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Abstract: The polarisation characteristics of the electropolishing process in a magnetic 

field (MEP – magnetoelectropolishing), in comparison with those obtained under 

standard/conventional process (EP) conditions, have been obtained. The occurrence of an 

EP plateau has been observed in view of the optimization of MEP process. Up-to-date 

stainless steel surface studies always indicated some amount of free-metal atoms apart 

from the detected oxides and hydroxides. Such a morphology of the surface film usually 

affects the thermodynamic stability and corrosion resistance of surface oxide layer and is 

one of the most important features of stainless steels. With this new MEP process we can 

improve metal surface properties by making the stainless steel more resistant to halides 

encountered in a variety of environments. Furthermore, in this paper the stainless steel 

surface film study results have been presented. The results of the corrosion research carried 

out by the authors on the behaviour of the most commonly used material  medical grade 

AISI 316L stainless steel both in Ringer’s body fluid and in aqueous 3% NaCl solution 

have been investigated and presented earlier elsewhere, though some of these results, 

concerning the EIS Nyquist plots and polarization curves are also revealed herein. In this 

paper an attempt to explain this peculiar performance of 316L stainless steel has been 

undertaken. The SEM studies, Auger electron spectroscopy (AES) and X-ray 

photoelectron spectroscopy (XPS) were performed on 316L samples after three treatments: 

MP – abrasive polishing (800 grit size), EP – conventional electrolytic polishing, and MEP 

– magnetoelectropolishing. It has been found that the proposed magnetoelectropolishing 
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(MEP) process considerably modifies the morphology and the composition of the surface 

film, thus leading to improved corrosion resistance of the studied 316L SS.  

Keywords: 316L stainless steel, magnetoelectropolishing, polarization curves, SEM, 

Auger spectroscopy, XPS. 

 

1. Introduction  

For years, several positive features concerning electropolished metal surface have been ascribed to 

the so called plateau of the polarisation curve. The use of an externally applied magnetic field to the 

electropolishing process (EP) provides the treated metal surface with some new properties and better 

characteristics, including microroughness, hydrophilicity, contact angle, corrosion resistance, and 

oxide film morphology [1-6]. A higher level of metal finishing is attractive in multiple applications, 

such as, e.g., for medical stents and implant devices [1,7-16]. The addition of an external magnetic 

field to the process of electropolishing also significantly minimizes microtopography by lowering 

microroughness and minimizing the actual surface area on the micro- and nano scales [1-3,5,7-10]. 

Type UNS S31603 316L stainless steel is a low-carbon version of the AISI 316 stainless steel used 

extensively for many purposes due to its superior corrosion resistance, smoothness, biocompatibility 

and cleanability after electropolishing treatment [17-20]. The remarkable improvement in corrosion 

resistance of electropolished surfaces of austenitic stainless steels is caused by several interconnected 

events occurring during the electropolishing process, discussed extensively elsewhere [3,9-15,20,21]. 

Thus, the obtained stainless steel exhibits excellent corrosion resistance in a wide range of atmospheric 

environments and many corrosive media. 

Medical grade 316L SS vm (vm � vacuum melted, that means an additional decrease of the oxygen 

content in the steel), is presently used extensively in medicine for implants. This grade of stainless 

steel has been used to avoid and/or minimize the danger of pitting corrosion by making these high 

potentials at which the pitting occurs highly improbable, although this generally depends on the 

individual human being involved. 

A variety of surface treatments are commonly performed on medical implant materials to promote 

corrosion resistance and biocompatibility [1,5-8,11-15]. For many years, electropolishing (EP) has 

been used to smooth the surface and to perform surface passivation on biomaterials. For a given 

material, the oxide properties are a function of the EP parameters such as applied current density, 

voltage, temperature, and the composition and concentration of the chemicals used. A stable oxide 

layer on the passivated metal surface obtained during EP will promote the corrosion resistance and 

biocompatibility of the implant material in physiological conditions. This passivity could be enhanced 

by modifying the thickness, morphology, and/or chemical composition of the surface oxide layer by 

different treatments [1-12,21-27].  

