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Abstract: The Vogel-Fulcher-Tammann (VFT) equation has been used extensively in the 

analysis of the experimental data of temperature dependence of the viscosity or of the 

relaxation time in various types of supercooled liquids including metallic glass forming 

materials. In this article, it is shown that our model of viscosity, the Bond  

Strength—Coordination Number Fluctuation (BSCNF) model, can be used as an 

alternative model for the VFT equation. Using the BSCNF model, it was found that when 

the normalized bond strength and coordination number fluctuations of the structural units 

are equal, the viscosity behaviors described by both become identical. From this finding, 

an analytical expression that connects the parameters of the BSCNF model to the ideal 

glass transition temperature T0 of the VFT equation is obtained. The physical picture of the 

Kohlrausch-Williams-Watts relaxation function in the glass forming liquids is also 

discussed in terms of the cooperativity of the structural units that form the melt. An 

example of the application of the model is shown for metallic glass forming liquids. 
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1. Introduction 

The Vogel-Fulcher-Tammann (VFT) equation [1-3] is one of the most commonly used expressions 

for the analysis of the temperature dependence of viscosity [4-9], relaxation time [5,8,10,11], diffusion 

coefficient [5-7,9], and electrical conductivity [5-7], etc. The application of the VFT equation covers a 

wide field of research [12]. It has been reported that the transport properties of supercooled melts can 

change at certain characteristic temperatures such as the dynamical crossover temperature Tc [8,11,13,14]. 

By reducing the temperature of the liquid below Tc, the thermally activated hopping process becomes 

dominant [15]. In such a process, the activation energy for the transport properties is often discussed in 

the frame of the Arrhenius law expressed as A = A0exp(±Ea/RT), where A, A0, R and Ea denote the 

transport coefficient, its pre-exponential factor, the gas constant, and the activation energy for the 

transport coefficient, respectively. In this case, the activation energy Ea is considered as the energy barrier 

that the mobile species, such as ions or molecules, must overcome to move from one position to another. 

However, in most cases, the value of Ea is not a constant [16-18] and changes with variation in temperature. 

Some studies have shown that the variations of the activation energy for the transport properties are 

affected by their diffusion and structural relaxation mechanism during supercooling [5,8,9,13,16,17,19]. 

According to the strong-fragile classification of glass forming liquids [13,20,21], systems obeying 

the Arrhenius law are called strong system. These systems exhibit an almost straight line in the 

temperature dependence of the viscosity when plotted against the inverse temperature normalized by 

their glass transition temperature Tg/T. Such a plot is usually called Angell’s plot. On the other hand, 

systems showing a large curvature in the temperature dependence do not follow the Arrhenius law, due 

to changes of the activation energy Ea that apparently depends on temperature [16-19]. Such systems 

are called fragile system. To describe the behavior observed in fragile systems, the VFT equation has 

often been employed [4,6,7]. Although the physical background of the VFT equation has been fully 

discussed from the theoretical point of view [10,22], there might be some discrepancies between the 

experimental data and its interpretation when the actual data and the VFT equation are compared. The 

VFT equation has been used as a practical equation to reproduce the experimental data, and therefore it 

is not sufficient to understand the physics behind the glass forming process. For instance, one of the 

parameters of the VFT equation, the so-called ideal glass transition temperature T0 which indicates the 

dynamical divergence in the temperature dependence of the viscosity or relaxation time, is not 

observed in real systems [18]. Another point is that the values of the parameters of the VFT equation, 

obtained from the data analysis, have not been fully exploited. Specifically, although the VFT equation 

reproduces the experimental data, no concrete microscopic physical picture of the melt and further 

knowledge on the structural relaxation can be extracted from the VFT parameters alone. 

