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Abstract: A series of polymer dispersed liquid crystal devices using glass substrates have 

been fabricated and investigated focusing on their electrical properties. The devices have 

been studied in terms of impedance as a function of frequency. An electric equivalent 

circuit has been proposed, including the influence of the temperature on the elements into 

it. In addition, a relevant effect of temperature on electrical measurements has  

been observed.  

Keywords: polymer dispersed liquid crystals; equivalent circuit; constant phase element; 
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1. Introduction 

Polymer dispersed liquid crystals (PDLC) devices consist of a thin film of a polymer matrix 

containing micro-sized droplets of a liquid crystal. In order to fabricate PDLC devices, the mixture is 

usually laid between two transparent substrates coated with a conductive layer, usually of indium  
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tin oxide (ITO) [1]. These PDLC devices can be used in eletro-optic applications such as: smart 

windows [2], variable optical attenuators (VOAs) [3] and projection displays [4].  

In order to use PDLC devices as an optical switcher, the refractive index of the isotropic polymer 

and the ordinary refractive index of the liquid crystal should be similar [5]. In the absence of an 

electric field, the directors of the microdroplets are randomly distributed and strongly scatter the light 

so the device appears opaque. When an AC electrical field is applied, the liquid crystal dipoles are  

re-oriented parallel to the field and the ordinary refractive index of the liquid crystal matches with the 

polymer refractive index, and the material becomes transparent [6]. The transmission of light through 

the device, therefore, can be controlled by applying an electrical field. Furthermore, unlike with other 

electro-optic devices like twisted-nematic LC (TNLC) or surface-stabilized ferroelectric liquid crystal 

(SSFLC), the transparent state can be highly transmissive because no polarizers are required to achieve 

the switching effect. 

PDLC has a great number of advantages in comparison with the other liquid crystal technologies 

used in displays, such as: high brightness (because of its high transparency), wide view angle, fast 

response (in the order of milliseconds), absence of surface treatment and the possibility of intermediate 

transmission levels electrically controllable. The scattering properties of PDLC devices can be used in 

“smart” windows that regulate the light intensity inside buildings. The shift with temperature of the 

electrooptic response curve of the PDLC is well known [6]. When using these devices with intermediate 

transparency levels rather than in ON/OFF mode, the knowledge of the temperature variation is 

mandatory in a double way: to optimize the contrast and to estabilize the transparency level [2].  

Therefore, in order to ensure a determinate transmission level, it is necessary to change the 

electrical field applied to the PDLC according to the ambient temperature. The most practical way to 

mitigate the temperature influence in an effective way is to control the electrical field, as the optical 

properties are mainly related to it.  

On the other hand, an electrical equivalent circuit (EEC) associated to electrical properties 

(frequency, impedance and voltage) that also varies with temperature is of great practical interest, 

because it can be used to develop new driving circuits and signals in order to reduce power 

consumption and increase optical contrast. 

In this work, the electrical properties of a series of PDLCs have been analyzed. This behavior can 

be represented through an adequate combination of passive elements which responses are associated to 

physical parameters. An electrical equivalent circuit describing such behavior has been proposed. The 

component values of the circuit have been obtained from complex impedance measurements. 

Experimental results and simulation have been compared in order to validate the EEC. The aim of the 

work is to explore the temperature dependence of the equivalent circuit electrical parameters of the 

device. This knowledge allows, then, a practical way to control the optical performance of the device 

regardless of the temperature. 

2. Experimental Setup 

The PDLCs devices were manufactured from an homogeneous mixture of 20 wt% of a UV curable 

matrix (Bisphenol A glycerolate diacrylate from Aldrich) and 80 wt% of an eutectic nematic liquid 

crystal mixture (E7 from Merck) consisting mostly of 4-pentyl-4’-cyanobiphenyl, with positive 
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dielectric anisotropy. Glass cells with ITO coated inner surfaces with an effective area of 1.3 × 1.3 cm
2
 

and a 20.5 μm internal gap, were filled by capillarity with the mixtures at 65 °C. PDLC was formed by 

polymerization induced phase separation (PIPS) method, exposing the cell to a 365 nm light for  

10 min. The UV flux was 350 mW/cm
2
 at a distance of 15 cm (Vilber Lourmat VL4LC, Marne La 

Vallee, France). 

