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Abstract: The covalent incorporation of inorganic building blocks into a polymer matrix to 

obtain stable and robust materials is a widely used concept in the field of organic-inorganic 

hybrid materials, and encompasses the use of different inorganic systems including (but not 

limited to) nanoparticles, mono- and polynuclear metal complexes and clusters, polyhedral 

oligomeric silsesquioxanes (POSS), polyoxometalates (POM), layered inorganic systems, 

inorganic fibers, and whiskers. In this paper, we will review the use of two particular kinds 

of structurally well-defined inorganic building blocks, namely transition metals oxoclusters 

(TMO) and polyoxometalates (POM), to obtain hybrid materials with enhanced functional 

(e.g., optical, dielectric, magnetic, catalytic) properties.  

Keywords: oxoclusters; polyoxometalates; organic-inorganic hybrid materials; polymers; 

functional properties; POM; transition metals 
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1. Introduction 

When dealing with organic-inorganic hybrid materials, two main underlying concepts are 

“combination” and “synergy”, since the basic idea behind the development of this rapidly expanding 

class of materials is to combine organic and inorganic building blocks to afford a material endowed 

with the properties of both components and eventually to overcome the structural limits of 

conventional materials (polymers, ceramics, metals, etc.) [1–14]. A further aim is to achieve a 

noticeable improvement of materials properties, since the resulting material typically not only 

combines the features of both starting systems, i.e., organic and inorganic ones, but can also present 

additional/enhanced properties deriving from the interaction of both. 

The reason why a sharply growing attention is devoted to the development of organic-inorganic 

hybrid materials, also from the world of production [15,16], is actually the possibility to tailor the 

properties of the final materials by a careful modification of the chemical nature, structure and amounts 

of the starting organic and inorganic building blocks. Their mutual distribution and interactions at the 

organic/inorganic interfaces are further factors affecting the final properties of the materials. The 

compositional, structural and functional versatility of this peculiar class of materials accounts for  

their diverse applications ranging from optics and photonics [17–19] to electronics and flexible 

electronics [20–23], from sensors [24–29] to catalysis [30–34], from electroactive [35,36] or 

electrochemical [26,37–40] devices, to biomedical [41–44] or to bioactive [45–48] materials.  

The multifaceted applications of hybrid materials have been recently reviewed by Popall and  

Sanchez [15,16], whereas the tailoring of hybrid materials to achieve functional properties and 

combination thereof (i.e., multifunctionality) has been the topic of several contributions and of a 

dedicated textbook [2,6,8]. 

In general, organic-inorganic hybrid materials are traditionally defined as a wide, manifold and 

exciting class of systems which derives from an intimate combination, often mediated by the formation 

of a chemical bond, of inorganic and organic building blocks [1,2,4,5,9,11,12,14,49–52]. 

This broad and quite loose definition encompasses several kinds of materials whose common factor 

is the co-presence of both organic and inorganic components, such as (i) polymers embedding 

inorganic building blocks [5,53–55]; (ii) inorganic or hybrid (sol-gel) matrices incorporating organic 

molecules, macromolecules or dyes; (iii) Metal Organic Framework (MOF) [56–67] based on 

inorganic building block or metal ions connected by polytopic organic ligands; (iv) coordination 

polymers [68–71] and complexes; (v) nanoparticles and surfaces decorated with organic molecules or 

macromolecules [72] and (vi) organic-inorganic interfaces and interphases. When seeking for a more 

stringent classification, and trying to focus on a particular typology of hybrids, we can for instance 

limit ourselves to materials in which a host incorporates a guest of different nature and then single out 

two main classes of systems: (1) either inorganic building blocks (BB) (clusters, nanoparticles, fibers, 

whiskers, lamellae, etc.) are incorporated into a macromolecular polymer backbone (inorganic guest in 

organic host) or, vice versa; (2) organic molecules or macromolecules (dyes, biomolecules, oligomers 

or polymers) can be embedded into an inorganic (e.g., silica) matrix (organic guest in inorganic host). 