Previously, a model for temperature dependence of the viscosity of melt has been proposed by one 

of the authors [23]. The model which is called Bond Strength—Coordination Number Fluctuation 

(BSCNF) model, describes the viscosity behavior in terms of the mean values of the bond strength E0, 

the coordination number Z0, and their fluctuations, E, Z, of the structural units that form the melt. In 

our previous works, the model has been applied to investigate the viscosity of many kinds of glass 

forming liquids such as covalent, ionic, molecular, metallic, and polymeric materials [24-27]. It has 

been shown that the model reproduces experimental data well, and characterizes many kinds of glass 

forming liquids extending from strong to fragile systems. From the theoretical side, it has also been 
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shown that the viscous flow is accompanied by cooperatively rearranging movements of the structural 

units and occurs by breaking selectively weaker parts of the bonds [24,28]. This notion of the viscous 

flow is closely related to the well-known concept to explain the glass transition phenomena, the 

“cooperatively rearranging region (CRR)” as proposed by Adam and Gibbs [29]. Thus, our model of 

the thermally activated viscous flow, provides further understanding of the structural relaxation, in 

addition to other well-known theories such as the configurational entropy theory [29-31], the free 

volume theory [32,33], and to the picture obtained from the activated volume [34], etc. 

In this article, it is shown that under certain conditions, the BSCNF model reproduces exactly the 

same viscosity behavior as the VFT equation [25,26,35]. The prerequisite is that the normalized bond 

strength fluctuation |E|/E0 equals the normalized coordination number fluctuation |Z|/Z0. This 

condition makes it possible to directly connect the parameters of the VFT equation, such as the ideal 

glass transition temperature T0, to the parameters of the BSCNF model, which contain microscopic 

information related to bonding connectivity among the constituent elements. Thus, the BSCNF model 

incorporates the VFT relation. By choosing the best fitting parameters, it reproduces the experimental 

data better than the VFT equation. In this review, the correlation between the fragility index of various 

glass forming liquids and the stretched exponent of the Kohlrausch-Williams-Watts (KWW) relaxation 

function [36,37], is also discussed in terms of the cooperativity which is defined by the BSCNF model. 

2. The BSCNF Model and the VFT Equation 

Commonly, glasses are formed by quenching a liquid. In the course of lowering the temperature, the 

value of the viscosity increases drastically reaching approximately 10
12

 Pa · s at the glass transition 

temperature Tg. At the microscopic scale, the constituent elements of the glasses are considered to 

form certain types of clusters or structural units. Such structural units are bound to others by a certain 

bond strength retaining its spatial random connectivity. Within the glass-forming liquid, thermally 

activated viscous flow occurs due to bond-breaking and bond-switching. In addition, it must be noted 

that it is not necessary to break all the bonds connecting to the nearest neighbor components when the 

thermally activated viscous flow occurs. Bond twisting may also result in the viscous flow by enrolling 

the movement of second or more distant components of the melt. 

Based on this picture, a model for the temperature dependence of the viscosity, the Bond  

Strength—Coordination Number Fluctuation (BSCNF) model, has been proposed by one of the 

authors [23]. The BSCNF model is given by 
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Here, x is the inverse temperature normalized by Tg, x = Tg/T. R is the gas constant._0 and Tg are the 

viscosity at the high temperature limit and at the glass transition temperature, respectively. The fitting 

parameters B and C defined in Equation 2 have the following intuitive meanings: C gives the mean 

total binding energy per structural unit and B gives the degree of its fluctuations among the structural 

units against the thermal disturbance at Tg. Regarding the number of parameters, the BSCNF model 

given in Equation 1 has five fitting parameters, namely, B, C, Tg, 0, and Tg. However, it must be 

noted that the effect of Tg is embodied in B and C as given in Equation 2. Thus, in the case where the 

viscosity is plotted in the Angell’s plot, the BSCNF model given in Equation 1 has four fitting 

parameters, i.e., B, C, Tg, and 0. 

Figure 1 shows some applications of the BSCNF model. The viscosity of bulk metallic glass 

forming liquids such as Zr41Ti13.8Cu12.5Ni10Be22.5 and Cu47Ti34Zr11Ni8, and other type of materials such 

as DGG1 (a kind of soda lime silicate glass) and Glycerol, are shown in Figure 1 (a) and (b), 

respectively. As can be seen in these figures, the BSCNF model reproduces the viscosity data better 

than the VFT equation. 

Figure 1. (a) Temperature dependence of the viscosity in bulk metallic glass forming 

liquids (Zr41Ti13.8Cu12.5Ni10Be22.5 and Cu47Ti34Zr11Ni8); and (b) DGG1 (Soda lime silicate 

glass) and Glycerol. The data shown with the symbols are taken from the reference [38] in 

(a) and reference [39] in (b). The full lines are reproduced by the BSCNF model, and the 

dashed lines are by the VFT equation given in Equation 5. 

