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Abstract: Due to its excellent biocompatibility and mechanical properties, various 

different applications of polyvinyl alcohol-hydrogels (PVA-H) has been attempted in many 

fields. In the field of orthopedic surgery, we have been engaged for long time in research 

on the clinical applications of PVA-H as a artificial cartilage, and have performed many 

basic experiments on the mechanical properties, synthesis of PVA-H, and developed 

orthopedic implants using PVA-H. From these studies, many applications of artificial 

articular cartilage, intervertbral disc and artificial meniscus etc. have been developed. This 

review will present the overview of the applications and recent advances of PVA-H 

cartilages, and discuss clinical potential of PVA-H for orthopedics implant.  

Keywords: polyvinyl alcohol-hydrogel; biocompatibility; artificial cartilage; orthopedics 
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1. Introduction  

Due to its excellent biocompatibility and mechanical properties, the bio-medical application of 

polyvinyl alcohol-hydrogels (PVA-H) is artificial arteries, artificial cartilages, and artificial muscles, 

etc. in various fields have been under study for a long time. However, until now, this PVA-H has not 

been used in specific clinical applications, despite the numerous studies.  

Since 1985, Oka et al. have been engaged in research on the clinical application of PVA-H in the 

orthopedic surgery field, and have performed many basic experiments on PVA-H, and developed 

PVA-H implants. We also joined this research group and have been engaged in various research 

projects involving PVA-H. In this review, we will overview a series of findings we have discovered so 

far regarding the clinical applications of PVA-H for orthopedic surgery implants.  

2. The Development of PVA-H  

PVA was developed in 1924 by Hermann et al., and is a synthetic fiber with various excellent 

mechanical properties. It is also the raw material of “vinylon” the first high strength and high modulus 

synthetic fiber and PVA-H is prepared from this PVA. It is not only used for the manufacture of high 

strength high modulus fiber, but also serves as a raw material for films and acetal resins, as a textile 

processing agent, adhesive agent, polyvinyl chloride polymerization stabilizer, and inorganic binder, 

etc. Especially, since the excellent biocompatibility of PVA-H has been widely known, this has raised 

great expectations for its use as a biomaterial.  

Generally, hydrogels were defined as gels which contain water but are not soluble in water, 

therefore, PVA-H was not also a strong gel, but it was turbid. Then, Hyon developed the freeze-throw 

method [1,2] and made a complete homogenous PVA solution by heating the mixture of PVA and 

water/dimethylsulfoxide (DMSO), after agitating under a nitrogen air current, leaving the solution in 

low temperature (−20 °C ) for 10 hrs, and promoting the crystallization and cross-linking of PVA 

molecules. This frozen gel was brought into contact with water to exchange DMSO in the PVA gel 

with water. Repeating this cryogels formation process by freeze-thaw cycling, a PVA-H with high 

mechanical strength, high water content, and excellent transparency was successfully produced.  

By using this technique, we have developed the reinforcement of the mechanical properties of 

PVA-H by only the arrangement of water content and polymerization of PVA-H without any chemical 

agent or other blending polymers. Adding the cross-linking by γ-radiation, we have provided further 

improved mechanical properties and biocompatibility of PVA-H. 

However, on the way to develop the PVA-H as an arthroplasty material, it was necessary for PVA-

H to infiltrate into titanium fiber mesh as a composite devise to fix PVA-H firmly to the underlying 

bone. Because of poor infiltration of PVA solution into the pores of titanium mesh using the low 

temperature crystallization method, consequently, the filtration technique was improved by adopting 

high-pressure injection molding. The bonding strength of PVA-H and titanium fiber mesh interface 

was increased remarkably with this improved fabrication technique. Figure 1 shows the flow charts of 
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the fabrication process of two types of PVA-H. After that, we have selected and examined two kinds of 

PVA-H, according to the medical device we tried to investigate.  

Figure 1. (a) Flow chart of the production process of Polyvinyl alcohol-hydrogel (PVA-H) 

by freeze-thaw method. (b) by injection molding method.  