Electropolishing is usually an advised treatment to finish metallic implants in view of taking 

advantage of the selective dissolution of elements constituting a particular metallic material. Selective 

dissolution enriches the passive layer in an element in which oxide is the most corrosion resistant and 

haemocompatible. The best example is 316L austenitic stainless steel. Electrochemical corrosion tests 
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performed on standard electropolished and magnetoelectropolished 316L-stainless-steel samples in a 

3% aqueous NaCl solution showed remarkable improvement in overall corrosion resistance [1-

5,26,27]. These results include a decrease in nickel ion leaching. Further experiments are to be 

undertaken to determine the magnitude and mechanism of this phenomenon. 

Electropolishing becomes even more complex if a magnetic field is introduced to the system [7-

10,12,13,22-29]. Characteristics of the neodymium magnet used for the MEP system are presented in 

Figure 1. For the MEP both cylindrical (Figure 1) and ring magnets surrounding the electrolytic cell 

[1-5,26-29] have been applied. With the new electropolishing system, an externally applied magnetic 

field may enhance, or retard, the dissolution process. The electropolishing process is maintained under 

oxygen evolution to achieve an electropolished surface of the workpiece exhibiting reduced 

microroughness, better surface wetting and increased surface energy, reduced and more uniform 

corrosion resistance, minimization of external surface soiling and improved cleanability in shorter  

time periods.  

 

Figure 1. Characteristics of the neodymium magnet used for MEP system. 
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In this study the occurrence of the plateau and its level, and then the reference to the surface quality 

obtained has been presented. The results of the SEM, Auger spectroscopy, and XPS studies obtained 

herewith carried out on AISI 316L SS reveal very well the advantages of the magnetoelectropolishing 

process. 
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2. Experimental  

 

2.1. Set-up and parameters 

 

First the polarization characteristics have been studied. The EP studies were carried out over a 

broad range of current density changes (up to 1,200 A/dm2), potential to over 10 V, up to 20 V vs. 

MSE (mercury-sulphate electrode] and electrolyte temperature (20 to 100 C; with temperature control 

to 1 C). For the studies a proprietary sulphuric/orthophosphoric acids mixture electrolyte was used.  

For reference a mercury-sulphate Hg/Hg2SO4 electrode (MSE) was used in the electrolyte 

temperature range up to 60 C. The electrode has been marked as REF601. The MSE reference 

element is based on Hg/Hg2SO4 and it uses a filling solution of saturated K2SO4. At 25 C the REF601 

potential versus a saturated calomel electrode is approximately 407 mV. This type of MSE reference 

electrode was successfully applied earlier by the authors [30] during investigation of electropolishing 

of carbon and tool steels using rotating disk electrodes. A stainless steel plate was used as a reference 

for the studies in temperature ranging above 60 C, up to 120 C. The set-up used for the MEP is 

presented in Figure 2. 

 

Figure 2. Magnetoelectropolishing MEP system used for investigation of polarization 

characteristics: A – anode, C – cathode, R – reference electrode, CE – counter electrode of 

cylindrical shape,  CE – counter electrode, M – permanent magnet, H – heater. 
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The electrolytic polishing was performed both in the absence and in the presence of a magnetic 

field. A hallothrone device of type SMS-102 was used to measure the magnetic field strength. For the 

MEP experiments, a constant external magnetic field of 350 mT was applied to the EP system by a 

neodymium magnet. For both processes, conventional EP and MEP, the same type of a proprietary 
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acidic electrolyte was used. The bath was unstirred during the process of MEP, and under a variety of 

electrochemical conditions during EP.  

During the investigation, measurement of polarization curves were performed on all stainless steel 

samples’ surfaces during both EP and MEP. The electrochemical system used for the investigation 

consisted of an ATLAS 98 potentiostat equipped with POL 98 software. 

