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Abstract: Carbon nanomaterials, including fullerenes, carbon nanohorns, and carbon 

nanotubes, are increasingly being used in various fields owing to these materials’ unique, 

size-dependent functions and physicochemical properties. Recently, because of their high 

variability and stability, carbon nanomaterials have been explored as a novel tool for the 

delivery of therapeutic molecules including peptide and nucleic acid cancer drugs. However, 

insufficient information is available regarding the safety of carbon nanomaterials for human 

health, even though such information is vital for the development of safe and effective 

nanomedicine technologies. In this review, we discuss currently available information 

regarding the safety of carbon nanomaterials in nanomedicine applications, including 

information obtained from our own studies; and we discuss types of carbon nanomaterials 

that demonstrate particular promise for safe nanomedicine technologies. 
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1. Introduction 

Advances in nanotechnology have led to the recent development of many nanomaterials, including 

nanoscale silica particles, titanium dioxide nanoparticles, and carbon nanomaterials [1–4]. Nanomaterials, 

which are generally classified as materials with feature sizes smaller than 100 nm, have remarkably 

impacted various fields of study because of the desirable properties (e.g., enhanced electrical 

conductivity, tensile strength, and chemical reactivity) imparted by their increased surface area per unit 

weight compared with that of their bulk-scale counterparts [5,6]. Nanomaterials are already being 

applied in electronics [1], foods [2], and cosmetics [3]. Furthermore, in basic research for development 

of new drugs, nanomaterials are expected to open novel avenues for the treatment of human diseases 

owing to their unique physicochemical properties [4].  

Carbon nanomaterials, including fullerenes, carbon nanohorns (CNHs), and carbon nanotubes 

(CNTs), have been used as carriers in drug delivery and other applications [7]. Carbon nanomaterials 

with carbon cage and graphene structures have many technological advantages such as facile 

modification by functional groups [8–10], high carrier capacity [11,12], high chemical stability [13,14], 

and feasibility of incorporating both hydrophilic and hydrophobic substances [15,16] (Table 1). These 

characteristics, which are essential for the development of drug-delivery carriers, make carbon 

nanomaterials promising for nanomedicine applications.  

Table 1. Basic physicality of carbon nanomaterials. 

 Fullerenes CNHs CNTs 

Year of discovery 1985 1998 1991 

Discoverer 
H.W. Kroto 
R.F. Curl 
R.E. Smalley 

S. Iijima S. Iijima 

Size    
Diameter 
Length 

1 nm 
- 

2–4 nm 
40–70 nm 

0.4–70 nm 
1 µm–2.5 mm 

Shape sphere horn fiber 

Practical use 
Cosmetics 
Lubricity agent 
Semiconductor 

Fuel battery 
Semiconductor 
Car parts 
Sports goods 

Though highly promising, these carbon nanomaterials are in an early phase of development. 

Therefore, information regarding their safety is not sufficient for the development of medically sound 

and nontoxic technologies. Because nanomaterials’ physicochemical properties often differ substantially 

from those of their bulk counterparts, as mentioned above, there are concerns that carbon nanomaterials 

may exhibit unexpected side effects. In addition, recent reports have shown that pristine CNTs might 

induce mesothelioma-like lesions in mice, similar to those induced by asbestos [17–19]. On the other 
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hand, Muller et al. showed that pristine CNTs induce no mesothelioma formation in a 2-year in vivo 

study [20]. Therefore, more information about the safety of nanomaterials needs to be collected.  

In this review, we discuss currently available information about the safety of carbon nanomaterials for 

nanomedicine applications, including information obtained from our own previous studies. We also discuss 

types of carbon nanomaterials that demonstrate particular promise for safe nanomedicine technologies. 

2. Utility of Carbon Nanomaterials for Nanomedicine 

2.1. Fullerenes 

Fullerenes have attracted considerable attention in various fields of science [21]. Fullerenes are 

composed entirely of carbon in the form of a hollow sphere, ellipsoid, or tube. Spherical fullerenes are 

also referred to as buckyballs. An important property of the fullerene molecule is their high symmetry. 

