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Abstract: In this review article, the fundamentals of electrochemical reactions involving
metal hydrides are explained, followed by a report of recent progress in hydrogen storage
alloys for electrochemical applications. The status of various alloy systems, including ABs,
AB,, A,B7-type, Ti-Ni-based, Mg-Ni-based, BCC, and Zr-Ni-based metal hydride alloys,
for their most important electrochemical application, the nickel metal hydride battery, is
summarized. Other electrochemical applications, such as Ni-hydrogen, fuel cell, Li-ion
battery, air-metal hydride, and hybrid battery systems, also have been mentioned.

Keywords: metal hydride; hydrogen storage alloy; NiMH battery; alkaline fuel cell;
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1. Introduction

Hydrogen storage alloys are important for a few electrochemical applications, especially in the
energy storage area. The basic of electrochemical use of the hydrogen storage alloy can be described as
follows: when hydrogen enters the lattice of most transition metals, interstitial metal hydride (MH) is
formed. The electrons accompanying the hydrogen atoms form a metal-hydrogen band right below the
Fermi level, which indicates that the interstitial MH is metallic in nature. While protons in the
interstitial MH hop between neighboring occupation sites by quantum mechanical tunneling, the
electrons remain within a short distance (3-10 angstroms) of the protons to maintain local charge
neutrality. Under the influence of an electric field, electrons and protons will move in opposite
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directions. In an electrochemical environment, a voltage is applied to cause electrons to flow, and the
charges are balanced out by moving conductive ions through a highly alkaline aqueous electrolyte with
good ionic conductivity. During charge, a negative voltage (with respect to the counter electrode) is
applied to the metal/metal hydride electrode current collector, and electrons enter the metal through the
current collector to neutralize the protons from the splitting of water that occurs at the metal/electrolyte
interface (Figure 1a). This electrochemical charging process is characterized by the half reaction:

M+ H,0 + e — MH + OH" 1)

During discharge, protons in the MH leave the surface and recombine with OH in the alkaline
electrolyte to form H,O, and charge neutrality pushes the electrons out of the MH through the current
collector, performing electrical work in the attached circuitry (Figure 1b). The electrochemical
discharge process is given by the half reaction:

MH+OH — M+H,0 +¢e )

Figure 1. Schematics showing the electrochemical reactions between water and metal
hydride during charge (a) and discharge (b). Due to the alkaline nature of the electrolyte,
protons cannot desorb or absorb from the surface of metal without the incorporation of
water and OH".
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The standard potential of this redox half reaction depends on the chosen MH and is usually as low
as possible to maximize the amount of stored energy without exceeding the hydrogen evolution
potential (—0.83 V versus standard hydrogen electrode). Zn is an exception. With a complete 3d shell,
Zn is a natural prohibitor for hydrogen evolution and thus a more negative voltage is possible, which
increases the operation voltage of Ni-Zn battery.

The most important electrochemical application for MH is the negative electrode material for nickel
metal hydride (NiMH) batteries. Together with a counter electrode from the Ni(OH)/NiOOH system,
which has been used in NiCd and NiFe batteries as early as 1901 by Thomas Edison, the NiMH battery
was first demonstrated by researchers in Battelle in 1967 with a mixed TiNi + Ti,Ni alloy as the
negative electrode [1]. Commercialization of the NiMH battery was independently realized by Ovonic
Battery Company, Sanyo, and Matsushita in 1989 with AB; and ABs MH alloys. NiMH battery
development started from small cylindrical cells (0.7 to 5 Ah) for portable electronic devices and
progressed to 100 Ah prismatic cells for electric vehicle applications. The first commercially available
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electric vehicle in the modern era was the EV1 produced by General Motors in 1999. It was powered
by a 26.4 kWh NiMH battery pack. Since then, NiIMH batteries have powered more than 5 million
hybrid electric vehicles made by Toyota, Honda, Ford, and other automakers, demonstrating the
robustness and longevity of the NiMH battery. Recently, the NiMH battery has ventured into the
stationary application market with advantages in long service life, a wide temperature range, low costs
averaged over the service life, abuse immunity, and environmental friendliness. Several reviews on the
topic of MH used in NiMH batteries are available [2-10]. In this report, we present the recent progress
since the last review made in 2010 [10].

Besides NiMH batteries, MH (most commonly the misch metal-based ABs MH alloy) can also be
used in other electrochemical applications such as lithium-ion based batteries and metal-air batteries.
Metal hydride electrodes have a potential window of 0.1 to 0.5 V versus Li+/Li and the lowest
polarization among conversion electrodes. These MH electrodes have shown the capability for greater
capacity and can be used as anode electrodes in lithium-ion battery [10-12]. An air-MH battery that
utilizes a misch metal-based ABs alloy in conjunction with a perovskite oxide-based cathode has been
demonstrated by several research groups [13-15]. New types of V-flow/NiMH [16,17] and
lead-acid/NiMH hybrid batteries [18] have been developed at the University of Hong Kong. Pd-treated
LaNi, 7Alp 3 has been used in a Ni-hydrogen battery [19]. Another application of LaNis is the use as a
cathode in a photo-electrochemical cell for water decomposition [20].

2. Hydrogen Storage Alloys for NiMH Battery Negative Electrodes

The use of MH in NiMH batteries started with research conducted by Schmitt and Beccu at Battelle
Memorial Institute (TiNi-based) [1,21] and William and Buschow at Philips Research Laboratories
(LaNis-based) [2,22]. Almost 50 years of research on this subject have been conducted. In 2001, nine
requirements were established for a suitable MH alloy for NiMH batteries: high capacity, good
electrochemical catalysis, easy formation, excellent corrosion resistance, suitable hydrogen
equilibrium, good kinetics and efficiency, long cycle life, small pressure-concentration-temperature
(PCT) hysteresis, and low cost [6]. Today, the main implementation of NiMH batteries has shifted
from consumer portable devices to hybrid electric vehicle and stationary applications. Accordingly,
new criteria for suitable MH alloy design requirements, such as low self-discharge, good kinetics at
low temperature, fast proton diffusion in the bulk, low pulverization rate during service life, and
endurance of high temperature storage, are required for these applications. The amount of metallic
inclusions in the MH surface oxide after activation and the high-rate dischargeability (HRD) are
characteristics that are essential in meeting many of these new requirements. While the former can be
quantified by magnetic susceptibility, the latter is studied by analyzing the surface reaction current
density and bulk diffusion constant. Typical values from several alloy systems are compared and listed
in Table 1 for reference. Recent progress of MH alloys for NiMH battery applications is reviewed in
the following sub-sections categorized by alloy system.
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Table 1. Properties comparison of several metal hydride (MH) alloys. Saturated magnetic
susceptibility (Ms) is proportional to the total amount of metallic nickel in the surface after
activation. Applied magnetic field corresponding to half of the saturated magnetic
susceptibility (Hiz) is inversely proportional to the average number of Ni atoms in a
cluster. Surface exchange current (lp) and diffusion constant (D) are qualitative
measurements of the catalytic nature of the surface reaction and the proton transportation
in the bulk of the alloy, respectively.