The key to obtain the orientation is the observation of the device by polarization microscopy, 

observing the pattern of the droplets with the sample located between two crossed polarizers [6]. The 

morphology of the PDLC composites was studied at 20× magnification using a Leica DM400M 

microscope (Leica Microsystems, Wetzlar, Germany), a Leica camera DFC420C (Leica 

Microsystems) and placing the devices between crossed polarizers (Figure 1, the scale bar corresponds 

to 100 μm). Unfortunately, the droplets are too small to be resolved. The small size can be associated 

to a fast polymerization and phase separation process because of UV curing at high temperature  

(65 °C) as it is reported elsewhere [7,8]. 

Figure 1. Micro-textures of the droplets morphologies of the polymer dispersed liquid 

crystals (PDLC) films under cross polarizers at 20× magnification and PDLC devices in the 

OFF and ON state: (a) VRMS = 0 V; (b) VRMS = 24 V. 

 

Afterwards, the measurement of complex impedance (magnitude and phase) was carried out using 

an impedance analyzer (SOLARTRON 1260, Solartron Analytical, Farnborough, UK), in a wide 

frequency range, 0.1 to 10 MHz. PDLC devices have been placed in a programmable hot-stage 

(Linkham plate LTS-E350, Linkam Corp., Surrey, UK) in order to guarantee a stable temperature 

during a whole measurement process. The sample temperature range was measured from 25 to 40 °C 

with a change of 5 °C per measurement. 

3. Impedance Behavior 

The complex impedance was measured using a sinusoidal voltage signal with 100 mVRMS and 

frequency sweeping in the range from 10
−1

 to 10
7
 Hz. The modulus and phase measurements 

corresponding to the PDLC device can be represented in a Bode plot, where the trend of the impedance 

magnitude and phase can be analyzed. Figure 2 shows the experimental data of the magnitude and phase of 

impedance as a function of frequency, measured in the temperature range between 25 and 40 °C. 

Impedance results in all devices are similar and the small discrepancy should be due to differences in 

the preparation of the PDLC composites. Selecting the suitable frequency range for the operation of 

the devices is a matter of simplifying the PDLC response, and Figure 2 can contribute to making this 
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choice. Low frequencies are discarded because a low frequency electric field can induce degradation of 

the LC material due to the adsorption of ion charges and generation of strong electric field on the 

electrode layers [9,10], and a strong dependence with the temperature is also observed in Figure 2 at 

those frequencies. Moreover, the suitable frequency range should be selected by choosing the range 

where the device shows a purely capacitive behavior, simplifying its response. In that range, there is a 

linear decay in magnitude and a phase close to −90 degrees [2].  

Complex impedance measurements displayed in the Figure 2 reveal that there is a capacitive 

behavior displacement when increasing the temperature, but also that the working frequency range of 

10
4
 to 10

5
 Hz should be the optimal one, since the temperature dependence is null both in the 

impedance value and in the electrical response, which is purely capacitive. 

Figure 2. Experimental complex impedance as a function of frequency in the temperature 

range between 25 °C and 40 °C. 

 

4. Electrical Equivalent Circuit Proposal 

An equivalent electric circuit has been obtained in order to study the dependence of electrical 

components on frequency, voltage and temperature. Figure 3 shows a Nyquist plot of experimental 

impedance, where its real part is plotted on the X axis and its imaginary part on the Y axis, the shape 

of which shape suggests that there are two different regions with a distinct behavior [11].  

The semicircle portion, due to impedance on frequencies from 10 to 10
7
 Hz, is usually related to the 

effect of charges stored in a capacitor which is discharging through a resistor. This discharge is 

produced with an exponential decay in time, being the diameter related to a time constant dependent on 
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the resistor and capacitor values. Semicircle appearance means that there is only one time constant 

involved. This effect can be closely modeled by a Randles equivalent circuit. 

