoms (Figure 21(a1,b1)). However, with the gradual
solidification, the grains grow gradually, and TiB2 particles can optimally drive rapid lateral
expansion through the interface to form multi-oriented equiaxed crystals, while TiC realizes
restricted growth depending on dynamic curvature regulation (Figure 21(a2,b2)) [45,46].
At the later stage of solidification, TiB2 particles are distributed in large quantities on
the grain boundary pinning dislocations, hindering grain growth, while TiC particles are
dispersed in the grain, providing heterogeneous nucleation sites and promoting nucleation
(Figure 21(a3,b3)).
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Figure 21. Schematic diagram of microstructure evolution during the solidification of the two alloys:
(a1–a3) TB, (b1–b3) TC.

4.2. Comparison of the Strengthening Contributions of Two Different Particle-Modified Alloys

The mechanical property results of the TB and TC suggests that the UTS and YS of
the AD-TB alloy and AD-TC alloy are similar, but the UTS and YS of the T6-TC alloy are
significantly higher than those of T6-TB. Therefore, to understand the strength difference
between the two alloys modified by TiB2 and TiC particles, it is necessary to explore and
compare the strengthening mechanisms and strengthening contributions of the two alloys
in as-deposited and T6-treated conditions. Generally, the strengthening mechanisms of the
Al alloy mainly include solid solution strengthening (σss), grain boundary strengthening
(σGB), dislocation strengthening (σdis), and precipitation strengthening (σp), and the yield
strength of the alloy (σs) can be summarized as follows [47–49]:

σs = σss + σGB + σdis + σp (4)

where the intrinsic strength (σ 0) is included in the σGB.

i. Solid solution strengthening (σss)

The solid solution strengthening originates from lattice distortion of the matrix due
to the solution of the alloying elements (such as Mg and Cu elements, etc.), which can be
calculated by the following formula [50]:

σss = ∑i kiCi, (i = Mg, Cu) (5)

where Ci is the concentration of the i-th solute and ki is the proportionality factor of the i-th
solute: kMg ≈ 18.6 MPa (wt.%) [51], kCu ≈ 13.8 MPa (wt.%) [52]. The calculated contribution
values of solid solution strengthening to the alloys are as follows: the AD-TB is 10.1 MPa,
the AD-TC is 8.5 MPa, the T6-TB is 5.5 MPa, and the T6-TC alloy is 5.3 MPa.

ii. Grain boundary strengthening (σGB)

Grain boundary strengthening (σGB) plays an important role in the strengthening
mechanism of the Al alloy. The grain sizes of the as-deposited and heat-treated TB and TC
alloys are similar and are all within the effective range of the classic Hall–Petch formula.
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The strengthening contribution of the grain boundary strengthening can be calculated by
the following formula [52]:

σGB = σ0 + k1D−0.5
GB (6)

where σ0 is the intrinsic strength of pure aluminum, which is usually 20 MPa [51]; k1

is a constant (for Al, k1 = 0.15 MPa·m−0.5) [53]; and D is the grain size. The calculated
contribution of grain boundary strengthening to the alloys are obtained as follows: the
AD-TB is 64.8 MPa, the AD-TC is 67.7 MPa, the T6-TB is 65.0 MPa, and the T6-TC is
61.4 MPa.

iii. Dislocation strengthening (σdis)

Dislocation strengthening (σdis) is an essential component of the alloy strengthening
mechanism. During the WAAM of Al-Mg-Si alloys, numerous dislocations are generated
due to thermal cycling and residual stress. The strengthening contribution of the dislocation
strengthening can be calculated as follows [52]:

σdis = MαµAlbρ
1
2 (7)

where Taylor factor M is 3.06, the FCC material constant α is 0.2, the shear modulus µAl of
the aluminum base material is 26.2 GPa, b represents the Burgers vector (typically 0.286 nm
for aluminum alloys), and ρ is the line defect density. The calculated contribution values of
the dislocation strengthening to the alloy are obtained as follows: the AD-TB is 5.9 MPa,
the AD-TC is 4.8 MPa, the T6-TB is 2.4 MPa, and the T6-TC is 2.3 MPa. These results imply
that the effect of the dislocation strengthening on the strengthening contribution is very
limited in the present work.

iv. Precipitation strengthening (σp)

The precipitation strengthening plays an important role in the strengthening contribu-
tion of the T6-treated alloys. Generally, the strengthening contribution of the precipitation
strengthening can be calculated by the following formula [47]:

σp = M
0.4Gb

π

(√
π
fv
− 2

)
R
·
ln
(

2
∼
R/b

)
√

1 − v
(8)

where M is the texture factor of aluminum, with a value of 3.06; G is the shear modulus
of the α-Al base, with a value of 26.2 GPa; v is Poisson’s ratio, with a value of 0.34;
∼
R =

√
(2/3)·R, where R is the average radius of the precipitate grains; fv is the volume

fraction of the precipitate grains; and b is the B vector, and for face-centered cubic alloys,
b = 0.286 nm. The calculated contribution values of the precipitation strengthening to the
alloys are obtained as follows: the T6-TB is 182.0 MPa and the T6-TC is 232.2 MPa.

In summary, the strengthening contribution of the grain boundary strengthening, solid
solution strengthening, precipitation strengthening and dislocation strengthening to the
two alloys in as-deposited and T6-treated conditions is summarized as shown in Figure 22.
The detailed calculated σs values are as follows: the AD-TB is 80.8 MPa, the AD-TC is
81.0 MPa, the T6-TB is 254.9 MPa, and the T6-TC is 301.2 MPa. These values are very
close to the corresponding experimental values shown in Figures 14 and 15. The results
of Figure 22 suggest that the strength difference between two T6-treated alloys is mainly
caused by precipitation strengthening, which is associated with the characteristics (i.e., size,
number) of the precipitates. In fact, there are significant differences in the precipitation
characteristics between TB and TC (Figures 12 and 13) under the same solution and aging
treatment. It is reasonable to suspect that the effects of these two particle modifications on
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the precipitation of precipitates are different, but this is beyond the scope of this work and
can be further investigated in the future.
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5. Conclusions
In this work, TiB2 and TiC particles were separately introduced to modify an Al-Mg-Si

alloy to enable high-strength WAAM with retained ductility, overcoming the traditional
hot cracking issue and strength–ductility tradeoff. This work also offers a scalable pathway
for large-scale, crack-free WAAM of lightweight structures for used in the automotive,
aerospace and other fields. The main conclusions are summarized as follows:

(1) The modification of Al-Mg-Si alloys with both TiB2 and TiC particles completely
suppressed the hot cracks that are found in commercial Al-Mg-Si alloys fabricated by
WAAM due to the transformation from columnar grains to fine equiaxed grains with
an average size of around 10 µm.

(2) The UTS and YS of the AD-TB and AD-TC are similar, but the EL of the latter is
higher due to its low porosity. Meanwhile, the UTS (353.7 ± 5.0 MPa) and YS
(309.7 ± 1.9 MPa) of the T6-TC are significantly higher than those (300.8 ± 2.7 MPa
and 256.2 ± 2.8 MPa, respectively) of the T6-TB.

(3) The fatigue life of the T6-TB and the T6-TC are 4.14 × 104 cycles and 9.05 × 104 cycles,
respectively. The fatigue resistance of the T6-TC is better than that of the T6-TB due to
its lower porosity and more uniform distribution of TiC particles.
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