Alloy . Ms Hy, lo D (<107
Composition o o ) 1 Reference
system (memug™) (kOe) (MAg) cms)
AB, Ti12Zr21 5Niz62Vo5Cra5sMn136Sng3C0,Alg 4 33 0.162 32.1 9.7 [23]
ABs La10'5CE4'3Pr0'5Nd1'4Ni60.0C012.7Mn5.9A|4'7 434 0.173 43.2 255 [23]
A,B- Lal6.3Mg7.0Ni55.10011.6 369 0.125 41.0 30.8 [23]
AB; Nds.sMds sNigs 1Al 6 132 0.171 22.7 11.4 [23]
A,B- L33.8Pr7.7Nd7_7Mg4.0Ni72.1A|4.7 314 0.128 51.5 31.9 This work
AzB7 Nd18.4ZI’0,2Mg3.6Ni74.1C00,1A|3.5 679 0.102 52.5 64 [24]
. This work,
Zr-A;B; Zr;Ni; 213 0.281 22.3 41
[25]
. This work,
Zr-ABsg ZrNiys 2286 0.400 20.1 60.6 [26]

2.1. Rare Earth-Based ABs Alloys

Vucht et al. first reported the hydrogen storage capability of rare earth-based ABs intermetallic
alloy in 1970 [27]. Since then, this alloy system has become the most widely used intermetallic alloy in
all metal hydride applications. After over 40 years of research, many compositions, structures,
processes, and electrode fabrication modifications have been performed. Recent efforts have focused
on (1) cost reduction by introducing Fe and Cu into the alloy formula to reduce/eliminate expensive Co
and (2) improvement in HRD and low-temperature performance. The effects of substituting Ni by Cu,
Fe, and Mo on charge-transfer resistance at —40 <C are summarized in Figure 2. The unit of Q-g for
charge-transfer resistance is used instead of the traditionally used Q to rid the contribution from
amount of electrode material; therefore, the values can be compared fairly among various MH alloys.
The effect of Fe on charge-transfer resistance performance is interesting and can be explained by the
evolutions of two factors: surface reaction area and catalytic ability. While surface catalytic ability is
increased monotonically as the level of Fe-addition increases, surface reaction area is increased by 1%
of Fe but decreased by further addition [28]. Consequently, charge-transfer resistance decreases with
1% Fe due to the improvements in both surface reaction area and catalytic ability, increases with a
little higher Fe-content as the surface area diminishes, and finally decreases (but not to the level
achieved with 1% Fe) with high amount of Fe when the surface catalytic ability takes on a more
dominating role. Other research works on ABs alloys are summarized in Table 2.
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Table 2. Summary of recent research on misch metal-based ABs MH alloys. S: substitution, P: process, A: additives.
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Method Alloy formula/process/additives Secondary phase (s) Range of x, etc. Capacity HRD Cycle life Charge retention Low temperature Reference
S Laio5Ces.3ProsNdysNisszx COso MngeAlsoZro Fey - O0tol5 down up down down up [28]
S Lai05Ce4.3ProsNdy 4Nies 3C08.4xMng sAls oCly (Al, Mn)Ni 0to5.4 down up down up up [29]
S Laj5Ceq3ProsNd; 4Nigs 3 COso MngsAlsoZro Moy Mo 0to4 down down same same up [30]
S Layo.5Ce4 3ProsNdy sNig7 7--,MnAl, - Mn (0-0.6), Al (0-3.4) - - up up — [31]
S NdNisy-y-,CoxAl,Mn, - Co (0-0.5), Al (0-0.5), Mn (0-0.8) up down up down - [32]
S Lay7Ceo3Ni37sMno.as Al.1sClUo 7s-xFeéx - 0t00.2 down down up - - [33]
S Lao 7Ceo.sNis gsMnggCUo.4 Feo15x(Feo.43Bos7)x LasNi.B, 0t00.15 down up down - - [34]
S LaNi3 55C00.2-xMnNg 35Al0 15 CUg 75(F€0.43B0 57)x LazNiy,B, 0t0 0.1 down up down - - [35]
S LaNi355C002-xMng 35Al0.15C U0 75(Vo.81F€0.19)x Ni-rich, La-rich 010 0.05 up up down - - [36]
S Lao 7Ceo3Nis75-xMngasAlo 15CUg 75(Feo 43Bo.57)x - 0t00.15 up up up - - [37]
S Lao7Ceq.3Nisg3xMno.3sAl0.15CUg 75(F€0.43Bo.57)x LasNi.B, 0t00.15 down up down - - [38]
S Lag 7Ce3Nis 75 xMng.asAlg 15CUg 75(Vo 81F€0.19)x - 010 0.05 down up up - - [39]
S Lag7Ceo.3Nis2Mng g xClos7(Vo.s1Feo.10)x (V, Mn, Ni) 0to0.1 same up down - - [40]
S Lag 7Cep 3Nig 2Mngg—xCuo 37(F€0.43B0 57)x LazNiy,B, 0t0 0.1 down up down - - [41]
S Lag 7Ceo3Niz75Mng 35Al015CUg 75-x(Feo.43Bo.57)x LasNiiB, 0t00.1 down up up - - [42]
S Lag 7Ceo3Niz 75Mng 35Al015CUg 75 x(Vo.81F€0.10)x - 0to 0.1 same up up - - [43]
S Lao 7Ce3(Niz65Mno 35Al0 15CUo 75(F€0.43B057)0.10)x LasNi1,B,Ce;Ni; 09t0 1.0 up up up - - [44]
S MINi3 55C00.75 xMng 4Alg 3(CUo 75P0 25)x P-rich, Mn-rich 0t0 0.5 down up up then down - - [45,46]
S LaNis_Iny - 0.1t0 0.5 down - up - - [47]
S LaNi, 3(Co,Al)g 7Iny - 0t0 0.1 up up - - - [48]
S LaNiz 1-C0gsMng3Aly - 010 0.45 down down up up - [49]
S Lay78Ce0.22Ni3.73Mno30Al0.17F€,C00.8- - 0t00.8 down down up up — [50]
S LaNiz 4+C0g3Mng3Aly - 0t00.2 up Up then down up up - [51]
S MmN 70-xMng 35C00 60Alo 25Bx CeCo4B 0t00.2 down up - - - [52]
S Lao.35Ce0,65Ni3.56MNg.35C00 g0-xAlo.32MOx - 0t00.25 up up up - 7 [53]
S Mmg g TixLag 2Niz 7MngsC0g 3Alo 33M0g 02 - 010 0.05 up - up up - [54]
S Lao.65-xC€0.25-xPr0.03Ndo.07 Y 2xNiz 6sMno.3C00.75Al0 3 - 010 0.04 down down up - - [55]
S La;«YxNi3 55Mng 4C0g 75Alg 3 - 0to 0.1 up - up - - [56]
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Table 2. Cont.
Metho Secondary phase Charge Low
Alloy formula/process/additives Range of x, etc. Capacity HRD Cycle life Reference