Figure 3. Impedance spectrum (Nyquist plot) for PDLC. 

 

The equivalent circuit for the Randles cell is shown in Figure 4a. This circuit includes a resistor Rs, 

which represents the influence of electrodes, a double layer capacitor Cdl due to dipolar polarization 

and the symmetry of the device, which is composed of several layers, and a resistor Rct standing for the 

mobility of free charges and dipolar displacement inside the device. 

Figure 4. (a) Equivalent electric circuit for a frequency range from 10 to 10
7
 Hz;  

(b) equivalent electric circuit for a frequency range from 10
−1

 to 10 Hz. 

 

At high frequencies, Cdl impedance is as low as it behaves as a short circuit, and all of the 

impedance is coming from Rs. As it is a resistance due to electrodes, no apparent dependence with 

temperature is found at highest frequencies.  
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At low frequencies, Cdl impedance is as high as it behaves as an open circuit, and the main 

influence is Rct, which value is thus related with the diameter of the semicircle of Figure 3. As a 

resistance due to charge transfer or movement, it depends clearly on temperature. 

Nyquist plots show also a straight tail with a certain slope which appears at low frequencies in the 

range of 10
−1

 Hz to 10 Hz. As it is shown in Figure 3, during this frequency range, the phase of the 

impedance, i.e., the slope on the Nyquist plot, remains almost constant. These results are in good 

agreement with those showed in Figure 2, at low frequencies. Several researches have reported a 

similar behavior [9,10,12–14], where the constant phase is explained by the creation of a strong 

electric field on the alignment layers. Therefore, a constant phase element (CPE) has been included to 

model the phenomenon.  

CPE is a simple distributed element which tends to behave as a capacitor and has a constant phase 

angle in the impedance. The electric equivalent circuit proposed for such situation is represented  

in Figure 4b. The model includes an association CPE in series with a resistance Rd due to  

dipolar displacement. 

Based on the fact that each frequency range presents a different behavior, a combination of the two 

proposed different equivalent circuits must cover the whole range. The complex impedance Z for  

these equivalent circuits can be described by Equation (1) for higher frequencies and Equation (2) for 

lower ones: 

              
   

           
 (1) 

               
 

     
 (2) 

The coefficient T and the exponent P are the parameters of the CPE. Generally, 0 < P < 1; however, 

CPE tends to a response of a capacitor of capacitance T when P is equal to 1. As the frequency ranges 

could be separated in the electrical circuit effects, both electric circuits can be simplified in a single 

circuit when the low frequencies parameters (CPE and Rd) are embedded in the Rct element. This 

proposal is shown in Figure 5, valid for the whole frequency range between 10
−1

 and 10
7
 Hz. The 

influence of each element will depend on the frequency range. 

Figure 5. Equivalent electric circuit for a frequency range of 10
−1

 to 10
7
 Hz. 

 

The following fit is done for the measurements at 25 °C. For high frequencies, the capacitive 

elements act as short circuit. Thus, the value of Rs is equivalent to the impedance magnitude at highest 

frequency. This impedance has a value of 178 Ω (see Figure 2). On the other hand, the capacitance Cdl 

can be estimated using the impedance magnitude plot of Figure 1. At frequencies into the selected  

10 to 100 kHz range, when the device has a purely capacitive behavior because the phase is close to 
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−90°, Cdl should be the main contribution, and could be calculated using the following expression 

(derived from the one of a capacitor impedance): 

    
 

                
 (3) 

Therefore, the capacitances Cdl are 0.89 nF. Complex non-linear least squares (CNLS) was used to 

obtain the value of Rd and the parameters of CPE, fitting the rest of the equivalent circuit parameters of 

Figure 5 with the impedance measurements, and using the Levenberg Marquardt nonlinear interpolation 

method [15]. The elements of the equivalent circuits are given in Table 1. 