There are 120 symmetry operations, such as rotation around an axis and reflection in a plane. Fullerenes 

belong to the class of inorganic nanoparticles and show high bioavailability due to their small size  

(~1 nm). Owing to their small size, fullerenes can penetrate various tissues and organelles that 

materials with submicron size cannot penetrate. For example, Foley et al. reported that fullerenes can 

cross the COS-7 cell membrane and bind to the mitochondria [22], demonstrating that fullerenes have 

utility as intracellular carriers. Furthermore, fullerenes’ capability to act as drug-delivery carriers for 

low-molecular-weight compounds and oligonucleotides has been demonstrated [23]. For example, 

conjugates composed of fullerenes and paclitaxel have exhibited the potential to provide slow release 

of the drug and have exhibited significant anti-cancer activity in cell cultures [24]. Moreover, 

Maeda-Mamiya et al. reported effective gene delivery in vivo using water-soluble fullerenes [25].  

In that study, conjugates consisting of cationic tetraamino fullerenes and an insulin-gene-expressing 

plasmid complex were injected intravenously into C57/BL6 mice. Insulin gene expression was 

detected in the lung, liver, and spleen. Plasma insulin levels in the insulin gene group of mice were 

significantly higher than those in a control group. Both of these studies demonstrate that fullerenes 

may act as drug- and gene-delivery carriers. Furthermore, because fullerenes are strong anti-oxidants, 

they have been used as neuroprotective [26,27] and anti-inflammatory agents [28]. Thus, if fullerenes 

can be controllably manipulated, they could be used to treat various diseases.  

2.2. CNHs/CNTs 

CNHs and CNTs based on the structure of graphene are also regarded as drug-delivery  

carriers [29,30]. CNHs and CNTs are differentiated from each other by their shape and size (Table 1). 

Furthermore, CNHs and CNTs can be classified as possessing either single- or multi-walled (SW or 

MW) structures. This review cites several reports on the use of SWCNHs and SWCNTs as 

drug-delivery carriers. SWCNHs have plenty of inner spaces. Through these holes, various molecules 

such as low-molecular-weight compounds or nucleic acids can enter the hollow interior of the 

SWCNHs. SWCNHs also can regulate the sustained release of drugs from their interior for 

drug-delivery applications. For example, the release rate of cisplatin (CDDP), a chemotherapy drug 

that can be incorporated into oxidized SWCNHs, has been regulated by controlling solvent 

composition. The release of CDDP from the SWCNHs is slower in water and a culture medium than in 
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phosphate-buffered saline, and the CDDP released from SWCNHs in the former solvent effectively 

kills human lung-cancer cells [11].  

SWCNTs also have been demonstrated to be amenable for drug delivery. SWCNT-siRNA conjugates 

have been efficiently transported to human T-cells and primary cells, which are inert to commercially 

available liposome-based nonviral vectors, and have silenced a specific gene in those cells [31]. In 

cancer therapy, SWCNT-based tumor-targeted drug-delivery system (DDS) has already been developed 

by several investigators [32,33]. SWCNT-anticancer-drug conjugates also have shown higher efficacy 

in suppressing tumor growth than clinical anticancer drugs alone in various cancer models [32,33]. 

These therapeutic effects were induced by accumulation of the conjugates in tumor. Collectively, these 

results clearly indicate the potential applications of SWCNHs and SWCNTs in cancer-targeted drug 

delivery and sustained release [34].  

2.3. Suitable Modification of Carbon Nanomaterials for DDS  

Accumulation at a targeted location is important in DDS. Carbon-nanomedicine-based cancer 

treatment systems generally function by means of either active targeting or passive targeting. In 

active-targeting DDS for cancer treatment, the search for cancer-specific targets is important. SWCNTs 

modified with antibodies, folate, arginine-glycine-aspartic acid (rgd) peptide, and epidermal growth 

factors have been useful for active targeting of tumor tissue [35–38]. Ruggiero et al. reported that 

antibody-modified SWCNTs accumulate in tumor tissue in a murine xenograft model of human colon 

adenocarcinoma [39]. However, these anti-cancer effects are not enough to enable drug development 

because these targets do not express specifically in tumor. In recent years, novel targets have been 

identified by using “-omics” approaches such as proteomics, genomics, and metabolomics [40–42]. 

Proteomics-based analysis is currently a promising approach for identifying biomarker proteins for use 

in drug development because these proteins directly regulate the onset and progression of diseases. 