 

2.2. Material for samples 

 

For these experiments, medical grade AISI 316L stainless steel was used (Table 1). Three sets of 

AISI 316L stainless steel samples of dimensions 30401.2 mm were cut from the same sheet of 

metal. The first set consisted of three samples and they were polished with an abrasive grit paper up to 

No. 800 (MP – abrasive polishing). The second set of three samples were treated by a standard 

electropolishing (EP), the third set of three samples were electropolished with the same electrolyte 

composition in the presence of a magnetic field (MEP) [1-3].  

 

Table 1. Chemical composition of AISI 316L SS used for the experiments [26]. 

Element Content, wt% 

Cr 17.07 

Ni 10.26 

Mo 1.97 

Mn 1.68 

Si 0.64 

Cu 0.19 

V 0.11 

Co 0.04 

C 0.03 

Ti 0.03 

P 0.024 

Al 0.011 

W 0.01 

Sn 0.009 

B 0.0048 

S 0.004 

N2 0.0431 

Fe BALANCE 

 

The samples after mechanically abrasive polishing (MP) were used as a reference. For both 

electrochemical polishing processes, conventional/standard electropolishing (EP) and 

magnetoelectropolishing (MEP), the same type of a proprietary electrolyte was applied, being a 

mixture of sulphuric and orthophosphoric acids. Both electrolytic polishing processes, EP and MEP, 

were performed in a round, transparent electrochemical cell. The magnetoelectropolishing (MEP) was 
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performed under identical conditions to those used for standard electropolishing process, except  for 

the externally applied magnetic field.  

The magnets were magnetized by their thickness. The imposed magnetic field of about 350 mT was 

directed parallel to the electropolished workpiece surface (sample). During both electropolishing (EP) 

and magnetoelectropolishing (MEP) the bath was unstirred and temperature was kept within  

601 C. Prior to the MEP surface studies, the samples were thoroughly degreased in acetone.  

 

2.3.  Corrosion behaviour studies 

 

The corrosion resistance studies of the AISI 316L SS after three types of treatments – MP, EP, and 

MEP – were performed by investigating the Electrochemical Impedance Spectroscopy (EIS) and 

polarization curves in a typical Ringer’s solution at a room temperature (about 25 C). The 

electrochemical system used for the corrosion measurements consisted of the ATLAS 98 potentiostat 

with the POL 98 software, current platinum electrode Ept-101 of surface area of 25 mm2, and a 

saturated calomel electrode (SCE) EK-101P used as a reference. The sample surface area exposed for 

the study each time was 2.01 cm2. Polarization curves were measured in the potential interval from 

1,000 mV to 1,500 mV at a scan rate of 1 mV·s-1. The EIS results were obtained each time after 

holding the samples at open circuit potential (OCP) for 60 minutes.  

 

2.4.  SEM, Auger, and XPS studies 
 

SEM studies, Auger electron spectroscopy (AES) and XPS measurements were carried out on the 

MP, EP, and MEP 316L SS samples. The AES was performed under an electron energy of 3 keV. The 

XPS experiments were performed using a SCIENCE SES 2002 instrument. The studies were carried 

out under standard conditions within the binding energy BE range of 1,100 eV to 0 eV. 

 

3. Results of the study 

 

Initially the polarization characteristics under conventional (EP), and magnetoelectropolishing 

(MEP) conditions have been studied. The results are presented in Figure 3. The effects of the magnetic 

field were investigated in our studies. We began our studies with a conventional electropolishing EP to 

compare the results with the ones obtained under EP using a magnetic field.  