d (s) retention temperature

S Eliminates Co, Mn - - up - - up - [57]
P Pre-treatment if 12 M NaOH + 0.05 M NaBH, - - - up up - up [58]
P Melt-spin LaNis, La;Ni; - up - down - - [59]
P Gas Atomization - - down same up up same [29]
P Annealing temperature increase - - up down up up - [60]
A Ni-PTFE plating - - same - potentially up - - [61]
A Carbon nanosphere - - up up down - - [62]
A Graphite - - down up - - [63]
A Co nano and Y,0; - - up - - [64]
A Co030, - - up up - - [65]
A Co30, - - up up up - - [66]
A Ni(OH), - - up up down - - [67]




Materials 2013, 6 4580

Figure 2. Plot of charge-transfer resistance measured at —40 <C by AC impedance as a
function of Fe-, Mo-, or Cu-substitution in ABs MH alloy [28-30]. All three additives at
the lowest substitution level contribute positively in lowering the resistance.
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2.2. Laves Phase-Based AB; Alloys

AB; alloys for NiMH battery applications are composed of main phases belonging to a family of
materials known as Laves phases: hexagonal C14 phase and face-center-cubic C15 phase. C36 phase
may also be present but is difficult to distinguish from C14 in XRD analysis. The main controlling
factor for the C14/C15 ratio is the average electron density (e/a). Nei et al. reported that chemical
potential can be used to fine-tune the C14/C15 threshold when Ti, Zr, and Hf, which have the same
number of outer-shell electrons, are used together [68]. The common minor phases are Zr;Nijp,
ZrgNiyg, ZrNi, and TiNi. The microstructures [69—72] and the contributions [73—77] of these phases
were studied extensively in recent years.

While many studies on AB, alloys were reported, most of them focused on the influences of A- or
B-site substitutions on electrochemical properties. These results are summarized in Table 3. The effect
of partial substitution of Ni by various modifiers on —40 <C charge transfer resistance is summarized
in Figure 3.

As shown in Figure 3, both La and Si are very effective in improving the low-temperature
performance. Additionally, the influence of stoichiometry (B/A ratio) on electrochemical properties
was reported [78,79]. PCT hysteresis was correlated to the pulverization rate in AB, alloys [80-82].
Gas atomization and hydrogen annealing were introduced to produce AB, metal powder
directly [83,84]. V-free AB; alloys were also developed to reduce raw material costs [85,86].

Table 3. Summary of recent research on Laves phase-based AB, MH alloys.

Base alloy Substitution Major effects Reference
Al improves bulk diffusion and surface reactivity. Al and Co

Cl14-domintaed Al . . [87,88]
together improves all electrochemical performances
C14-domintaed B B improves HRD and Iow_—temperatL_Jre performanc_e [85]
but decreases charge retention, capacity, and cycle life
C14-domintaed C C increases HRD and charge retentlon but d_ecreases [85]
low-temperature, capacity and cycle life
C14-domintaed Co Co provides easy activation, improves/decreases capacity, [87,89.90]

better cycle life and charge retention, but impedes HRD
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Table 3. Cont.

Base alloy Substitution Major effects Reference
C14-domintaed Cr Cr improves charge retention but impedes HRD [89]
C14-domintaed Mo Mo improves HRD, Iovy—temperature performance, [91]

charge retention, and cycle life
C14-domintaed Cu Cu increases capacity, facilitates activation, but decreases HRD. [92]
Fe facilitates activation, increases total electrochemical
Cl14-domintaed Fe capacity and effective surface reaction area, decreases HRD and [87,93]
bulk diffusion, and deteriorates low-temperature performance

. Gd improves low-temperature performance,
C14-domintaed Gd but decreases charge retention, HRD, capacity, and cycle life [85]

. La improves capacity, HRD, and low-temperature
C14-domintaed La performance with a trade-off of inferior cycle stability [94]
C14-domintaed Mg Mg improves charge retention, deteriorates capaCIty, [85]

low-temperature performance, and cycle life
C14-domintaed Mn Mn increases capacity, faC|I|tat_es activation, [89,95]
but decreases cycle life

C14-domintaed Ni Ni improves cycle life and HRD but reduces capacity [89]
C14-domintaed Pt Pt improves capacity and HRD [96]
Cl14-domintaed Si 1 at % of Si is beneficial to HRD and low-temperature performance [97]
Cl14-domintaed Sn Sn improves charge retention but deteriorates HRD and cycle life [87,98]
C14-domintaed Ti Ti increases HRD and facilitates activation [99]
C14-domintaed \% V increases capacity but decreases HRD and charge retention [100]
Both C14- and Y improves activation, HRD, and low-temperature performance by

. Y i . . [101,102]
C15-dominated increasing reaction surface area
Cl14-domintaed Zr Zr increases capacity [99]

Figure 3. Plot of charge-transfer resistance measured at —40 <C by AC impedance as
function of Cu-, Fe-, Y-, Mo-, La-, or Si-substitution in AB, MH alloy [91-94,97,102].
La- and Si-modified alloys demonstrate the lowest resistance.
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2.3. Superlattice A,B7-Type (A2B4-ABs-Hybrid-Type, such as AB3, A;B7, AsBig, and ABy) Alloys