However, proteomics-based analysis can yield many potential candidate biomarker proteins that are 

over- or under-expressed in diseased tissues, and these candidates must be efficiently screened to 

identify appropriate targets. Toward this end, we have developed an “antibody proteomics system” that 

facilitates the screening of biomarker proteins from many candidates by rapid preparation of 

cross-reacting antibodies using phage antibody library technology. The system is an efficient method 

for screening tumor-related biomarker proteins to identify novel targets [43].  

In passive-targeting DDS for cancer treatment, improvement of drug retention in blood is important 

because the reticulo-endothelial system and kidney work as the barrier against foreign particles in vivo. 

Covalent conjugation of polyethylene glycol (PEG) to a carrier’s surface, referred to as “PEGylation” 

is a promising strategy to improve retention of various nanomaterials in the blood [44]. PEGylation 

can prolong the plasma half-life and alter the tissue distribution of the nanomaterial conjugates compared 

with their non-PEGylated forms, which typically clear the body through the reticulo-endothelial 

system in vivo. The extended circulating lifetime of PEGylated conjugates in blood induces an enhanced 

permeability and retention effect, which is based on the leaky nature of tumor blood vessels, resulting 

in increased delivery of the conjugates to tumor tissue. As an example, Yang et al. investigated the 

long-term in vivo biodistribution of nanoscale graphene sheets functionalized with PEG and 

systematically examined the potential toxicity of graphene over time [45]. On the other hand, from the 
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aspect of effectivity and safety, CNTs kinetics is important for drug development. Singh et al. describes 

the pharmacokinetic parameters of intravenous administered functionalized SWCNTs relevant for 

various therapeutic and diagnostic applications [46]. It shows that functionalized (water-soluble) 

SWCNTs can, in fact, be excreted via the renal route. In summary, to obtain highly effective and 

nontoxic carbon nanomaterial DDS for cancer treatment, it is necessary to control three factors:  

(1) size; (2) the ability to target the molecules to tumors and (3) clearance through the 

reticulo-endothelial system and kidney.  

2.4. Other Application of CNTs in Medicine 

As mentioned above, CNTs have been explored as a novel tool for the delivery of therapeutic 

molecules including peptide, nucleic acid and cancer drugs. On the other hand, certain types of CNTs 

have been reported to possibly help cancer diagnosis and other application [47,48]. Photoacoustic 

imaging proposes higher spatial resolution and permits deeper tissues to be imaged compared with 

most optical imaging techniques. Zerda et al. [47] showed plain SWCNTs conjugated with cyclic 

Arg-Gly-Asp (RGD) peptides can be used as a agent for photoacoustic imaging of tumors. This report 

indicates SWCNTs is possibly useful for cancer diagnosis. Additionally, Tosun et al. suggested 

collagen conjugated SWCNTs show the potential for enhanced electrical activity. These SWCNTs have 

been shown positive in vitro biocompatibility results offering further evidence that SWCNT-based 

materials have an important role in neuronal regeneration [48]. Neurodegenerative disorders including 

Parkinson’s and Alzheimer’s diseases, amyotrophic lateral sclerosis are rapidly increasing as the 

population ages. The field of nanomedicine promises revolutionary advances to the diagnosis and 

treatment of devastating human diseases [48].  

3. Safety of Carbon Nanomaterials 

3.1. Hazard Assessment 

Carbon nanomaterials are among the most promising nanomedicines. However, information about 

the safety of carbon nanomaterials is still fragmentary, and ensuring their safety is of utmost 

importance to protect human health. In this section, we focus on the safety of CNTs specifically, 

because some studies have reported that CNTs have higher toxicity than fullerenes and CNHs [49].  