      

 

According to the BSCNF model, glass forming liquids are characterized by the set of parameters B 

and C [23,24]. Figure 2 shows that many kinds of glass forming materials, including covalent, metallic, 

and molecular glassy systems, are characterized in a mapping plotted in the B-C space. From this 

figure, we note an interesting trend. Strong system is characterized by a large value of C and a small 
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value of B. While, fragile system is characterized by a small value of C and a large value of B. In this 

manner, the BSCNF model can characterize any kind of glass forming material in terms of B and C, or, 

E0, Z0, E, and Z. It is expected that the characteristics of glass forming materials are reflected 

through these quantities. Furthermore, by studying the trend, we note that there is a correlation 

between B and C, which has been suggested in our previous work [24]. Such a correlation is shown by 

the shaded area in Figure 2. It has also been found that an analytical relation, reproducing this 

correlation between B and C, can be derived from the BSCNF model [28]. The relation is given by 
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Note that  gives the ratio of the normalized bond strength fluctuation to the normalized coordination 

number fluctuation. The dashed line in Figure 2 shows the behavior given by Equation 3 for the case 

of  = 1 with Tg = 10
12

 Pa · s and 0 = 10 

−5
 Pa · s. In one of our previous works, the composition and 

temperature dependence of the viscosity in Cux(As2Se3)1−x (x ≤ 0.20) was discussed [28]. There, it was 

shown that in this system, the ratio of the fluctuations  can take relatively large values,  ≈ 15. The 

result suggests that for the Cu-As-Se system, there is a strong composition dependence in the bond 

strength fluctuation and a weak dependence in the coordination number fluctuation and fragility. 

Furthermore, we have compared and discussed the interrelation between the VFT equation and the 

BSCNF model [25,26]. It has been found that in the case of  = 1, the viscosity behavior described by 

Equation 1 with the set of parameters (B, C) obeying the relation Equation 3, perfectly follows the 

behavior described by the VFT equation, 
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_where AVFT is the logarithm of the viscosity at the high temperature limit, AVFT = log 0, and BVFT, T0 

are the free fitting parameters of the VFT equation. It is considered that at the ideal glass transition 

temperature T0, which is also called “Vogel temperature”, the movement of the atoms is totally frozen. 

In the VFT equation, the number of fitting parameters is three, namely, BVFT, T0, and 0. One of the 

reasons that the BSCNF model reproduces the experimental data better than the VFT equation, _as 

shown in Figure 1, is due to the difference in the number of free parameters. Here, it should be noted 

that for the case of  = 1, the number of free parameters of the BSCNF model reduces from four to 

three, B, Tg, and 0, because C and B are connected mutually through Equation 3. 

At the glass transition temperature, the VFT equation given by Equation 5 reduces to 
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Figure 2. Mapping of different kinds of glass-forming liquids in the B-C space. The dashed 

curve indicates Equation 3 for the case of  = 1 with Tg = 10
12

 Pa · s and 0 = 10 

−5
 Pa · s. The 

correlation between B and C that has been suggested previously [24] _is shown by  

shaded area. 

 

 

In Table 1, the key parameters for 38 kinds of oxide glass forming materials are indicated. In order 

to check the exact fitting between the VFT equation and the BSCNF model, in this analysis, we used 

the collection of fitting parameters by the VFT equation given in reference [4], where the values of 

BVFT, T0, Tg, and the fragility index m for various oxide glass forming materials are provided. The 

numerical values of both, ln (Tg/0) calculated by Equation 6, and the best fitting parameters (B
*
,  C

*
) 

determined by the BSCNF model, are also indicated in Table 1.  

The fragility index m is defined as m = d log η /d (Tg/T) |T=Tg [21]. From the BSCNF model of the 

viscosity given in Equation 1, we obtain the fragility index m [23-26]. 
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On the other hand, from the VFT equation given in Equation 5, we obtain another fragility expression, 
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Table 1. Parameters of various oxide glass forming materials. Data of BVFT, T0, Tg, and m 

are taken from reference [4]. The values of ln(ηTg/η0), and the best fitted parameters (B
*
, C

*
), 

are calculated from Equations 1, 3 and 7 under the condition that Equation 3 satisfies = 1. 