The polarization curves were obtained at an electrolyte temperature of 601 C and a scan rate of 1 

mV·s-1. The lowest cd plateau was obtained under a conventional EP in still electrolyte and it equaled 

about 8 A/dm2, then with a moderate mixing it rose up to about 33 A/dm2. Under MEP conditions (350 

mT) the obtained plateau level was in between the two higher given values, and equaled about 23 

A/dm2. In Figure 3 both, region 1, referring to the plateaux, and 2, transpassive region, have been 

presented, with the semi-shadowed area indicated and corresponding with the most often 

recommended for applications in industrial practice.  
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Figure 3. Electropolishing polarization characteristics obtained on AISI 316L SS 

dependent on treatment conditions (EP, EP with moderate mixing, and MEP) presenting 

two regions: 1 – plateau, 2 – transpassive. The semi-shadowed current density area of 

typical industrial applications has been indicated. 
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In Figure 4 the corrosion characteristics of the steel samples in a typical Ringer’s body fluid are 

presented. Figure 4a presents Nyquist plots and Figure 4b the polarization curves of AISI 316L SS 

after the three types of treatments – MP, EP, and MEP – indicating the most promising results were 

obtained after MEP. In Figure 4b the appearance of pitting has been indicated by an arrow, with the 

most pronounced being on the sample after MP, then after EP, and the least after MEP.  

In Figure 5 [1,27], the summary of the corrosion investigation results is presented. The corrosion 

rates in the typical Ringer’s solution, computed from the polarization curves after three treatments, 

MP, EP, and MEP, are presented. The results indicate the best corrosion resistance of 316L SS surface 

to be after MEP, and the biggest corrosion rate of the sample occurs after MP. 

The scanning electron spectroscopy (SEM) investigation results are presented in Figure 6. In the 

picture the characteristic EDS data of 316L stainless steel composition profile is visible with 

prevailing peak of iron and chromium next to it. 

The Auger electron spectroscopy results are presented in Figure 7. In Figure 7a the typical Auger 

profiles after MP are presented. In the picture the relative concentration of iron is increasing very 

quickly with the sputtering time. This way the surface film thickness is rather small. Figure 7b 

indicates the oxide film after EP to be about three times higher than the oxide film after MP. After 

magnetoelectropolishing MEP (Figure 7c) the presented oxide/hydroxide film on the sample surface is 

even bigger than the film after a standard electropolishing EP.  
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Figure 4. Electrochemical Impedance Spectroscopy results (Nyquist plots) of AISI 316L 

SS (a), and (b) polarization curves obtained on AISI 316L SS sample surface in Ringer’s 

solution; both after three types of treatments MP, EP, MEP. The arrow in Figure 4b 

indicates pitting development. 
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Figure 5. Comparison of corrosion rates of AISI 316L SS in Ringer’s solution after 

treatment by: MP – abrasive polishing (grit size 800), EP – standard electropolishing, MEP 

– magnetoelectropolishing [1,27]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. EDS results of 316L SS surface after magnetoelectropolishing (MEP), (save 

screen). 
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Figure 7. AES results of 316L SS surfaces after: (a) MP – abrasive polishing, (b) EP – 

standard electrolytic polishing, and (c) MEP – magnetoelectropolishing. 
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Figure 8. XPS results of 316L SS surfaces after: MP – abrasive polishing, EP – standard 

electrolytic polishing, and MEP – magnetoelectropolishing [26]. 
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The presented XPS results in the whole range of binding energy (Figure 8) after each of the 

finishing treatment: MP, EP, and MEP, may be analysed. After abrasive polishing (Figure 8 MP) the 

following elements dominate on the surface: oxygen, carbon, chromium and iron, and much lower 

peaks correspond to nickel, manganese, and molybdenum. After a standard electropolishing (Figure 8 

EP) the level of oxygen increases (occurring mainly in the form of oxides), with such elements like 

calcium, sodium, and phosphorus being more noticeable, and with nickel vanishing in the background 

noise. The sample surface after magnetoelectropolishing (Figure 8 MEP) is also characteristic with 

high amount of oxides, with lower amounts of iron and chromium compounds, and with some peaks of 

non-magnetic elements, like phosphorus.  