Mg-containing superlattice alloys have been used extensively in Japanese-made NiMH batteries for
retail market since the introduction by Sanyo (eneloop) [103-105]. Batteries with superlattice
A,B;-type alloys as negative electrode exhibit much lower self-discharge compared to ones with
traditionally used ABs alloys [105]. Therefore, NiMH battery’s storing and ready-to-use-out-of-the-pack
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capabilities can be much improved by the use of superlattice alloy, which enable NiMH battery to
grow much more competitive compared to primary battery. Furthermore, superlattice alloys have been
reported to have superior capacity, cycle life, and high-rate performances compared to the conventional
alloys and are becoming a dominating force in both consumer and hybrid electric vehicle markets. The
multi-phase MH system, with an overall B/A ratio between 3 and 4, is composed of a number of ABs
slabs placed between two A,B, slabs (Figure 4). Mg is needed to lower the average metal-hydrogen
bond strength in order to obtain the appropriate heat of hydride formation suitable for NiMH battery
applications (= —39 kJ mol™ H, at room temperature and 1 atm), and its replacement amount for rare
earth is about 30% and 15% for La and Nd, respectively. Mg mainly replaces rare earth elements on
the A,B; slab. The distribution of Mg (which has a high vapor pressure during melting) in the alloy is
particularly important because Mg-lean regions have a tendency to form ABs phase. Lin et al.
presented a brief review of different types of A,B; alloys [106]. The superlattice MH alloys can be
classified into three groups: La-only, La-Pr-Nd, and Nd-only. The addition of Ce promotes ABs phase
and therefore is rarely used. The La-only group has the highest capacity but the shortest cycle life due to
the easy oxidation of La. The Nd-only group has the best charge retention and cycle life performance but
the lowest capacity. Properties of the La-Pr-Nd group fall between the properties for La- and Nd-only
alloys. Annealing is the most convenient method to manipulate phase distribution, and its effect was
reported on La-only [107-113], Nd-only [24], La-Gd [114], La-Nd [115], La-Pr-Nd [116,117], and
La-Ce-Pr-Nd [118] alloys. While Nd-only and La-Pr-Nd superlattice alloys are used in low
self-discharge and high capacity NiMH batteries, respectively, La-only superlattice alloy is not used in
commercial products due to its low cycle life from pulverization [119]. However, La-only alloy is
studied extensively in the research society [120] due to easy sample preparation. The recent progress in
the NiMH battery applications of superlattice alloys is summarized in Table 4.

Figure 4. Schematics of stacking sequences of superlattice alloy systems. The stacking
sequence is constructed with one to four ABs (blue 15) slabs in between slabs of A;B4
(red 24). Two structures are available for each stacking sequence depending on the
direction of the A,B4 slab shifts. The tilted stacking of A;B,4 in a C14 structure first shifts
(2/3, 1/3) and then shifts back (—1/3, —1/3) while C15 structure shifts (1/3, 1/3)
consecutively on the a-b plane.

B
A

MgZn, (C14) CeNi,

o
B
A

MgCu, (C15)  PuNi,
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Table 4. Summary of recent progress in electrochemical property improvement in superlattice MH alloys.

Substitution/Process Alloy formula Range of x Capacity HRD  Cycle life Charge retention Comment Reference
Ce (Lag.7Mgo3)1-«CexNizsC0qg 5 0t00.1 down up up - - [121]
Dy (La;«Dyy)0sMgo 2Niz 4Alg 1 0t00.2 up - same down - [122]
Gd (La,-xGdxMg)(NiCoAlZn);s Otol up down up - - [123]
Nd Lag s«NdxMgo 2Ni3 35Al0.1Sio.05 0t00.2 up up up - - [124]
Nd (La-«Ndy)2Mg(Nig sC00.15Mng 05)9 0t00.3 down - up - - [125]
Pr Lag 75-«PrMgo.2sNiz2C00.2Al0 1 0to 0.4 - - up - - [126]
Pr Lag g-xPr«Mgo2Niz 15C002Alp1Sio 05 0t00.3 up up up - — [127]
Pr Lag75-«PrMgo2sNiz2C002Al0 1 0to0.2 down - up - - [128]
Sc (La,-xGdxMg)(NiCoAlZn);s Otol up up same - - [123]
Sm Lag s«SMxMgo.2Ni315C00 2Alg 1Sio.05 0to0.1 up up up - - [129]
Ti (Lag7Mdo.33)1-xTi1xNiz75C00 25 01t00.05 down up up - - [130]
Ti (La;Tix),MgNig 25C0g 75 0to 0.1 down up up - - [131]
Zr Lao.75-xPrkMgo 25Ni3 2C00.2Alo 1 0t00.2 up - up - - [128]
Zr Lag 75-xZrxMgo25Ni3 2C00 2Alp 1 0t00.2 - down - - - [132]
Mg Lay 7xMg13 x(NiCoMn)g 3 0to 0.4 up down down - Improves activation [133]
Mg Lap g5Pro.15Mgx(Nig7C002Mng 1)g 0.5t01.0 up up - - - [134]
Mg Lag s «Gdo2MgxNiz1C0g3Al0 1 0.1t00.15 up - up - - [135]
Mg Lags xGdo2MgxNiz1C0g3Alg 1 0t00.15 up - up - - [136]
Mg Lag s «Gdo2MgxNiz3C0p3Al01 0t00.15 up up up - - [137]
Ca Lags7Mgo.33-xCaxNiz75C00 25 0to 0.05 - up up - - [138]
Al Lag 7sMo.25Ni35«C0g Al 0to0 0.09 down down up - - [139]
Co LaNi3 »-«Mng 3Coy 0.2t00.8 down - up up - [140]
Co Lag 7Zro.1Mgo2Nis 4 «COxFeo 1 0.15t0 0.25 down up up - - [141]
Co LaossPro.0sNdo.15Mgo 25Nizs «COxAlg 25 0t00.3 up up same - - [142]

Co + Al Lag.45Pro.135Ndo 315Mgo.1Niz oAlo 2 0to 0.1 down up up - - [143]
Co + Al La,MgMng 3Nig 7-«(C0g 5Alg5)x Oto2 down up up - - [144]
Co + Al La.55Pro.0sNdo.1sM0o 25Ni3 5(C005Al0 5)x 0t00.3 up - up up - [145]

Al LaNis g xAlx 0to 0.4 up then down - - - Improves activation [146]
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Table 4. Cont.

Substitution/Process Alloy formula Range of x Capacity HRD Cycle life Charge retention Comment Reference
Mn (Lao.sNdo2)2Mg(Nig.s—x Coo.1Mn,)g 0to0.1 up - up - - [147]
Mn Lag 7sMo.22(Nigg—« C0o1Mny)3 0t00.01 down up down - - [148]
Cu LaMg;Nig «Cuy 0to9 down - - - - [149]
Si LagsMgo2Ni3 3C005,Six 0t00.1 down up up — - [107]
Ni CeMng.25Al0 25N i 54x Otol.1 up - - - - [150]
H,0; in electrolyte Ndi58Mg25Nizs 1Al 6 - up up up - [151]
Melt-spin Lag 75-xZrxMdo.25Niz 2C0p2Alg 1 0t00.2 - up - - - [132]
Melt-spin La,MgNig - - - - - Improves Mg-homogeneity [152]
Ball milling Lag7Mgo3NizsC0gs-«Fex 0t0 0.5 up - up - - [153]
NiCuP plating Lay 8sMo.12Ni2.95Mng 10C00 55Al0 10 - up up - up - [154]
Spark plasma sintering LagssMgo1sNisg - same - up - - [155]
Polyaniline plating Lag sMgo2Niz7Mng1C0ogs5Alo 1 - - up up - - [156]
Magnetic annealing Laos7Mdo33Niz0 - up up up - - [157]