  

 

       No.__Material BVFT (K) T0 (K) T g (K) m ln(ηTg/η0) (B
*
, C

*
) 

              11.__SiO2 21,254 139 1,450 17.9 37.3 (0.01,   3.8) 

12.__Li2O·SiO2 5,744 276 593 33.9 41.7 (0.22,   2.3) 

13.__Li2O·2SiO2 5,752 380 727 34.7 38.2 (0.27, 18.2) 

14.__Li2O·3SiO2 8,218 255 734 26.3 39.5 (0.12, 25.7) 

15.__Na2O·SiO2 4,999 395 687 40.3 39.4 (0.33, 16.7) 

16.__Na2O·2SiO2 5,538 393 728 35.9    38.1 (0.23, 17.5) 

17.__Na2O·3SiO2 7,484 287 743 26.7 37.8 (0.15, 23.2) 

18.__Na2O·4SiO2 7,618 323 765 29.8 39.7 (0.18, 22.9) 

19.__K2O·SiO2 4,395 416 675 44.2 39.1 (0.38, 14.9) 

10.__K2O·2SiO2 7,461 333 768 30.3 39.5 (0.19, 22.3) 

11.__K2O·3SiO2 8,334 253 760 24.6 37.9 (0.11, 25.3) 

12.__K2O·4SiO2 8,471 255 766 24.8 38.2 (0.11, 25.5) 

13.__Na2O·Al2O3·6SiO2 12,281 347 1,087 24.4 38.2 (0.10, 26.0) 

14.__CaO·MgO·2SiO2 4,826 710 995 59.1 39.0 (0.51, 11.1) 

15.__CaO·Al2O3·2SiO2 5,802 785 1,113 60.0 40.7 (0.50, 11.9) 

16.__2MgO·2Al2O3·5SiO2 8,244 583 1,088 35.2 37.6 (0.29, 17.4) 

17.__15.45Na2O·12.81CaO·71.74SiO2 6,785 421 819 35.1 39.3 (0.26, 19.0) 

18.__2BaO·TiO2·2SiO2 3,896 750 983 70.5 38.5 (0.58, _9.0) 

19.__PbO·SiO2 3,690 454 673 51.8 38.8 (0.46, 12.5) 

20.__PbO·2SiO2 6,001 390 749 34.9 38.5 (0.27, 18.4) 

21.__2PbO·SiO2 2,496 473 613 78.1 41.1 (0.60,_ 9.2) 

22.__B2O3 4,695 252 540 30.6 37.5 (0.22, 20.0) 

23.__Li2O·B2O3 2,557 542 693 77.7 39.0 (0.61,   8.4) 

24.__Li2O·2B2O3 2,497 616 763 88.2 39.1 (0.65,   7.4) 

25.__Li2O·3B2O3 2,850 598 768 76.6 38.8 (0.61,   8.4) 

26.__Li2O·4B2O3 2,908 579 751 73.8 38.9 (0.60,   8.8) 

27.__Na2O·2B2O3 2,405 600 748 82.1 37.4  (0.65,   7.3) 

28.__Na2O·3B2O3 3,121 557 746 65.2 38.0 (0.56,   9.5) 

29.__Na2O·4B2O3 3,172 539 727 65.2 38.9 (0.55,   9.9) 

30.__K2O·2B2O3 2,888 520 705 59.5 36.0 (0.55,   9.3) 

31.__K2O·3B2O3 3,403 512 709 62.2 39.8 (0.52, 10.9) 

32.__K2O·4B2O3 3,588 463 691 47.7 36.2 (0.45, 11.9) 

33.__Cs2O·3B2O3 3,363 491 693 57.1 38.3 (0.50, 11.1) 

34.__BaO·2B2O3 3,262 619 810 72.4 39.3 (0.59,   9.2) 

35.__SrO·2B2O3 2,592 755 911 97.0 38.3  (0.69,   6.4) 

36.__PbO·B2O3 2,171 525 658 80.8 37.6 (0.64,   7.5) 

37.__PbO·2B2O3 3,020 545 738 59.8 36.0 (0.55,   9.3) 

38.__PbO·3B2O3 2,656 569 728 76.5 38.5 (0.61,   8.3) 

        



Materials 2010, 3                            

 

 