Parameters such as structure, size distribution, surface area, surface chemistry, surface charge, and 

agglomeration state as well as purity of the samples, have considerable impact on the reactivity of 

CNTs. Some studies have reported that certain types of SW or MW CNTs are cytotoxic and genotoxic 

in vitro, so public concern about the potential risk of CNTs to human health has risen [50–52]. In fact, 

recent reports have indicated that certain types of CNTs might induce mesothelioma-like lesions in 

mice, in a manner similar to that observed for mesothelioma induced by asbestos [53–55]. Takagi et al. 

showed that intraperitoneally administered pristine MWCNTs induce mesothelioma in the p53 (+/−) 

mouse carcinogenesis model, probably due to the MWCNTs’ resemblance to asbestos in size and shape 

and to their biopersistency [17]. Poland et al. also observed asbestos-like pathogenic behavior of long 

pristine MWCNTs associated with their needle-like fiber shape and established a structure-activity 

relationship based on the length of the MWCNTs [19]. These studies revealed that the propensity of 
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long MWCNT fibers to produce inflammation and fibrosis in the peritoneal cavity is similar to, or 

greater than, that of long asbestos fibers. In contrast, neither short asbestos fibers nor short tangled 

MWCNTs cause any significant inflammation [19]. These results suggest that physical properties, such 

as length, diameter and physico-chemical properties, might impact the safety of pristine CNTs [56]. 

However, these studies were based on the administration of extremely high doses of MWCNTs via 

peritoneal injection. In contrast, Shvedova et al. showed that pristine MWCNTs enhanced acute 

inflammation and pulmonary injury with delayed bacterial clearance after aspiration or inhalation of 

MWCNTs [57,58]. In the future, it is needed to examine the study relevant to the human occupational 

exposure situation.  

There are a few reports that examine the mechanisms of CNT toxicity [59–61]. One important 

underlying factor that influences the safety of long fibers is the failure of macrophage cells to 

completely enclose them. This failure, termed incomplete or “frustrated” phagocytosis, can induce 

inflammation [19]. Migliore et al. showed that long rigid MWCNTs appear to form fiber-like aggregates 

or structures that are too long to be phagocytosed by macrophage cells, thus resulting in reactive 

oxygen species (ROS) production [62,63], which contributes to NACHT domain-, leucine-rich repeat-, 

and pyrin domain-containing protein 3 (NLRP3) activation [64,65]. Palomaki et al. demonstrated that 

the NLRP3 inflammasome was essential for long, needle-like CNTs and asbestos to induce IL-1β 

secretion [65]. Moreover, it was noted that CNT-induced NLRP3 inflammasome activation depended 

on ROS production [65]. Clarification of the mechanism of inflammation induced by CNTs might lead 

to the development of safe carbon nanomedicine technologies. 

Although some studies have reported concern about the safety of CNTs as mentioned above, other 

studies have reported that certain types of CNTs are safe materials for nanomedicine. Yang et al. 

demonstrated that after intravascular injection of pristine SWCNTs, mice did not show stress or 

symptoms of abnormality, such as lethargy, anorexia, or changes in body weight [66]. Furthermore, 

Wick et al. showed that the cytotoxicity of purified rope-like agglomerated SWCNTs was lower than 

that of well-dispersed SWCNTs [67]. In addition to the fiber-like structure of CNTs, the amount of 

metal contaminants such as iron or nickel found in the CNTs may contribute to the nanomaterials’ 

potential carcinogenicity by accelerating the generation of ROS [68–70]. Moreover, in preparation for 

drug development, it is important to examine the influence of the oxidative debris on CNTs [14,71–73]. 

It is an emergent and key point during purification and functionalization of carbon nanostructure. 

These studies suggest that the safety of CNTs is determined not only by physical properties but also by 

a wide variety of factors such as method of administration, dispersability, and presence of metal 

contaminants. How much these factors contribute to the safety of CNTs remains unknown, however. 

We believe that the information obtained by these safety studies might be useful for ensuring the safety 

of CNTs. 

3.2. Biological Behavior of CNTs  

Evaluation of in vivo kinetics is important for assessing the safety of nanomedicine technologies. In 

this section, studies about the behavior of CNTs in the body are described. Ruggiero et al. showed that 

intravascularly injected pristine SWCNTs favor liver accumulation and hepatobiliary excretion over 

kidney accumulation and renal excretion [39]. In addition, several studies have investigated pulmonary 
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effects subsequent to instillation, aspiration, and inhalation of pristine SWCNTs [57]. These reports 

showed that short and small tangles of SWCNTs that deposit subpleurally migrate to the pleural space 

and exit in the flow of pleural fluid through the stomata, where they follow the lymphatic drainage to 

the mediastinal lymph nodes [60,74]. In addition, long carbon nanotubes also reach the pleural space 

but cannot negotiate the stomata, and so they are retained in the pleural space, where they cause 

inflammation and potentially long-term disease [60,74].  