Chemical coprecipitation + metal Produces multi-phase

Lags7Mgo.ssNizo - - - - - [158]

reduction-diffusion

structure
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2.4. Ti-Ni-Based Alloys

The Ti-Ni-based system was the first MH alloy used in NiMH batteries in the early 1970 s.
Although its development was interrupted by the fast growth of ABs alloy, the Ti-Ni system remains a
popular research topic due to its low cost, high hydrogen storage capacity, and fast activation. Two
types of Ti-Ni binary alloys, TiNi and Ti,Ni, are able to absorb large amounts of hydrogen and are
candidates as negative electrode material in NiMH batteries. TiNi alloy exhibits polymorphism, which
is the basis of its outstanding shape memory property that is fully utilized in many industrial
applications. Upon cooling, TiNi transforms from a B2 cubic structure (austenite) to a B19’
monoclinic structure (martensite). Early electrochemical studies on TiNi alloy demonstrated great
activation performance and an electrochemical discharge capacity of 210 to 250 mAh g [159,160].
Compared to TiNi, Ti,Ni MH alloy had higher hydrogen storage capacity due to its higher content of
hydride forming Ti in the formulation, but its electrochemical capacity was only 170 mAh g * with its
stronger metal-hydrogen bond strength, an indicator of dehydriding difficulty [160]. By combining
TiNi and Ti,Ni phases, the electrochemical capacity increases up to 320 mAh g* [160,161] with the
assistance of synergetic effect between the two phases. During hydrogen desorption, TiNi, which has
better desorption kinetics, first dehydrides and contributes to the overall electrochemical capacity;
then, the hydrogen stored in Ti;Ni phase is transferred internally into the dehydrided portion of TiNi
and discharged through TiNi. Without the assistance of TiNi phase, the hydrogen stored in Ti,Ni phase
cannot be released due to the stronger meta-hydrogen bond strength. However, the cycle stability of
such a biphasic system suffers due to the corrosion and oxidation of Ti;Ni [159,162].

Most research efforts on TiNi alloys focused on elemental modifications on both A- and B-sites.
Different material manufacturing procedures, such as mechanical alloying, annealing, and different
quench rates, were introduced to study the effect of structure on overall electrochemical properties.
Emami et al. investigated the influence of Pd by partially replacing Ni [163,164]. While the unit cell of
TiNi is enlarged by the larger-sized Pd, the electrochemical capacity is reduced since the
Pd-substitution increases the stability of TiNi intermetallic alloy and decreases the stability of their
hydrides according to the electronic calculations. Recently, a study on substituting Ni in TiNi with
various modifiers revealed that Fe, Co, and Cr increase the electrochemical capacity up to
400 mAh g * with good activation performance [165]. Zhao et al. fabricated amorphous Ti,Ni alloy by
solid-state sintering and ball milling [166], and the resulting material shows improved cycle stability
but also lower capacity compared to crystalline Ti;Ni. Annealing treatment was then proposed in
addition to sintering and ball milling, which results in a thicker oxide layer on the surface of
amorphous Ti,Ni and improves both capacity and charge retention of the alloy [167]. In order to
increase the capacity, Zhao et al. developed another fabrication method for Ti,Ni: induction melting,
ball milling, and annealing [162]. The product is amorphous and nanocrystalline in nature and
demonstrates reasonable capacity and good cycle stability; however, the highest reported capacity of
363 mAh g * for Ti,Ni MH alloy is obtained at higher temperatures while cycle stability suffers.
Zr-substitution for Ti was used as another way to potentially increase capacity and improve cycle
stability of amorphous Ti,Ni [168]. Zr was reported to destabilize amorphous Ti;Ni phase and promote
TiNi phase when partially substituting Ti in ball-milled Ti,Ni from elemental powders [169]. An
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amorphous Ti3Ni, alloy was prepared to combine advantages from TiNi and Ti;Ni, and although its
capacity was lower than the crystalline form, cycle stability was much improved [170].

Ti-based icosahedral quasicrystal MH alloy, which has a crystallographically disallowed five-fold
rotational symmetry, has only recently been studied for NiMH battery applications. The icosahedral
phase is believed to contain much higher densities of tetrahedral interstitial sites compared to normal
crystals [171]. Since hydrogen atoms enter favorably into tetrahedral sites, the icosahedral phase can
absorb a large amount of hydrogen. Two recent studies, with and without milling after melt-spin, were
performed varying the Zr/Ni ratio in TissZrsgNisz [172,173]. All alloys consisted of 100% or close to
100% icosahedral phase and demonstrated that higher levels of Ni increase capacity up to 86 to
88 mAh g *; however, this value is dramatically lower than the theoretical capacity [172,173].
By changing the Zr/Ti ratio in TissZrsoNigs, it was shown that higher Zr deteriorates capacity. Also
with annealing, an alloy that has been arc-melted and mechanically alloyed has higher capacity (up to
130 mAh g %) compared to an unannealed amorphous alloy [174]. Hu et al. improved capacity up to
278 mAh g * with decent cycle stability by adding Mn in a melt-spun TiVNi-based alloy [175]. The
effect of Sc-addition was reported by the same group in TiVNi-based quasicrystal [176], with extended
cycle life.

2.5. Mg-Ni-Based Alloys

Due to Mg’s abundance, low cost, light weight, and high hydrogen storage capacity (2200 mAh g+
theoretical electrochemical capacity [9]), Mg-based MH alloy continues to be an interesting research
topic and a strong candidate for the negative electrode material of NiMH batteries. In order to be
applicable for room temperature battery operation, a stoichiometry of Mg:Ni close to 1:1 is required.
However, the MgNi intermetallic compound does not exist on the Mg-Ni binary phase diagram.
Therefore, non-equilibrium fabrication methods, such as mechanical alloying, RF sputtering, laser
ablation, and melt-spin, are often used to prepare MgNi alloys. Such material usually has a mixed
structure of amorphous and nanocrystalline character. Despite the high capacity that MgNi alloy offers,
its sluggish hydriding/dehydriding kinetics and poor corrosion resistance in alkaline media prevent
MgNi from use in practical application. Various types of modifications to the MgNi system were
studied to improve the overall electrochemical performance, such as replacements of A- (by rare earth,
transition metals, or others) and B-sites (by transition metals), combinations of different fabrication
procedures, and surface treatments [177]. Table 5 illustrates recent elemental substitution efforts on
MgNi-based alloy. By varying the ball milling time, Anik et al. found that 15 h was sufficient to obtain
the amorphous/nanocrystalline state [178,179]; however, 25 h was required to incorporate all Ni into
the main MgNi phase. Electrochemical discharge capacity is also influenced by the milling period. The
same report demonstrated that capacity increased sharply with up to 15 h milling time, stabilized with
up to 25 h milling time, and decreased with further increase in milling time. Based on the role of each
constituent element, a series of systematic elemental substitutions was conducted [178-181].
Anik et al. reported an improvement in electrochemical performance with MgosoTio.15Al0.05Zr0.05Nio.95
alloy (420 mAh g and 90% capacity retaining rate at the 20th cycle) compared to the base MgNi
alloy (495 mAh g * and 35% capacity retaining rate at the 20th cycle) [178,181]. The pulverization
mechanism of MgNi was investigated by in-situ monitoring of hydride-dehydride cycles using acoustic
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emission technique coupled with electrochemical measurement [182,183]. Unlike most cases where
pulverization is caused by volume expansion and contraction with repeated hydrogenation,
mechanically alloyed MgNi consists of porous agglomerates made up of many particles cold welded
together, which are likely to be easily broken down by the mechanical action of hydrogen bubbles
during hydrogen evolution. Hydrogen combustion synthesis was employed as another MgNi
fabrication method; and with the help of subsequent ball milling and surface protection from NAFION
coating, a 400% increase in capacity could be achieved [184].