5253 

3. Comparison between the BSCNF Model and the VFT Equation 

Figure 3 (a) shows the complete correspondence of the viscosity behaviors reproduced by the VFT 

equation and the BSCNF model. In Figure 4, we can see that all the materials given in Table 1 are 

located on the curve C (B,  = 1) described by Equation 3 in the B-C space. This result provides a 

physical interpretation to the VFT relation, from the BSCNF model’s point of view. Specifically, 

according to the BSCNF model, the glass forming liquids whose viscosity data are described by the 

VFT equation satisfies the following relation [35], 

.
ΔΔ

00 Z

|Z|

E

|E|
  (9)  

Figure 3. (a) The exact correspondence between the temperature dependence of viscosity 

described by the VFT equation (symbols) and that described by the BSCNF model (solid 

lines). The materials numbers are the same as given in Table 1. (b) The viscosity behaviors 

described by Equation 1 with five different values of (B, C). B
*
 and C

*
 indicate the value of 

B and C that perfectly reproduces the VFT behavior. 

   

 

The physical meaning given by Equation 9 is clearer than that of the fitting parameters used in the 

VFT equation, because, for instance, the ideal glass transition temperature T0, which indicates the 

dynamical divergence in the temperature dependence of the viscosity or relaxation time, is not directly 

observed [18]. The quantities E0, Z0, and E, Z used in Equation 9 are in principle measurable 

quantities. It should be mentioned, however, that the theoretical justification of the derivation of the 

VFT equation from the BSCNF model, by imposing the condition given in Equation 9, remains to be 

solved. In Figure 2, it is shown that not all the materials are located on the curve of C (B,  = 1). This 

result indicates that for different glass forming materials, the distribution of the connectivity among the 

structural units which is described by E and Z differs among the glassy materials. In the inset of Figure 4, 



Materials 2010, 3                            

 

 

5254 

it is shown that C (B,  ≠ 1) deviates from C (B,  = 1) When the set of values (B, C) at P1 is used, for 

instance, Equation 1 reproduces exactly the viscosity behavior described by the VFT equation as 

shown in Figure 3 (a). Thus, by changing (B, C), the BSCNF model can reproduce the experimental 

behavior better than the VFT equation. Such a set of values (B, C) is denoted schematically by P2 

which is on the line of C (B,  ≠ 1) in the inset. Figure 3 (b) shows the different viscosity behaviors 

described by Equation 1 with five different sets of (B, C). Here, (B
*
, C

*
) exactly reproduces the 

behavior given by the VFT equation. As noted above, by changing (B, C), the experimental data of the 

viscosity from strong to fragile glass forming systems are well reproduced. However, analogous to the 

case of the VFT equation [8,16,40], in some cases such as the van der Waals liquids [41] and metallic 

glass forming systems [42], the BSCNF model does not reproduce the experimental data over a wide 

temperature range. This is due to the fact that in the high temperature region above Tg, a salient change 

in the transport properties emerges near the dynamical crossover temperature Tc as predicted by the 

widely discussed mode-coupling theory [5,8,13,14]. 

Figure 4. The viscosity described by Equation 1 using the set of parameters (B
*
, C

*
) that 

satisfy Equation 3 with  = 1 corresponds exactly to that described by the VFT equation 

given in Equation 5. The  dependence is illustrated in the inset. 

 

 

Using Equations 3, 6, and 8, the following relation that analytically connects the parameters of the 

VFT equation, T0, with that of the BSCNF model, B and C, is obtained, 
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where B
*
 and C

*
 denote the values of B and C that satisfy Equation 3 in the case of  = 1. It is 

noteworthy that B
*
 and C

*
 are calculated as a function of the fragility index m. In the inset of Figure 4, 
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the point P1 is designated as (B
*
, C

*
) and denotes the intersection between the line of constant fragility 

index m with the curve C (B,  = 1) given by Equation 3. In other words, if the value of fragility index 

m is given, the set of (B
*
, C

*
) can be determined uniquely by calculating the intersection. The 

applicability of Equation 10 has been discussed by applying it to some polymeric [25] and metallic 

materials [27]. The characteristic temperature ratio T0/Tg, is related to the fragility [14,19,43-45]. 