Table 1. Results of fitting presented in the Figure 5. 

Parameter Value Error (%) 

Rd (MΩ) 3.01 1.7 

CPE-T 9.06 × 10−7 4.7 

CPE-P 0.37 8.8 

The experimental magnitude and phase impedance were compared with the simulated data to 

validate the proposed equivalent electric circuit. This comparison is shown in Figure 6 as Bode plots. It 

can be inferred that the electric equivalent circuit proposed in Figure 5 satisfactorily reproduces the 

performance of impedance complex behavior for the PDLC devices under study in a wide frequency 

range. A slight discrepancy appears in the high frequency region, probably due to the inductance of the 

PDLC wires. 

Figure 6. Experimental modulus and phase (squares-line) and simulated data  

(triangles-dashed line) for a frequency range from 10
−1

 Hz to 10
7
 Hz in the PDLCs devices. 
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Once the equivalent circuit has been fitted with the impedance measurement for a given 

temperature, the evolution of the electrical response as the temperature increases has also been 

analyzed. The previous fitting is repeated for the measurements at every temperature. At high 

frequencies, the Rs element is the main influence in the electric circuit. At these frequencies the 

temperature dependence is null and does not lead to a change in the complex impedance; therefore, the 

evolution of the Rs is independent of temperature. Moreover, in order to analyze the influence with 

temperature, the Cdl parameter has been added in the fitting. 

Table 2 shows the evolution of the retrieved fitted elements of the equivalent circuit with the 

temperature. These results are in good agreement with those reported previously in the diagram 

showing the experimental complex impedance as a function of frequency (Figure 2). 

Table 2. Results of fitting in the temperature range of 25 to 40 °C. 

Parameter Parameter@25 °C Value Error% 

@25 °C 

Rd (MΩ) 3.00 1.72 

Cdl (nF) 0.89 0.45 

CPE-T 9.15 × 10−7 5.26 

CPE-P 0.37 8.89 

@30 °C 

Rd (MΩ) 1.73 1.08 

Cdl (nF) 0.83 0.40 

CPE-T 1.51 × 10−6 3.82 

CPE-P 0.43 5.91 

@35 °C 

Rd (MΩ) 0.96 0.71 

Cdl (nF) 0.82 0.40 

CPE-T 2.38 × 10−6 3.01 

CPE-P 0.55 3.69 

@40 °C 

Rd (MΩ) 0.41 0.95 

Cdl (nF) 0.84 0.64 

CPE-T 3.39 × 10−6 3.07 

CPE-P 0.58 3.41 

The influence of Cdl related to dipolar polarization is independent with temperature, whereas CPE-P 

and CPE-T parameters related to ion accumulation, increase with temperature. Therefore, as it is 

expected from the above discussion, PDLC has a less capacitive behavior when the temperature is 

increased. The exception is observed in Rd parameter related to dipolar displacement.  

On the other hand, the resistance Rd value is now the one related to the diameter of the semicircle in 

the Nyquist plot. The Figure 3 shows that when temperature increases, the diameter of the semicircle 

decreases, and also the value of Rd and thus the dipolar displacement. The Cdl element at the whole 

frequency range (10
−1
–10

7
 Hz) slightly changes with temperature, as the constant shape of the 

semicircle predicts. The straight tails of Nyquist plots at Figure 3 are related with the component CPE, 

and the slope depends on the parameter CPE-P. The slope increases with the temperature. This 

behavior can be reflected in the values of the CPE-P parameter in Table 2. Further characterizations 

must be done to explain this effect. 
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5. Conclusions 

In this work, electrical properties of PDLCs have been studied as a function of temperature and 

frequency of the applied voltage. An electrical model is suggested and validated. Using the proposed 

model, many physical processes can be simulated, such as influence of electrodes, dipole movements 

contribution, ion charge accumulates and the effects of the temperature. Future research will focus on 

the simulation of optimized driving circuits and signals in order to reduce power consumption using 

this equivalent circuit. 
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