(a) 
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3. Biocompatibility of PVA-H  

It has already been reported that PVA-H has excellent biocompatibility, however, as we had not 

tested our newly improved PVA-H, so de novo basic biocompatibility experiments were performed 

using animals [3,4]. This PVA-H was implanted into various sites in rabbits and dogs, subcutaneously, 

intramuscularly, etc. and follow-up after surgery confirmed superior biocompatibility.  

In order to make certain in vivo immune-reactions against PVA-H, fine particles of PVA-H and 

ultra-high molecular weight polyethylene (UHMWPE), which is a common material for artificial joints, 

were injected into the bilateral knee joints, respectively, in the same rabbit and compared. The PVA-H 

used was fine particles with a diameter of 100 μm, with UHMWPE particles as control. Figure 2 is a 

histological photograph of tissue observed three months after injection. In the periphery of the 

UHMWPE particles, accumulated macrophages and foreign-body giant cells, and remarkable foreign-

body reactions were observed, while, almost no reactions were seen around PVA gel particles on the 

opposite side. This bio-inert characteristic of this PVA-H is speculated to be due to the strong 

hydrophilic effects of this gel, which inhibits water circulation to the cells, and secondary, makes it 

difficult for cells to adhere to its surface.  

Figure 2. Histological appearance of the implant material particles and the surrounding 

tissue in rabbits knee joint. (×100) (a) UHMWPE particle: many macrophage and giant 

cells are surrounding particle due to intense foreign-body reactions. (b) PVA-H particle: 

foreign-body reactions were hardly observed. 

(a) (b)

 

The results of these basic experiments confirmed that PVA-H has favorable biocompatibility. In 

fact, even in our many animal experiment subsequently performed for the development of implants, no 

foreign-body reactions nor inflammation were ever observed for PVA-H.  
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4. Bio-Mechanical Properties of PVA-H  

PVA-H has been chosen for investigation as it possesses several useful properties, including 

permeability, hydrophilicity and low frictional function. It has been widely commercialized and 

studied in the medical industries for the production of membranes, gels and films for an artificial 

pancreas, drug delivery system and adhesion protection sheet, etc. [5–7]. However, the use of PVA-H 

in the orthopedic surgery field has been thought to be limited because of its low mechanical strength 

and durability.  

4.1. Mechanical properties of PVA-H  

Actually, PVA-H was not so such a strong gel mechanically. Traditional cross-linking methods 

have been used to synthesize PVA-H materials with improved mechanical properties, however, the 

chemical agents introduced in their preparation are often toxic, inevitably affect the biocompatibility of 

the PVA-H. On the other hand, polymer blending is a useful method of improving or modifying the 

physiochemical properties of polymer materials, blends between synthetic polymers and biopolymers 

are of particular significance in current hydrogel research. A polymer blend can be defined as a 

combination of two polymers without any chemical bonding between them. Some chemical interaction 

can occur between components, but it sometimes induce the deterioration of mechanical properties  

of gels. 

In this academic background, we succeeded in gelling PVA by cryogenic crystallization using a 

freeze-thawing method at low temperatures with the organic solvent DMSO as the synthesis process, 

making it possible to prepare PVA of improved transparency and high strength. Subsequently, the 

research and development of our orthopedic implants was performed using an improved version of this 

PVA-H, and it underwent further improvements such as molecule cross-linking by γ-irradiation in 

order to achieve higher strength. 

On the way to developing the artificial cartilage, as mentioned above, it is necessary to infiltrate 

PVA-H into titanium fiber mesh as a composite device to fix PVA-H firmly to the underlying bone 

[4,8], so the high–pressure injection molding technique was used instead of the low temperature 

crystallization method. Accordingly, the mechanical properties of the PVA-H prepared by the new 

fabrication technique were subsequently investigated [9].  

Figure 3 shows the tensile strength test results of PVA-Hs (degree of polymerization: 8,800, water 

content: 30%) prepared by two fabrication techniques. The results showed that the mechanical strength 

and Young’s modulus of gels did not correlate with the different freeze-thawing and injection molding 

fabrication methods, with regards to high PVA concentration.  