While, by using the VFT equation, another expression for the characteristic temperature ratio T0/Tg  

is derived 
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_or by using the fragility index m, we also have 
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where, D is the strength parameter defined as D = BVFT/T0 [45,46]. The expressions for T0/Tg given in 

the above equations have been used, for instance, in the analysis of pressure dependence of relaxation 

behavior of supercooled liquids [43]. _Here, it must be noted that T0/Tg can be used as an index 

equivalent to the fragility, because the ratio takes values between 0 (the strongest) and 1 (the most 

fragile) [46]. _The same statement applies to the expression given in Equation 10. For the case of strong 

systems, such as SiO2, B
*
 is nearly 0, and C

*
 takes approximately C

*
 ≈ 39.1. Thus, the right hand side 

of Equation 10 equals nearly 0, because for this system m ≈ 17. On the other hand, in more fragile 

systems, B
*
 and C

*
 take a larger and a smaller values, respectively. In such a case the value of T0/Tg 

given by Equation 10 approaches unity. Therefore, the information on bonding of the structural units is 

embodied in T0/Tg, and is described in terms of the parameters of the BSCNF model by using the 

expression given in Equation 10. It was concluded in reference [18] that the prediction by the VFT 

equation with dynamic divergence at T0 lacks direct experimental evidences. Their experimental 

investigations indicate that a simple use of the VFT equation is not sufficient to fully understand the 

physics of glass transition phenomena behind structural relaxation. So far, quite a large number of 

studies regarding the VFT equation have been accumulated. By linking these large numbers of works 

with the result obtained from the BSCNF model, especially by using Equation 10, it is expected that 

further knowledge on structural relaxation in glass forming melt can be extracted. 

4. Correlation between the Exponent of the KWW Function and the Fragility 

Many physical quantities exhibit a universal feature in their structural relaxation behaviors which 

mainly involve the cooperative relaxation motions of the constituent elements toward the glass 

transition. To describe such a behavior, the Kohlrausch-Williams-Watts (KWW) function [36,37] has 

been widely used [5,8,10,17,33,40,47-50]. _It is written as 
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where 0  is the value of the physical quantity at time t = 0. βKWW is the exponent of the KWW 

function which is called “stretched exponent”, and _τ is the structural relaxation time. 

It is widely accepted that βKWW gives the degree of many-body interactions among the constituent 

elements of structurally disordered materials [33,40,50]. It is known that in the case of βKWW = 1, 

structural relaxation reduces to the Debye relaxation where all the elements of the glass exhibit a 

simple relaxation. For systems characterized by a small value of βKWW, on the other hand, many modes 

of relaxation are present, leading to non-linear relaxation [10,33]. It is also known that βKWW is related 

to the fragility and that the non-linear relaxation behaviors are related to the -relaxation described by 

the VFT equation [10,21]. 

According to Vilgis [51], the stretched exponent βKWW and the strength parameter D are mutually 

connected through the following relation 

.
)/(

1

2

g0

KWW
D

TT
  (14)  

Equation 14 is used to check the value of βKWW with the VFT equation [45,52]. Using this relation 

together with Equation 8, the following relation between the stretched exponent βKWW, the 

characteristic temperature ratio T0/Tg, and the fragility index m is obtained, 

.
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1
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g0

KWW
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TT

TT

TT


  (15)  

In Figure 5, the relation between the exponent of the KWW function and the fragility index is 

shown. The symbols used in Figure 5 are the same as those used in Figure 4. The values of βKWW are 

calculated from Equation 15. _The dashed curves in Figure 5 are calculated from Equation 15 with 

T0/Tg given in Equation 10. We can see that all values of βKWW for the materials indicated in Table 1 

follow the theoretical curve when Tg = 10
12

 Pa · s and 0 = 10
−5

 Pa · s are used. A correlation between the 

fragility index m and βKWW has been observed in many kinds of glass-forming liquids [17,21,48,49]. It is 

expressed as m = C1 − C2 βKWW, where C1 and C2 are constants [21]. This phenomenological relation is 

analogous to our result shown in Figure 5. It must be noted however that for some glassy materials, the 

data measured do not necessarily follow the theoretical curve calculated with Tg = 10
12

 Pa · s and  

0 = 10 

−5
 Pa · s. In Figure 5, other theoretical curves calculated by using different values of Tg and 0 

are also shown. The same approach has been employed for many types of bulk metallic systems [27]. 