The XPS results on 316L SS surface for Fe region (Figure 9) [26] indicate the occurrence of oxides 

FexOy in each case, with varying amount of metallic iron after each consecutive kind of treatment: MP, 

EP, and MEP. The highest amount of free iron occurs after abrasive polishing (Figure 9 MP), lower 

after a standard electropolishing (Figure 9 EP), and no noticeable peak of iron is visible after 

magnetoelectropolishing (Figure 9 MEP).  

The XPS investigation results on 316L SS surface for Cr region (Figure 10) [26] indicate the 

occurrence of oxides CrxOy in each case, with varying amounts of free chromium after each 

consecutive kind of treatment MP, EP, and MEP. The highest peak of free chromium occurs after a 

standard electropolishing (Figure 10 EP), some lower after abrasive polishing (Figure 10 MP), and no 

noticeable peak of free chromium is visible after magnetoelectropolishing (Figure 10 MEP).  

The numerical amounts of oxides and pure metal atoms on 316L SS samples, after MP, EP, and 

MEP have been presented in Figure 11. In Figure 11a the percentage contents of particular elements 

of the surface film (Fe, FeOx, Cr, CrOx) is presented indicating no free metal atoms contents after 
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magnetoelectropolishing MEP. In Figure 11b one may notice no free iron atoms on the sample surface 

after MEP, beside from no free chromium atoms independent on the kind of treatment.  

 

Figure 9. XPS results for Fe region of 316L SS surfaces after: MP – abrasive polishing, EP 

– standard electrolytic polishing, and MEP – magnetoelectropolishing [26]. 
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Figure 10. XPS results for Cr region of 316L SS surfaces after: MP – abrasive polishing, 

EP – standard electrolytic polishing, and MEP – magnetoelectropolishing [26]. 
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Figure 11. Calculated results of surface film composition on 316L SS sample: (a) 

revealing the presence or absence of free atoms and oxides, (b) dependent on kind of 

treatment, MP, EP and MEP. 
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sample surface after MEP is bigger than the film after a standard electropolishing EP, and much bigger 

than after MP. 

When analyzing the XPS iron region for binding energy BE equalling from 730 eV to 700 eV the 

progressive metallic iron washing out is observed starting from MP, through EP until MEP surfaces to 

a complete disappearance of that element after magnetoelectropolishing MEP (see Figure 9). On MP 

316L SS surface the Fe2O3 oxides dominate for BE equaling 710.9 eV, and FeOOH compounds 

appear on EP and MEP 316L SS surfaces for BE equaling 711.8 eV.  

When analyzing the XPS chromium region for binding energies from 600 eV to 560 eV the 

metallic chromium peak is observed on MP and EP 316L SS surfaces for a binding energy of 574.4 

eV (see Figure 10). On the other hand, no chromium peak is visible over the background noise on 

316L SS surface after magnetoelectropolishing MEP. Here also the chromium oxides are of great 

interest. After MP and EP of 316L SS samples generally Cr2O3 oxides are apparent for binding energy 

equaling 576.8 eV. After MEP of 316L SS sample the hydroxides Cr(OH)3 occur for binding energy 

equaling 577.3 eV, and some non-stoichiometric CrOx oxides occur, with x below 3, for binding 

energy equaling 578.3 eV. The occurrence of oxides and hydroxides of chromium and iron on 316L 

SS surface layer after electrolytic polishing (EP) were reported also by Selvaduray and Trigwell [14], 

and Kerber and Tverberg [31]. Our earlier studies carried out on 316L SS surface after EP and MEP by 

Auger electron spectroscopy indicated on decreasing amount of Fe against Cr. After a typical abrasive 

polishing (MP) a Cr/Fe ratio indicates 0.7-0.74, whereas after EP it is usually over 1, to about 1.2. The 

XPS results obtained on AISI 316L after MEP indicated the Cr/Fe ratio to be over 1.7 [1,22,27], and 

our recent investigations show the ratio to reach even 3. It is much better than after a standard EP and 

it is believed to be the reason for improved corrosion behaviour. On the other hand, the reported Cr/Fe 

ratio result after EP and additional operation relying on passivation in nitric acid showed at maximum 

of 2.3 [31].  