The rheological behavior is also very important in investigating the mechanical properties of 

hydrogels. Although its variability depending on the measurement technique has been reported, we can 

evaluate the potentiality of its viscoelastic characteristics by comparing with that of natural human 

tissue [10]. Figure 4 shows the viscoelastic mechanical character of PVA-H. Figure 4(a) shows the 

stress-strain curves in compression tests of various PVA-Hs in some mechanical tests. As for the 
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stress-strain curves of PVA-H, as seen from the curves, it has lower modulus values at the tangent in 

the primal phase of curves, which indicates a viscoelasticity typical of natural tissue such as a articular 

cartilage, exhibited in high water content gels, while, the elastic response (or solid-like response) 

dominated in low water content PVA-H. Figure 4(b) shows the results of stress-relaxation tests. PVA-

H with a high water content tends to show more marked stress-relaxation. The human menisci 

exhibited the most acute stress-relaxation. 

Figure 3. The mechanical properties of PVA-Hs by two fabrication methods (degree of 

polymerization: 8,800, Water content: 30%): (a) Influence of heating temperature on 

Young’s modulus (MPa). (b) Influence of heating temperature on ultimate tensile strength 

(MPa). 
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Figure 4. The visco-elastic characteristics of PVA-H. (a) Representative stress-strain 

curves of various PVA-H samples. (b) Comparison of the stress-relaxation curves of PVA-

H samples.  

Stress(MPa)

2.0

6.0

10.0
PVA-H

Water content:20%

PVA-H

W.C.90%

0           1.0          2.0           3.0     Strain

Meniscus

PVA-H

W .C. 45%

Articular Cartilage

1       2       3        4        5     Time 

(min)

1.0

0.5

0

Stress(MPa)

PVA-H

Water content:20%

Articular Cartilage

PVA-H  W .C. 45%

Meniscus
PVA-H  W .C. 90%

(a) (b)

 

 

The results from mechanical testing indicated that changing the degree of cross-linking and water 

content could be utilized as a means of achieving the desired mechanical properties, including the 

viscoelastic characteristics of the PVA-H prepared by the freeze-thawing method or injection  

molding method.  

4.2. Tribology of PVA-H 

One of the important reasons that PVA-H has been widely studied as an artificial articular cartilage 

is its excellent lubrication function. Numerous authors have already reported the lubricative 

mechanism of PVA-H, which is said to be able to preserve the fluid film between articulating surface 

by elasto-hydrodynamic lubrication mode under certain loading condition. However, it was unclear if 

PVA-H under the boundary lubrication or solid lubrication mode could provide effective lubrication as 

a natural articular cartilage.  

The basic frictional function of PVA-H has been examined using an end face type friction test 

machine [10,11]. Figure 5 shows the frictional coefficient of various biomaterials against natural 

arrticular cartilage or PVA-H in synovial fluid simulated lubricants (saline with 0.375% hyaluronic 

acid, 3.0% albumin, 0.5% γ-globulin). All friction coefficients of PVA-H against articular cartilage 

showed low values compared to that of articular cartilage vs. articular cartilage, while the friction 

coefficients of PVA-H vs. PVA-H were remarkably high.  
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Figure 5. Coefficients of friction for various combinations of materials. Friction 

coefficients of various materials specimens against normal articular cartilage (a). against 

PVA-H(b). 
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Figure 6 compares the friction coefficients of PVA-H vs. articular cartilage, and articular cartilage 

vs. articular cartilage with each different lubricant. Generally, the coefficient of PVA-H vs. articular 

cartilage was ineffective on the dose of hyaluronic acid in spite of the fact that the articular cartilages 

shows a hyaluronic acid dose dependence. These frictional experimental data means that the excellent 
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lubricant mechanism of hyaluronic acid, including albumin and γ-globulin, on the articular cartilage 

surface could not operate on a PVA-H surface.  