Although the validity of Equation 10 is restricted to the case of  = 1, the result of Figure 5 provides a 

sound physical meaning of βKWW in respect to the BSCNF model. 
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Figure 5. Relation between the exponent of KWW function and the fragility index. The 

dashed curves are calculated from Equation 15 with T0/Tg given in Equation 10 by varying 

the values of Tg and 0. The colored symbols are the same as those used in Figure 4. 

Actual values determined by experiments are also indicated. The experimental data shown 

in this figure are given in Table 2. 

 

 

Previously, a quantity defined as NB = Eη /(E0Z0) which gives the number of structural units 

involved in the thermally activated viscous flow has been introduced in the framework of the BSCNF  

model [24]. Here, Eη denotes the activation energy for the viscous flow. It has been shown that NB can 

be expressed analytically by B and C, NB (B, C) at Tg, and the value of NB increases with the increase in 

the fragility index m [28]. From the results, it was suggested that the thermally activated viscous flow 

occurs when the weaker parts of bonds are selectively broken. This observation indicates that systems 

with a smaller value of βKWW correspond to systems that have a larger value of NB. In this regard, some 

researchers have reported similar ideas. For instance, _Park et al. _have mentioned that the  

non-exponentiality given by βKWW is directly affected by the intermolecular cooperativity, resulting in 

the increase of the domain size of the glass-forming alcohols [10]. Similarly, Rault has indicated that 

the connection between cooperative motion of - relaxation and βKWW leads to the VFT law [53]. This 

picture of the cooperativity gained through the quantity NB is also in harmony with the concepts 

proposed by others such as the “cooperativity of atomic migrations” given by Wang and Fecht [54], 

and the “supercooled liquid as an elastic medium” given by Trachenko [55,56], etc. Our view of the 

cooperativity gives the same result and provides an alternative view to understand the structural 

relaxation, that is, in terms of the structural units which is determined by the bonding nature. All these 

results indicate that the BSCNF model could be an alternative to the VFT equation which has been 
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widely used in the analysis of the temperature dependence of the viscosity. The BSCNF model 

provides a clearer physical picture and microscopic information on bonding and cooperativity of the 

constituent elements within the viscous liquids. 

Table 2. Experimental values of the stretched exponent KWW and the fragility index m for 

some materials such as oxide, polymeric, and metallic systems. _ 

 

5. Conclusions 

In this paper, the BSCNF model has been reviewed. In particular, it was shown that in the case 

where the magnitudes of energy and coordination number fluctuations of the structural units are equal, 

the viscosity behavior described by the BSCNF model corresponds perfectly to that described by the 

VFT equation. It was also shown that the characteristic temperatures ratio T0/Tg can be expressed in 

terms of the parameters of the BSCNF model, namely, the total bond strength, average coordination 

number and their fluctuations of the structural units, leading to a new way to understand the 

cooperativity of the structural relaxation in supercooled liquids. Furthermore, by connecting the 

BSCNF model with another model given by Vilgis, a theoretical relation that correlates the stretched 

exponent of the KWW function βKWW, and the fragility index m has been obtained. 

 Materials m KWW Reference 
     

1. SiO2 20 0.70 [21] 

6. Na2O·2SiO2 45 0.60  

7. Na2O·3SiO2 37 0.68  

8. Na2O·4SiO2 37 0.63  

22. B2O3 32 0.60  
     

25. Li2O·3 B2O3 77 0.48 [47] 
     

(1) Poly(propylene glycol) 75 0.52 [17] 
(2) Poly(vinyl acetate) 95 0.43  

     
(3) Polyisobutylene 46 0.55 [57] 

(4) Polyvinyle chloride 160 0.25  

(5) Polyvinyl acetate 130 0.43  

(6) Polystyrene 139 0.35  

(7) Polymethyl acrylate 102 0.41  
     

(8) Poly(methylmethacrylate) 145 0.34 [21] 

(9) Polypropylene 137 0.35  

(10) Poly(methylphenysiloxane) 100 0.44  

(11) Poly(vinylmethylether) 75 0.44  
     
(12) Zr65Al7. 5 Cu17. 5 Ni10 43 0.45 [48] 

(13) Pd40Ni40P20 42 0.42  
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