If we further focus on the first group, i.e., macromolecular networks embedding inorganic 

components, we enter the manifold world of composite materials, in which the properties of polymers 

are improved, typically in terms of thermal and mechanical stability, flame retardancy, barrier 
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properties, etc., by the incorporation of tailored inorganic fillers. In traditional composites and 

nanocomposites [11,12,73,74] this combination is addressed by a simple physical mixing or blending 

of two or more components (“Class I” hybrid materials), based on weak interactions such as van der 

Waals interactions or hydrogen bonds, although advances have been made to modify filler surface, so 

to improve the compatibility among the components [75]. 

At variance to that, in the class of hybrid materials we are more interested in, the so called “Class II” 

hybrid materials [1,9,14], the stable (typically covalent) anchoring of the guest to the host matrix ensures 

greater stability and improved performances of the final hybrid material. In fact, the lack of a strong 

chemical bond generally leads to poor mechanical properties, migration and/or leaching of the guest 

components within/from the host matrix, phase agglomeration, demixing, which are all detrimental for 

materials properties. 

Whereas the structural (i.e., mechanical, thermal, rheological, etc.) properties of these materials are 

typically ruled by the nature of the organic/inorganic polymer host network and the functional 

properties are typically related to the nature of the interphase between the two domains or to the 

chemical nature of the incorporated unit, and these hybrid materials can be endowed, inter alia, with 

interesting optical/photonic, magnetic, electric/dielectric/piezoelectric, electrochemical, catalytic, 

sensing properties or with bioactivity [2,48]. 

Different synthetic approaches to hybrid (host/guest) materials have been systematically described 

by Kickelbick [1,53], Sanchez [76–82] and Schubert [5,54,55] and further authors, and involves either 

(i) the use of sol-gel process or (ii) the formation of organic polymers in the presence of preformed 

inorganic components or (iii) the simultaneous formation of both networks. In particular, Kickelbick [53] 

has described in his review paper the main synthetic approaches to incorporation of a wide variety of 

inorganic BB into polymer, among which: 

(1) Metals or metal complexes, by coordination interactions; 

(2) Incorporation of unmodified particles; 

(3) In situ growth of inorganic particles within a polymer matrix; 

(4) Surface modification of clusters and oxoclusters with polymerizable groups; 

(5) Surface modification of clusters and oxoclusters with polymerization initiating groups. 

As mentioned in the Abstract, among the different inorganic components, which can be added to a 

polymer to get its hybridization, the resort to structurally defined inorganic building blocks appears as 

a particularly convenient and viable route to better control their dispersion in the hybrid. 

In fact, several advantages of well defined molecular or polynuclear complexes such as clusters, 

polyoxoanions and oxoclusters with respect to nanoparticles, clays or similar less defined systems can 

be envisaged [55]: 

(1) Clusters are molecules: each cluster in a macroscopic sample has the same composition, size 

and shape; 

(2) They can be synthesized, purified and functionalized by using standard methods of inorganic 

and organic chemistry; 

(3) They can be typically dissolved in common solvents and be easily analyzed by conventional 

spectroscopic methods; 
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(4) They are generally crystalline, i.e., their structural determination can be afforded by X-ray 

diffraction, providing an unambiguous determination of their stoichiometry. 

In this context, different authors (see also the relevant literature collected in the given references) 

reported on the use of (i) polyhedral silsesesquioxanes (POSS) [1,83–91]; (ii) polyoxometalates  

(POM) [92–97], oxoclusters [5,55,98–100], as inorganic components displaying well defined structures, 

which can be embedded into polymer networks to afford functional hybrid materials for different 

applications. By using this general approach, not only bulk hybrid materials could be obtained, but also 

porous and mesoporous structures, as well as thin/thick hybrid coatings and films[16,101–114]. 

POSS, having the general formulae RnSinO3n/2 or spherosilicates (OR)nSinO3n/2 (with n typically 8) 

are well known and their applications as fillers in composites and hybrids have already been 

established. However, they will not be further reviewed in this paper. 

POM [94–96,115–117] and oxoclusters are fascinating inorganic systems displaying high nuclearities 

(number of metal atoms) and their synthesis, main features and applications will be reviewed in the  

next sections. 