Figure 6. The influence of hyaluronic acid on the frictional coefficient of two combination 

of articular cartilage vs. PVA-H and articular cartilage vs. articular cartilage. 
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Therefore, as another experimental approach to examine the tribological function of PVA-H, we 

observed the behavior of surfaces of PVA-H and natural articular cartilage under high loading 

conditions by confocal laser scanning microscopy (CLSM) [12,13] . 

Articular cartilage specimens of the normal knee joint (femoral condyle side) were obtained from 

adult rabbits weighting about 3 Kg. PVA-H with a water content 30%, a degree of polymerization 

17,500 was prepared as a specimen by the freeze-thawing method. A ®1LM21 real-time CLSM 

(Lasertec. Co., Japan) instrument was used. Each specimen was placed on the table, the synovial fluid 

(lubricant) added to its surface, pressed with a glass plate (0.15 mm thickness) and a load (12 N) 

applied for CLSM observation (Figure 7). 

The compression of natural articular cartilage by a glass plate, which was equivalent to 

physiological loading, caused the cartilage surface to exhibit two distinct areas; one in direct contact 

area with glass plate and one with a fluid pool between the cartilage and the glass plate (Figure 8).  

Between these two areas, a third morphological area was observed, as shown in Figure 9. In the area 

in direct contact with the glass plate, the detailed morphology in the articular cartilage surface 

disappeared due to compression. In the area of the fluid pool, the presence of a fluid membrane 

between the articular cartilage and the glass plate was confirmed, but the state of the cartilage surface 

is unclear. In the third area, a fringe-like pattern was observed around the contact area at higher 

magnification. In addition, the observation of this area by a particular optical-isolation method 
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revealed a reflected image that corresponded to the third area, as shown Figure 10. This finding 

indicates that the third area is composed of a liquid crystal structure.  

Figure 7. Photograph of real-time 1LM21 confocal laser scanning microscopy (CLSM) 

and schematic cross-section view of the CLSM observation. 
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Figure 8. CLSM image of normal articular cartilage surface of rabbit femoral condyle of 

knee joint. (a) Normal articular cartilage surface has a lot of depressions and drops of the 

synovial fluid without loading. (×1,400). (b) CLSM image of normal articular cartilage 

surface under the loading (×250). 

  

 

(b) (a) 
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Figure 9. CLSM image of normal articular cartilage surface of rabbit knee joint under  

loading. (a) CLSM image of articular cartilage surface through glass plate (×1,000). (b) 

Cross-section view of CLSM image (×1,000). 
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Figure 10. CLSM images with optical-isolator technique about the intermediary area. The 

reflection image (a) was obtained corresponding to the third area in the original CLSM 

image (b). 
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In contrast, the CLSM images of the PVA-H surface under loading were uniform, and 

distinguishing between the area of contact and the fluid pool was impossible, as shown in Figure 11 In 

the cross-sectional view, the grass plate and PVA-H surface were clear, but no images corresponding 

to the third area, which was seen in the articular cartilage specimens was observed. The optical-

isolation technique also did not reveal any image.  
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Figure 11. (a) CLSM image of PVA-H surface under the loading (×700). Third area and 

fluid pooling area were unclear. (b) Cross-section view of CLSM image (×700). 

(a)

(b)

 

 

To discuss the excellent lubricative mechanism of natural synovial joints under the high loading 

conditions such as boundary lubrication, we must address the molecular nature of the protective film 

layer that covers the articular cartilage surface. Many investigators have already proposed the presence 

of this lubricin [14–16]. Our CLSM image on articular cartilage may indicate that the liquid crystal 

region reflected the protective film layer on the cartilage surface. While PVA-H was developed to have 

the same lubricative mechanism of natural joints, however, CLSM of PVA-H did not reveal the 

presence of a film layer, though may demand further analysis and discussion, the finding means that 

PVA-H does not form a fluid film nor liquid crystal, as does natural articular cartilage, and PVA-H has 

limitations as an artificial cartilage in imitating the lubricative mechanism of synovial joint cartilage.  