Kagan et al. showed that hypochlorite and reactive radical intermediates of the human neutrophil 

enzyme myeloperoxidase catalyze the biodegradation of carboxylated SWCNTs in vitro, in neutrophils 

and to a lesser degree in macrophages [75]. Importantly, the biodegraded nanotubes do not generate an 

inflammatory response when aspirated into the lungs of mice [75]. In addition, Liu et al. have reported 

that the biodurability of SWCNTs depends on surface functionalization [76]. Based on these findings, 

strategies for mitigating the pro-inflammatory effects of these nanomaterials in occupational settings 

may be developed.  

Furthermore, information about toxicokinetics (absorption, distribution, metabolism and elimination) 

also should be obtained for the development of safe CNTs.  

3.3. Development of Safe Nanomaterials  

We have discussed above how nanomaterials can serve as useful nanomedicine technologies and 

have also highlighted the importance of considering these nanomaterials’ safety for such applications. 

In this section, we examine the current status of the development of safe and effective nanomaterials 

for nanomedicine. In our own studies, we have established relationships between the physical properties 

and safety of CNTs. Our data showed that pristine thin MWCNTs and SWCNTs do not induce genetic 

damage in vitro and inflammation in vivo [77]. These data indicate that physical properties such as 

particle length and width might influence the safety of CNTs. In addition, Nagai et al. suggested the 

large-diameter or tangled MWCNTs are less toxic, less inflammogenic, and less carcinogenic than 

untangled MWCNTs [56]. These results suggest that control of the diameter of CNTs could be used to 

develop CNTs that are safe for human health.  

Furthermore, in addition to being critically important for the detection of biomolecules, the surface 

properties of nanomaterials also can modulate the materials’ safety. Recent studies have shown that 

functionalization of CNTs with carboxyl or amino surface groups can affect the CNTs’ toxicity [78]. 

Thus, regulation both of particle size and of surface properties is considered important for research 

leading to the development of safe nanomedicine technologies. 

In fact, our previous study showed that nanoscale silica particles, which we expected to be useful as 

drug-delivery carriers, display different intracellular localization compared with submicron- and 

micro-scale silica particles and induce a greater cytotoxic response to mouse macrophage cell line [79]. 

We have also shown that nanoscale silica particles induce certain cellular responses, such as ROS 

generation and DNA damage to human keratinocyte cell line [80]. These results indicate that particle 

size could influence the silica particles’ safety for applications in nanomedicine. In addition, we have 

shown that surface modification of silica particles with functional groups, such as amino or carboxyl 

groups, suppresses toxic biological effects of silica particles including inflammatory responses and 

ROS production [81]. A recent study demonstrated that nanomaterials become coated with serum 
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proteins and induce different cellular responses from intact particles by binding to proteins [82].  

In addition, different surface characteristics, such as surface charge, influence the binding affinities of 

proteins to nanomaterials [82,83]. In fact, Gasser et al. showed that functionalization of MWCNTs 

have the potential to alter the MWCNTs blood plasma protein coating in biological systems [84,85]. 

These results indicate that particle size or surface properties of carbon nanomaterials can affect their 

safety, and that control of these physical properties can be used to advance the development of 

safe nanomaterials. 

4. Conclusions 

The unique physicochemical properties of carbon nanomaterials allow them to incorporate targeting 

ligands, chemotherapeutic drugs, and many other therapeutic agents that have great potential for 

cancer-targeted therapy. However, owing to the large number of factors that influence the kinetics of 

drug release from nanomaterials, as well as their safety for human health, insufficient information is 

available on these two important subjects. Factors that influence the safety of and kinetics of drug 

release from nanomaterials include their shape, length, and dispersability, as well as the presence of 

metal contaminants. A detailed understanding of the pharmacological and toxicological properties of 

carbon nanomaterials, as well as a balanced evaluation of their risks and benefits to human health, is 

required before they can be recommended for routine clinical use. We believe that a detailed safety 

analysis of carbon nanomaterials will be invaluable for the design of safe nanomedicine technologies. 
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