To crosslink a polymer by using an inorganic unit, a mandatory requirement to be met is the 

presence of functional groups, typically reactive or polymerizable ones, on the surface of the inorganic 

building unit. To achieve it; (i) the synthesis of the cluster in the presence of the functional moiety or 

(ii) the post-functionalization (by either replacement of a former ligand by the functional one or by 

functionalization of the ligand itself) are viable routes [55], the former being easier, since the latter 

requires at least one additional synthetic step and might involve a rearrangement of the structure [118]. 

The concept of using polyfunctional units to achieve crosslinking is already extensively established 

in polymer chemistry, and allows to tailor, according to the number and spatial distribution of 

functional moieties involved in the polymerization, the degree of crosslinking and to obtain either 

branched or highly crosslinked materials. The same concept can be extended and implemented to 

hybrid materials, the multi-functionalized inorganic building block playing in this context the role of 

crosslinker. The benefit over all-organic crosslinkers is represented by the inorganic nature of the 

building block, possibly generating further improvements in the resulting material, or endowing it with 

new properties. 

The routes for the derivatization of both oxoclusters and POM have been already reported and 

described by other authors [5,93,119–124]. Typically, the functionalized inorganic building block is 

directly added to the monomer formulation, before starting the polymerization. The number, 

arrangement and density of the surface functional groups affect the final crosslinking density of  

the resulting polymer, which in turn can improve the mechanical and/or thermal properties of the 

hybrid [4,5,98,125,126]. 

Several parameters can be changed to tailor the features of the final material: beside the nature and 

number of metal ions, the polyhedral structure and connectivity of the inorganic building block, further 

diversity can be generated by varying the chemical nature of the surface functionalization. However, 

this latter is dictated on the chemical nature of the polymer host, since the chemical bond between 

organic and inorganic domains is formed among the surface moiety of the inorganic unit and the 

monomer leading to the formation of the macromolecular skeleton. In this context, several different 

functional groups (methacrylate, acrylate, norbornene, thiol groups, etc.), and polymerization routes 
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(free radical polymerization, cationic photopolymerization [108,127–131], atom transfer radical 

polymerization (ATRP), etc.) have been used to prepare this kind of inorganics-reinforced  

polymers [132–137]. 

Upon embedding these inorganic units into a polymer, three main structural issues to be considered 

are: (i) the integrity of the inorganic cluster; (ii) its distribution/dispersion into the organic backbone 

and (iii) the connectivity with the polymer segments [55]. As far as the former issue is concerned, 

being the resulting hybrids typically amorphous materials, i.e., they lack a long-range order, an 

analytical methods allowing the investigation of short-range order is required. 

In the case of the more robust POM, the assumption of stability after incorporation typically holds, 

and FT-IR and/or solid state NMR can usually confirm this. For less stable BB such as oxoclusters,  

a powerful tool to assess whether the cluster has retained or not its original structure is X-ray 

absorption spectroscopy, whose application to the study of organic-inorganic hybrid materials has been 

reviewed elsewhere [138]. In addition, as far as dispersion into the organic backbone is concerned, 

being the electron density contrast between the organic and inorganic components large, a very 

suitable method to study cluster-distribution in the polymer is Small Angle X-ray Scattering (SAXS), 

whose applications to hybrid materials were discussed elsewhere [139–141]. Finally, the investigation 

of the nature of the organic/inorganic interphase is very challenging from an analytical point of view, 

and typically it is addressed by a combination of different characterization methods, such as FT-IR, 

Raman, solid-state NMR [142–146], etc. 

2. Oxocluster-Based Hybrid Materials 

Oxoclusters [4,5,54,55,98,147–150] of early transition metals, otherwise referred by some author as 

“metal oxide clusters” [4,54,149] are a class of polynuclear compounds, typically based on 3–5 groups 

metal atoms in their highest oxidation state, such as Ti
IV

, Zr
IV

, Hf
IV

, or Nb
V
 linked by oxygen bridges 

and coordinated by organic ligands. In some cases, as extensively reported in the following,  

later transition metals (e.g., Ag) or alkaline earth (e.g., Ba, Mg) metals can also be present in the 

structure [151]. Oxoclusters display different nuclearities, i.e., number of metal atoms (n = 2–12), 

coordination number of the metal atoms and connectivity fashions (corner, edge or face sharing) of the 

metal-oxygen coordination polyhedra. 