Table 5. Summary of recent research on electrochemical property improvement for
mechanically alloyed MgNi MH alloys.

Substitution Alloy formula Range of x Capacity Cycle life Comment Reference

As the Ti/Mg ratio increases,

Ti Mg, TixNi 0t00.2 up then down up surface charge transfer [178,180]
resistance increases
Ti Mgo 7 TigsNi - down up - [185]
Ti Mg TixNi 0to0.1 down up Reduces pulverization [186]
Zr Mg ZryNi 0t00.2 up then down up - [178]
] ) Further improves
La Mdo.7Tio.225L.80.075Ni - down up . . [185]
corrosion resistance
Al Mg, Al Ni 0t00.2 down up - [178]
Al Mgo.oTig1NiAly 00 0.05 down up Reduces pulverization [187]
B Mg;-ByNi 0t00.2 down same - [178]
Surface charge transfer
Pd Mg, 4PdNi 0t0 0.2 down up resistance decreases and then [179]
increases
Pd Mgo g Tig1NiAlgsPdy 0to0.1 down up Increases HRD [187]
Pd MgsoNiso_Pdy 0to5 down up - [188]
Mg/Ni Mgggs+x Tio.15Ni1 0« 0to0.1 up down - [180]

Mg:Ni is another Mg-Ni system that has been extensively studied for its potential applications in
hydrogen storage and NiMH battery. With the higher content of hydride-former in the Mg,Ni
formulation, it is capable of storing a greater amount of hydrogen compared to MgNi; however,
Mg2Ni’s discharge kinetics and corrosion resistance are worse. Nanocrystalline/amorphous structure
was shown to improve hydriding/dehydriding kinetics [189]; such structure can be achieved by
mechanical alloying and melt-spin fabrication techniques or elemental substitution. Although the
exact effect of melt-spin cooling rates depends on the type of elemental substitution, a higher
cooling rate was frequently found to be beneficial in enhancing electrochemical properties and cycle
stability [190-197]. Furthermore, the length of milling time plays an important role in varying the
performances of mechanically alloyed materials [198,199]. Melt-spin in magnetic field has been
reported to greatly improve both capacity and stability [200]. Zhu et al. provided a comparison among
the influences of various processing methods on electrochemical characteristics [201]. Table 6
summarizes the recent elemental substitution efforts on the Mg,Ni system. It should be noted that
besides the Mg-Ni MH systems, other Mg-based alloys, such as MgTi [202] and MgAl [203] systems
doped with Ni, were also investigated for their electrochemical properties.
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Table 6. Summary of recent research on electrochemical property improvement for Mg,Ni
MH alloys. MS: melt-spin, MSM: melt-spin in magnetic field, HCS: hydriding combustion
synthesis, BM: ball milling, MSP: magnetron sputtering.

Substitution/ . .

. Process Alloy formula Range of x Capacity HRD Cycle life Comment Reference
Addition
. Promotes
Co MS Mg;Ni;Coy 0to 0.4 up up up [190,191,194,195]
amorphous phase
. Promotes
Mn MS Mg,Ni;xMn, 0to 0.4 up up then down up [192,194,195]
amorphous phase
Cu MS Mg,Ni;—,Cuy 0to 0.4 up up then down up - [193-195]
. Promotes
La MS Mg,-LayNi 0t00.2 - up up [196,197]
amorphous phase
- MSM Mg,Ni - up - up - [200]
Co HCS+BM Mg,1,CoxNi 0to 0.1 down down up - [204]
Cr HCS+BM Mg, 1-4CryNi 0to0.1 down down up - [204]
Nb HCS+BM Mg, 1-,Nb,Ni 0to 0.1 down down up - [204]
Ti HCS+BM Mg, TiyNi 0to0.1 down down up - [204]
\Y HCS+BM Mgy 14V,Ni 0to 0.1 down down up - [204]
. up then
Al HCS+BM Mg, Al,Ni 0to 0.7 - - - [199]
down
Ti BM Mg, TixNi 0to 0.5 up - up - [198]
Mg 5TigsZr, Compares to
B BM O15 0.3- 01 ~ - ~ ~ p- [205]
AlgNi others in [205]
Mg 5TigsZr, Compares to
c BM O15 0.3- 01 ~ - ~ ~ p- [205]
AlgNi others in [205]
Mg 5TigsZr, Compares to
Fe BM O15 0.3- 01 ~ - ~ ~ p- [205]
Alg;Ni others in [205]
Mg 5TigsZr, Compares to
P BM O15 0.3- 01 ~ - ~ ~ p- [205]
Alg;Ni others in [205]
Mg 5TigsZr, Compares to
Al BM O15 0.3- 01 - - - - p- [205]
Alg;Ni others in [205]
Al BM Mg, Al,Ni 010 0.25 up - - - [206]
Multiwalled
carbon BM (MgAl),Ni - up - - - [206]
nanotubes
Improves
. up then .
Al MSP Mg, AlNi 0t0 0.3 - - corrosion [207]
down .
resistance

2.6. Laves Phase-Related BCC Solid Solutions

“Laves phase-related body-centered-cubic (BCC) solid solution” [208] is an interesting MH alloy
with a general formula of ABy, where A is from Group 4A (mainly Ti), B is from Group 5A, 6A, and
7A (mainly V), and x is between 1 and 6. It has a unique two-phase microstructure composed of a
BCC phase and a Laves phase (mostly C14). Microstructure evolution as a function of C14/BCC ratio
is constructed based on literature review and presented in Figure 5. During solidification, the high V
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BCC phase solidifies first and form a 3D framework and the rest of the liquid turns into C14 phase,
which is also a complementary 3D framework, and such phenomena produces the following evolution
in microstructure with the increase in C14/BCC ratio: C14 starts to appear at the grain boundary
(Figure 5a) — sections of C14 phase start to connect and form a 3D network
(Figure 5b) — BCC phase forms 3D framework and the cross-section is composed of isolated islands
embedded in C14 matrix (Figure 5¢) — BCC phase forms fish-bone type of inclusions (Figure 5d).
The high density of phase boundaries contributes to the hydrogen storage properties in two ways: the
promotion of a synergetic effect between BCC (high hydrogen storage capability) and C14 phases
(better absorption Kinetics and easy formation due to its brittleness), and the formation of a coherent
and catalytic interface in between.