5. Application for Arthroplasty Implant 

5.1. Development of artificial articular cartilage of PVA-H  

Arthroplasty using implants as used in total hip joint arthroplasty (THA) and total knee joint 

arthroplasty (TKA), is an established treatment for patients with severe arthrosis caused by diseases 

such as osteoarthritis (OA) and rheumatoid arthritis (RA). However, the tolerance of artificial joints to 

physiological loading is inferior to that of natural joints, and the number of revision operations 

performed to adjust for loosening or wear of these implants has been increasing. The long term 

survival of THA and TKA is a significant problem in orthopedic surgery [17,18].  

In contrast, it is known that natural joints have excellent lubrication. Though the mechanism 

involved is not still clear, triblogical studies, biomechanical studies and morphological studies have 

proposed various theories to clarify the mechanism behind the superior lubricative function of natural 
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joints. If the mechanism of natural joint lubrication could be imitated by artificial materials, the 

properties of artificial joints could be much improved.  

In this respect, we have attempted to develop an artificial articular cartilage based on PVA-H. 

However, our frictional test results of PVA-H exhibited high frictional coefficients and much wear, 

enough to predict the failure of arthroplasty by PVA-H. The use of PVA-H for total arthroplasty has a 

problem regarding the lubrication between two PVA-H surfaces.  

5.2. Development of artificial articular cartilage as a hemi-arthroplasty 

On the other hand, as mentioned before, the friction coefficients of PVA-H against normal articular 

cartilage have shown low values in frictional tests. This finding encouraged us to attempt to use PVA-

H as a medical implant for partial (hemi-)arthroplasty replacement.  

Osteonecrosis of the femoral head is a disabling disease that can lead to destruction of the hip joint. 

The appropriate treatment, depending on the stage of the disease, remains controversial, yet 

progression to collapse of the femoral head often necessitates total hip replacement (THR). 

Considering the age of patients and the poor prognosis associated with THR, it is desirable to preserve 

as much of the joint as possible during treatment as in the concept of an artificial cartilage for 

osteoarthritis [22–24]. 

We have developed an articular cartilage composite device with PVA-H whose mechanical 

properties and lubricating functions have been characterized, and a titanium fiber mesh which is 

intended to attach PVA-H firmly to underlying bone as shown in Figure 12 [25]. The PVA-H used was 

polymerization degree 8800, water content 30%, which corresponds to the mechanical properties of 

natural articular cartilage in vitro. 

Figure 12. Photograph of a synthetic composite osteochondral device for partial 

replacement of the canine femoral head. The transparent portion is made of PVA-H. 

 

 

This composite has been implanted into the surface of a canine femoral head for the purpose of 

simulating partial surface replacement hemi-arthroplasty, as shown in Figure 13. In addition to this 

PVA-H device, prostheses made from ultra-high-molecular-weight polyethylene (UHMWPE) and 

alumina ceramics were also implanted as a control group to compare with the present implant material.  
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Figure 13. Photograph of a specimen of the canine femoral head with composite 

osteochondral device at 12 months after implant operation. (a) Macroscopic appearance. 

(b) Cross-sectional appearance. 

 

 

The dogs with implant were allowed unrestrained weight-bearing and normal activity in their living 

area, and killed at time intervals of one, three, six, and 12 months. Dogs with all three types of devices 

showed good locomotive function of the hip joint without dislocation, deformity nor limping during 

their survival periods.  

Concerning the endurance of the PVA-H prosthesis, the transected specimens showed good 

congruity of the PVA-H with the adjacent natural articular cartilage. Figure 14 shows the histological 

and radiographic findings at 12 months after operation. It shows that the reduction and position of 

femoral head were well maintained, there was a increase in bone density around the stem portion of the 

titanium fiber mesh and good fixation to the surrounding bone.  