Unlike polyoxometalates (vide infra), these compounds are globally neutral and discrete species 

having the general formula MyOx(OR)wR'z, with (R = H or organic group, R' = organic groups). In 

most case the bidentate ligand is a carboxylate, and the formula can be written as MyOx(OR)w(OOCR')z 

(with R = H or organic group, R' = organic groups). 

Their synthesis typically relies on a controlled hydrolysis of metal alkoxide in the presence of 

bidentate ligands (typically carboxylic acids) [152]. A schematic description of the different reaction 

steps, in the case of carboxylate-based oxoclusters is sketched below [152]: 

jM(OR)  + k R'COOH  k j-kM(OOCR') (OR) +k ROH  (1) 

ROH  +R'COOH  
2R'COOR +H O  (2) 

k j-k 2m  M(OOCR') (OR) +n H O 

    m k m2n - m (j-k) n - 2n - m (j-k)
M (OH) O (OOCR') + m (j-k)ROH 

  (3) 
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and the reaction path has been elucidated by Kickelbick and coworkers by a combined use of different 

analytical methods, even in time-resolved fashion. 

The key step of the overall reaction is the second one: upon esterification of the partially substituted 

metal alkoxide in the presence of an excess of carboxylic acid, a stoichiometric amount of water is 

released in a controlled way in the reaction environment. This controlled amount of water triggers 

hydrolysis/condensation reactions to form the µ-oxo M-O-M moieties, which are the common 

structural feature of all these oxoclusters. 

For the sake of completeness, it should be highlighted here that, while the above reported 

mechanism holds for oxoclusters with carboxylate ligands, a modified mechanism occurs for oxoclusters 

bearing other bidentate ligands (e.g., β-diketonate) or with only alkoxy ligands (for instance 

Ti16O16(OR)32 or Ti12O16(OR)16). Furthermore, although the proposed scheme takes only into account 

the explicit generation of water through the esterification step (2), other two reactions could in 

principle occur (which however have not yet been, to the best of our knowledge, analytically detected 

in this context), leading respectively (i) to the possible direct formation of M–OH moieties through the 

reaction of the alkoxide with the carboxylic acid: 

M(OR)j + R'COOH → (OR)j-1–M–OH + R'COOR (4) 

and (ii) to the direct formation of oxo-bridges through the reaction 

M(OR)j + M–OOCR' → M–O–M(OR)j-n + R'COOR (5) 

Starting from the pioneering works of Schubert and Sanchez, [54,74,147,148,153–155] these 

oxoclusters have been extensively used since years as building blocks for inorganic-organic hybrid 

materials [4,5,54,55,147]. More recently, they have been used as molecular precursors for controlled 

nucleation of nanostructured oxides [156] or, by exploiting their twelve-fold functionality, as secondary 

building units (SBU) for Metal Organic Frameworks (MOFs) [157]. 

Among the first reported examples of these oxoclusters, one of the earliest structurally characterized 

is Ti6O4(OR)8(OOCMe)8 [100,121], obtained by reaction of Ti(OR)4 (R = alkyl groups) with acetic 

acid. In the last years, the synthesis of different early transition metal and main/transition group metal 

polynuclear complexes (with O–M–O moieties) were extensively explored, resulting in oxoclusters 

based on Zr [158–161], Hf [162], Ti and Ti-Zr [139,158,163], Ag-Zr [164], Y, Ti-Hf [162],  

Zr-Ti-Hf [162], Ba [151], Ba-Ti [151], Ti-Pb and Ti-Sr [165], Ti-Y [166], Nb [167], Sn [120,168–176]. 

Since the 1990s, Hubert-Pfalzgraf et al. [167,177–180] have paved the way to this development by 

exploring original routes for the synthesis of a plethora of mono- and polymetallic (e.g., Pb-Zr, Pb-Ti, 

Cu-Y, lanthanides, La-Zn, Ba-Ce, and others) mixed alkoxides and oxoclusters as potential single-source 

precursors for the corresponding mixed functional oxides (e.g., perovskites). Further examples of metal 

oxide clusters based on other transition elements (Fe, Cr) were obtained by reacting the corresponding 

metal salts with unsaturated carboxylic acids or carboxylate salts, such as [Fe3O(µ-OOCR)6L3]X (where 

OOCR = acrylate or 2-butenate and X = counter ion), featuring a triangular M3O core [181]. 