Figure 5. Schematics of microstructure evolution of a series of Laves phase-related
body-centered-cubic (BCC) solid solution alloys as the C14 phase abundance increases
(from Figure 5a—d).

(©) (d)

While Chai et al. claimed the best ratio of BCC:C14 is 1:1 for optimized results [209], Gu&yuen et al.
showed that only a small amount of C14 is needed as a catalyst for the gaseous phase
storage [210]. In order to study the correlation between the ratio and electrochemical properties of the
alloy, we fabricated a series of Laves/BCC alloys with the Laves phase abundance from 10.5 to
91.6 wt %; their bulk diffusion coefficients and crystallite sizes are plotted in Figure 6. When one
phase dominates, the crystallite size is smaller and the diffusion coefficient is larger. Therefore, a small
but sufficient amount of secondary phase is preferable in the multi-phase MH alloy system. In
addition, a BCC/C14 multi-phase alloy, reported by Wang and Ning, shows an electrochemical
capacity of 450 mAh g *, but degradation through cycling is severe [211]. The BCC/C14 alloy was
remelted with 10 wt % LaNiz [212] and up to 10 wt % LaNis [213,214] by arc melting, and the
activation behavior, HRD, low-temperature performance, and cycle life are all improved due to the
synergetic effect between main and secondary phases. BCC/Ti-Ni-based multi-phase systems were
also fabricated previously [117,215]. The existence of the TiNi secondary phase enhances HRD and
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cycle life and shows the highest capacity of 470 mAh g [215]. Recently, an anneal-and-quench
method [216] has been implemented to prepare BCC/C14 alloys. Furthermore, quasicrystal-included
alloys have also been investigated by Liu et al. [217-221], and capacity, HRD, and cycle stability at
the 30th cycle up to 422 mAh g%, 88%, and 81%, respectively, were reported.

Figure 6. Plots of diffusion constant and crystallite size of the C14 phase determined by
FWHM from XRD analysis as functions of C14 phase abundance for a series of Laves
phase-related BCC solid solution alloys. The bulk transport is enhanced when the grain size
is small and much of the boundary interface is available to contribute to the synergetic effect.
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2.7. Zr-Ni-Based Alloys

Since the AB; intermetallic compound does not exist on the Zr-Ni binary phase diagram, one or
more secondary non-Laves ZryNiy phases composed of neighboring phases of AB; are often observed
when fabricating a Zr-Ni-based MH alloy with an AB, composition. Between the working main phases
and the catalytic secondary phases, a synergetic effect arises and contributes positively to the overall
electrochemical performance. Although these minor phases do not have an appropriate metal-hydrogen
bond strength when compared to the AB; stoichiometry, it is essential to evaluate various Zr,Niy alloys
in order to gain better understanding of their roles in AB, MH alloys and potentially develop
alternative rare earth-free MH alloys for NiMH battery through composition modification. A
systematic examination of ZrgNiy;, Zr;Nio, ZrgNi;, and ZrNi alloys correlating composition,
structure, gaseous phase hydrogen storage, and electrochemical properties was recently reported by
Nei et al. [77]. Annealing is detrimental to the electrochemical capacity of Zr,Ni, alloys due to the
elimination of minor phases, similar to the annealing effect on AB; alloy. Furthermore, the electrochemical
capacity maximizes at Zr;Niy, which demonstrates that both hydrogen desorption/discharge rate and
theoretical maximum hydrogen storage determined by the Zr/Ni ratio influence the electrochemical
discharge capacity. Among all, ZrgNi,; shows the highest HRD and easiest activation. Zr;Niy and
ZrgNiy; were selected for further composition modification to improve their electrochemical
properties [76,222—-226], and the results are summarized in Table 7. One of the drawbacks of AB,
alloy compared to ABs alloy is its lower HRD. For the purpose of increasing HRD in the Zr-based
alloys, alloys with higher B/A ratios, such as ZrNis [26] and Zr,Ni; [25], become more attractive.
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Performances of V-modified ZrNis and Zr,Ni; are summarized in Table 7. Although their capacities
are too low for practical application (<177 mAh g ™), their bulk hydrogen diffusion properties are
superior to those of existing ABs, AB,, and A;B7 alloys. With further modification, electrochemical
performances of ZrNis and Zr,Ni- alloys are expected to improve.

Table 7. Summary of recent works on modification on ZryNi, MH alloys.

Substitution Alloy formula Range of x Capacity HRD Comment Reference
Activation becomes easier
Ti TiyZr;—4Nig 0to 2.5 - up Tiy 5Zr55Niqo has good combination of [76]
capacity and HRD, 204 mAh g and 79%
Main phase shifts from Zr;Niy to C14
Tiy5Zr55Vo5Nigs With Zr;Niyg-predominant
v Tiy 525 5V, Nigg 0t03.0 up  down T STOSTES NP _ [222]
structure has good combination of capacity
and HRD, 242 mAh g * and 80%
. . Main phase shifts from Zr;Niyg to ZrgNiy; to
Cr TiysZr55Vos5(CryNig4)es  0.1t00.2 down  down c14 [223,224]
. . Main phase shifts from Zr;Niyg to ZrgNiy; to
Mn Tiy5Zr55Vos(MnNiyg)es 0.1t00.2 up up c14 [223,224]
Fe Tiy sZrssVos(FeyNipg4)es  0.1t00.2 up down Main phase shifts from Zr;Niy to C15. [223,224]
] . Main phase shifts from Zr;Niyq to ZrgNiy; to
Co Tiy5Zr55Vo5(CoxNigy)es  0.1t00.2 down  down 15 [223,224]
Cu Tiy5Zr55Vos(CugNiggy)es  0.1t00.2 down down Main phase stays Zr;Nij [223,224]
Al Tiy sZr55Vos(AlNig )es  0.1t00.2 down  down Main phase shifts from Zr;Niy to C14 [223,224]
. Main phase shifts from ZrgNi,; to tetragonal
Mg ZrgNi;gMg, - down  down . [225,226]
Zr7Niqq
] Main phase shifts from ZrgNi,; to tetragonal
Al ZrgNigAl, - up down . [225,226]
Zr7Niqq
Main phase shifts from ZrgNi,; to tetragonal
Sc . down  down . [225,226]
ZrgNigSc, _ Zr7Niyqg
\Y ZrgNigVs down  down  Main phase shifts from ZrgNiy; to Zr,Ni;  [225,226]
Mn ZrgNiigMn, down down  Main phase shifts from ZrgNi,; to Zr,Ni; [225,226]
Co ZrgNigCo, down down  Main phase shifts from ZrgNi,; to Zr,Ni; [225,226]
. Main phase shifts from ZrgNi»; to Zr,Ni;
Sn ZrgNigSn, down up . ) . [225,226]
_ Annealed ZrgNiqgSn;, is ZrgNi,-structured
) Main phase shifts from ZrgNi,; to
La ZrgNigla, up down ) . [225,226]
_ orthorhombic Zr;Niyqg
] Main phase shifts from ZrgNi,; to
Hf ZrgNigHf, up down . . [225,226]
_ orthorhombic Zr;Niyg
. Main phase shifts from ZrNis to monoclinic
\Y ZrV,Nigs 0to 0.5 up down . [26]
ZroNiy
. up then Main phase shifts from monoclinic Zr,Ni; to
\Y ZI’VXNI3.5,X 0to0.9 ) ) [25]
down cubic ZryNiy
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2.8. Other Alloy Systems