Figure 14. Cross-section view of a specimen of canine femoral head with a composite 

osteochondral device at 12 months after implant operation (×2.5). (a) Histological 

appearance (Giemusa stain ). (b) Contact microradiograph appearance. 
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To evaluate the lubrication function of the PVA-H prosthesis, opposite canine acetabular articular 

cartilages were also reviewed macroscopically and histologically. There were no adverse responses, 

such as erosion or hemorrhage observed in the macroscopic appearance of the articular cartilage of 

acetabulum of the PVA-H group, while there was slight synovitis and discoloration in the alumina 

group. In the UHMWPE group, there was severe synovitis and erosion of the acetabular cartilage six 

months after the operation.  

Histological evaluation of acetabular articular cartilage was graded using the methods reported by 

Mankin et al. [26]. These results are summarized in Figure 15. The PVA-H group acetabular cartilage 

showed that structural integrity, surface regularity and thickness were well maintained throughout the 

experimental periods, while the histological appearance of the other material groups deteriorated 

depending on the experimental periods.  

Figure 15. Mankin scores for the changes in acetabular cartilage in each group. Each point 

represents a single score for a joint.  
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Although this study has limitations as an evaluation, we think these results demonstrate the superior 

potential of the partial surface replacement hemi-arthroplasty by PVA-H articular cartilage.  

6. Current Problems and Clinical Potential of PVA-H Cartilage  

6.1. Current problems of PVA-H  

The greatest current problem regarding the clinical application of this PVA-H is the lack of a firm 

fixation method with living tissues. PVA-H has superior bio-inert properties, and hardly adheres or 

binds to the living body. As already mentioned, in order to couple these PVA-H implants with living 

bone we tried to conjugate them with titanium fiber mesh [27–30]. Other research reports have also 

already confirmed the ingrowth of newly formed bone in titanium mesh, and if this method proves to 

be favorable for the attachment between PVA-H and titanium mesh, its practical application can be 

expected. However, the conjugation of this PVA-H with the titanium mesh is first and foremost similar 

to machine parts, and there still remains incertitude regarding its long-term attachment in vivo.  
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On the other hand, as in recent years research on the bio-activation of material surfaces and the 

interaction between artificial material surfaces and living tissue has made great progress, the 

development of other adhesion techniques with natural tissue is greatly anticipated. As a result of a 

large amount of research, including the studies of scaffolds for tissue engineering, adhesion 

mechanisms between material surfaces and tissue cells already being gradually elucidated, techniques 

that enable the adhesion of living cells to biomaterials are being reported one after another [31,32]. 

Also regarding PVA-H, Hayami et al. have reported that by surface treatment adhesion of soft tissues 

is possible [33]. We also are considering methods for the bio-activation of this PVA-H gel surface.  

6.2. Clinical potential of PVA-H cartilage 

Although PVA-H cartilage still has some problems regarding the fixation method, the 

biocompatibility of PVA-H has been confirmed, as has the advantage for PVA-H to be able to adjust 

the appropriate mechanical properties as a substitute for the desired target tissues by adjusting the 

water content and the degree of polymerization. Actually, the some challenges regarding clinical 

orthopedics implants using PVA-H, aside from the articular cartilage, have been already tried, as 

shown in Figure 15 [34–36]. Furthermore, we have already succeed in the improvement of the 

mechanical properties of PVA-H by fabricating the compressive-orientation reinforced PVA-H. This 

new PVA-H has high mechanical strength and wear durability.  

Figure 16. Other orthopedics implants using PVA-H. (a) Artificial intervertebral disc. (b) 

Artificial meniscus. 

PVA-H  meniscus

Natural  

meniscus

(a) (b)
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Considering another characteristics of PVA-H such as permeability, hydrophilicity and 

transparency etc., depending on ideas and ingenuity, PVA-H is an extremely promising material for 

various clinical applications including scaffold for tissue engineering. In the future together with the 

developments of medical technology, new methods for implant treatments with combined 

characteristics will be developed for each clinical field, and as far as PVA-H is concerned, it will be 

necessary to make an effort to attach new functions that are required based on the knowledge and 

techniques that were accumulated until now, also with an eye on clinically specific treatment methods.  
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