The chemical properties, the tailored synthesis and modification, the structural issues of these 

oxoclusters, as well as their use as building blocks for the preparation of hybrid materials were 

thoroughly described in some reviews and research papers, already cited in the Introduction. Selected 

examples of these oxoclusters are depicted in Figure 1. 
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Figure 1. Polymerizable methacrylate (OMc) or acrylate (OAcr)-functionalized  

transition metal oxoclusters: (1) Zr6O2(OBu)10(OMc)10 [182]; (2) Zr4O2(OMc)12 [161];  

(3) Ta4O4(OEt)8(OMc)4 [183]; (4) Zr6(OH)4O4(OMc)12 [160]; (5) [Zr6(OH)4O4(OOR)12]2 [184]; 

(6) Ta8O12(OEt)8(OAcr)8. 

 

Bidentate ligands bearing polymerizable moieties may absolve an important function: by 

symmetrically functionalizing the oxocluster with functional groups (more typically acrylates or 

methacrylates), they trigger and enable the crosslinking of the resulting polymer network which is 

formed upon reaction with suitable monomers in a further synthetic step. 

Coming to the topic of this paper, and concerning the above mentioned nature of the functionalization, 

in the literature are reported, inter alia, oxoclusters which have been functionalized with acrylates or 

methacrylates [158–164,182,185–187] for free radical polymerization, norbornene-2-carboxylate derivatives 

for ring-opening metathesis polymerization [125], 4-pentynoate derivatives for click reactions [188],  

2-bromo-isobutyrate derivatives as initiator for atom-transfer radical polymerization [189], and thiol 

carboxylate-substituted metal oxocluster for thiol-ene polymerization [142,190]. 

In general, the incorporation of an oxocluster in a polymer matrix through the formation of stable 

covalent bonds induces strong changes in the materials properties, as extensively outlined in previous 

works [4,5,98,126,148,149]. The changes of some materials properties include: 

 Linear polymers such polymethylmethacrylate (PMMA) or polystyrene (PS) are turned  

into crosslinked polymers: the polymers are no longer soluble in organic solvents, but swell 

instead, as expected for crosslinked polymers; the crosslinking typically increases with the 

oxocluster amount; 

 Improvement of the thermal stability with respect to the neat polymers; 
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 Improvement of the mechanical properties (strength, hardness, brittleness, scratch resistance, 

etc.), as a further consequence of the crosslinking; 

 Enhancement of the dielectric properties (e.g., lowering of ε and tan δ); 

 Improved chemical and photochemical stability. 

Taking into account such considerations, these oxoclusters have been extensively used for  

the synthesis of hybrid materials, both for structural and functional issues, but in this contribution  

we will focus only on the latter. For the former, the interested reader can refer to  

references [4,5,54,55,98,111,126,140,147,191–193]. 

It is worth to highlight that the functional properties of the final oxocluster-reinforced hybrid 

material can be either related to some inherent property of the oxocluster itself, which is transferred to 

the material, or to some functional effect which is determined by the presence of the oxocluster into 

the polymer backbone, for instance due to chain dynamics modulation or to the formation of voids in 

the chain packing. In the following, selected examples on the possibility to endow the final hybrid 

material with functional properties are discussed. 

A first case in which a functional property of the oxocluster is tout court transferred to the resulting 

hybrid material concerns magnetic oxoclusters-based hybrids described by Schubert et al. [194]. In this 

work, the authors embedded the Mn oxocluster Mn12O12(OAcr)16 in polyacrylate matrix and then 

investigated, inter alia, the magnetic properties of the resulting hybrid materials which were proven to 

be the same as the isolated oxocluster. A very similar study was also carried out by Willemin et al., 

leading to analog results [195]. These two studies showed that the polymerization of the magnetic 

clusters in the presence of organic monomers allows the preparation of magnetic materials that can be 

processed like typical organic polymers but retain the properties of the embedded molecular magnets. 