It is nearly impossible to simultaneously meet all the requirements for a specific electrochemical
application using one MH alloy. For example, an alloy with high capacity usually has lower HRD, and
good activation behavior usually indicates shorter cycle life. Therefore, the development of composite
MH alloys, which contain two or more hydrogen storage materials/intermetallic compounds/elements,
can potentially combine the advantages of constituted alloys. Recent composite alloy studies include
BCC related alloys modified by AB; (Section 2.6), ABs [227], LaNis [213,214], ZrV, [220],
A,Br-type [217], LaNis [212], or other BCC [218], A.B+-type alloy modified by ABs [228], MgNi
alloy modified by Ti(NiCo) [229], Mg,Ni alloys modified by TiNi, TiFe [230], (MgMn),Ni [231],
(MgAl),Ni [232], Co, or Ti [233], and are summarized in Table 8.

Researchers have ventured out of well-understood MH alloy systems in order to develop a
novel material that fulfills all requirements of electrochemical applications. ReT23 Systems (R = Gd, Ho,
T = Mn, Fe) were recently studied. He et al. performed B-site substitution using Co on HogFe,3 and found
that the alloys have ThgMnys-type structure [234]. As the level of Co increases, activation, capacity
(443 mAh gt at 150 mA g™, cycle stability, and HRD all improve. Electrochemical results were also
reported on the Gd-Co-Mn system, and a promising capacity of 377 mAh g at 150 mA g * was
obtained [235]. The HRD of this type of alloy, however, is relatively low and in the range of 50% to 60%.

Table 8. Summary of recent research on composite alloys. BM: ball milling, AM: arc
melting, ERM: electric resistance melting, IEC: isothermal evaporation casting.

Addition Process Base alloy Addition level Phase distribution Capacity HRD Cycle life Reference
MmNi )
BM T|0_3ZCr0_43,X,yV0_25FeXMny 0to 20 wt % BCC up - - [227]
399Al020Mng 3C0p6
LaNis AM Tio&toonVogsCrg‘lgNio‘gg 0to 10 wt % BCC+C14+Zr-rich up then down up up [213,214]
quasicrystal+Ti,Ni+BC
ZrV, BM Ti14VoeNi 0to 20 wt % up up up [220]
C+C14+C15
Lao 6sNdo.12Mgo 23Nz, quasicrystal+Ti,Ni+BC
BM Ti1.aVosNi 0to20 wt % same up down [217]
oAloy C+LaNis+PuNis
LaNi3 AM Tio_lozr0_15V0_35Cr0_10Ni0_30 0 to10 wt % BCC+C14+Zr-rich up up up [212]
TilszrlgvlgNizgcrsco . . qUaSiCrySta|+Ti2Ni+BC
BM Ti14VoeNi 0 to 40 wt % up up up [218]
ZMn C+C14
Lao.377C€0.339P0.063Po. Mmo.80Mo.20Ni256C00 50 . . up then
) BM 0 to 30 wt % LaNis+La;Ni; down up [228]
171Nli35C006Mng4Alg 5 Mno.14Alo 12 down
TiNigs6C00.44 BM MgNi 0 to 50 wt % Amorphous MgNi down up [229]
TiNi BM Mg,Ni 0 to 100 mol % TiNi+Mg,Ni down [230]
TiFe BM Mg.Ni 0 to 100 mol % TiFe+Mg,Ni up [230]
Mg,Ni —
MgzMnNi;, ERM+IEC Mg.Ni 0to 100 mol %  Mg;Ni+MgsMnNi,— up up [231]
MggMnNiz
up then
MgsAINi, ERM+IEC MgNi 0to 100 mol %  Mg.Ni+MgzAINi, — up d [232]
own
Mg3A|N|2
Co BM MgsMnNi; 0to 200 mol % amorphous MgsMnNi, up up [233]

Ti BM MgsMnNi, 0to 200 mol % amorphous MgsMnNi, up up [233]
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3. Conclusions

Hydrogen storage alloys for electrochemical application have been extensively studied for many
years. We have presented a review of recent research activities on metal hydride alloys for nickel metal
hydride battery and also provided an overview of the use of metal hydrides in other electrochemical
applications. ABs and AB, alloys are very well established systems. In order to potentially dominate
the future electric vehicle and stationary applications, self-discharge, low-temperature performance,
and cycle stability become more important to study, and the trend of recent research reflects the efforts
on improving the aforementioned properties. Superlattice A,B-type alloy, which possesses the
advantages of both ABs and AB; and low self-discharge capability, is likely to be the next generation
of metal hydride alloy used as the negative electrode material in nickel metal hydride batteries and has
attracted much attention. Although the Ti-Ni alloy system is difficult to process and has poorer
high-rate performance, its much lower raw material cost makes the system one that merits further
studies for improvement. The Mg-Ni alloy system holds great promise in achieving very high capacity,
and recent research efforts have concentrated on improving its kinetics and cycle capability for the
purpose of practical implementation. Laves phase-related BCC solid solution has high capacity;
enhancing its stability is currently the most essential topic. The incorporation of quasicrystals by
various fabrication methods remains an interesting subject. Zr-Ni alloy systems were systematically
investigated in the last few years. Although their performance might not be satisfactory for
electrochemical applications at the present time, further elemental modifications or use as a composite
modifier can assist in realizing their potential.
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