The magnetoelectropolishing process carried out with oxygen evolution contradicts, to some 

degree, all three of the established electropolishing theories. When the electropolishing process is 

carried out under the oxygen evolution regime, the properties of oxygen and its behaviour in a 

magnetic field are the critical factors. Oxygen is a paramagnetic element with two unpaired electrons 

that are attracted and aligned by a magnetic field. It is believed that some oxygen molecules, which are 

released during decomposition of the oxide layer, escape to the electrolyte. Others are attracted by the 

nonzero magnetic field. Those attracted oxygen molecules likely migrate toward the metal surface 

through the cyclically oxidized surface, or through vacancy sites, and dissociatively adsorb. This 

makes the oxide-hydroxide layer more compact and homogenous and thus more difficult to dissolve. 

The dissociatively adsorbed oxygen must be responsible for the decrease in current density and, 

consequently, for the rate of dissolution of electropolished material. 

The characteristic feature of MEP process of steel surface is eliminating free metals from the film 

(see Figure 11) which has not been possible in any other surface treatment (MP, and/or EP). Instead, 

only respective oxides have been revealed on samples after magnetoelectropolishing. An additional 

enrichment of the surface layer in oxides may be obtained after post-electropolishing passivation 

process. It would be interesting to compare this magnetically electropolished (MEP) surface with a 

nitric or citric passivated surface, and such a research is planned as the next step of the study. 
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These Auger and XPS studies have evidenced that changes in composition of the surface film 

appear to have a decisive influence on the 316L SS corrosion behaviour. Thus, presented in other 

authors’ papers [1,26-28], improved the corrosion behaviour well coincides with the contribution of 

chromium and iron oxides content in the surface film after MEP treatment. 

 

5. Conclusions 

 

The investigation results presented show the differences both in polarization characteristics 

obtained during EP and MEP, corrosion resistance, and in the surface film morphology and 

composition of a medical grade 316L stainless steel between mechanically polished MP, standard 

electropolished EP, and magnetoelectropolished MEP surfaces. Thus modified 316L stainless steel 

surface film composition well coincides with the results showing improved corrosion behaviour of the 

samples obtained after three treatments: MP, EP, and MEP. The following additional conclusions may 

be drawn from the studies: 

(1) the plateau in the course of polarization curve during MEP with 350 mT was found to be 

between the plateaux of standard EP carried out in still and moderately mixed electrolyte. 
(2) the treated 316L SS samples indicate improving corrosion resistance in halide media from the 

least, after MP, through EP, to the best after MEP. 

(3) electrolytic polishing of 316L SS in a magnetic field (MEP) results in disappearance of both 

metallic Cr and Fe and formation of oxides and hydroxides of these metals. 
(4) a noticeable change in chemical composition on the studied 316L SS surfaces from Fe2O3 to 

FeOOH and from Cr2O3 into Cr(OH)3 and CrOx (with x being below 3, not reaching CrO3) is 

apparent on the samples after MEP. 
(5) the magnetic field applied for electropolishing of 316L SS results in selective leaching of 

magnetic elements like Fe and Ni from the non-magnetic austenitic steel. 

The modified 316L SS sample surface after MEP process has indicated a decreased corrosion rate 

in Ringer’s body fluid. All used surface study techniques, SEM, the Auger spectroscopy, and XPS 

examinations revealed advantageous changes in the surface film formed on AISI 316L SS resulting 

from incorporation of the magnetic field into electropolishing process. Magnetoelectropolishing seems 

to be a reasonable process for using it to modify metal surface film composition and improve 

performance of 316L SS biomaterial. 
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