The Mn12 clusters of general composition Mn12O12(OOCR)16 are in fact well know and  

prototypal examples of magnetic molecular clusters. The superparamagnetic properties reported by  

Sessoli et al. [196–199] in these Mn oxoclusters, due to the slow relaxation of the magnetization, have 

disclosed the possibility to use them for storing information at the molecular level. 

Always concerning magnetic oxoclusters, a proposed approach relies on the use of miniemulsion to 

prepare magnetic oxoclusters based hybrid materials. In particular, either a manganese-oxo or 

manganese-iron-oxo cluster Mn12O12(VBA)16(H2O)4 and Mn8Fe4O12(VBA)16(H2O)4 (where  

VBA = 4-vinylbenzoate), were prepared and characterized. Polymerization of the functionalized metal 

oxoclusters with styrene, under miniemulsion conditions [200,201], produced monodispersed polymer 

nanoparticles endowed with magnetic properties for potential magnetic imaging applications [202,203]. 

In the field of optical applications, few examples are reported, [79,165,204]. As far as the refractive 

index is concerned, an increase of the refractive index of the polymer matrix upon embedding of 

heavier metal (Zr, Hf) oxoclusters would be expected. Actually, since the amount of oxocluster 

embedded in the polymer network is generally low (1 at%–3 at%), no relevant change is expected in  

the variation of optical properties, such as, for example, transparency. In this regard, an example of 

cluster-reinforced hybrid material concerned with tuning of optical properties is based on the addition 

of metal oxoclusters, into an inorganic-organic hybrid host material (Organically Modified Ceramics, 

OrMoCer) [174]. In particular, different benzoic acid functionalized titanium oxo-alkoxo-clusters 

Ti6O4(C6H5COO)8(OR)8 (R = Et, 
n
Pr-, 

n
Bu-) were prepared and their dispersion in Ormocer matrix led 
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to a homogeneous, photo-patternable hybrid system with tailored properties. The refractive index of 

the host Ormocer matrix could be increased from 1.552 to 1.575 at 635 nm by the addition of these 

titanium clusters (ca. 2.2 mol%). The novel hybrid materials displayed similar flexibility in processing 

than the host matrices, offering a broad variety of applications in microsystems technology. 

Instead, among optical properties induced by the nature of the oxocluster, it should be mentioned 

the photochromicity [205–208] observed by Sanchez and coworkers in hybrid materials produced  

by the embedding of the Ti16 oxocluster into poly(hydroxyethylmethacrylate). The resulting hybrid 

materials become dark blue upon UV-Visible irradiation, and this effect was ascribed to the absorption 

created by the intervalence band associated with the photogeneration of localized titanium(III) 

polarons. The presence of mixed-valence Ti(III)–Ti(IV) entities was shown through UV-Visible and 

EPR measurements (ESI). This photochromic behavior is reversible in the presence of oxygen which 

yields the back oxidation of the Ti(III) centers into Ti(IV). 

As a further example, transparent di-ureasil hybrids containing a methacrylic acid-modified 

zirconium tetrapropoxide (ZrMcOH) clusters and incorporating EuCl3 and [Eu(tta)3(H2O)2]  

(tta = thenoyltrifluoroacetonate) complex were proven to be multi-wavelength emitters for applications 

in optics [165,204]. 

As far as the electric properties are concerned, a wide applications of oxocluster-reinforced 

polymers has been assessed in the field of dielectric films, for instance for the development of Field 

Effect Transistors (FET) and dielectric materials for electronic devices [158,183,209–212]. In general, 

in the materials prepared by embedding of the oxocluster into PMMA, a lowering of the dielectric 

constant and of tanδ could be evidenced. In this case, these functional properties of the material, 

characterized by broad band dielectric spectroscopy, could be traced back to modulation of the chain 

dynamics, induced by the presence of the inorganic symmetrically functionalized crosslinker, and to 

the creation of voids in the polymer matrix, induced by the presence of the oxocluster itself, which 

does not migrate in the materials. Accordingly, the electrical properties of the hybrid materials were 

proven to be strongly affected by the molar ratio between cluster and monomer. 

A further example of improvement of functional properties, and ascribable to the presence of the 

oxocluster, is the fairly good barrier properties against corrosion evidenced for a polyacrylate matrix 

embedding the Zr4 oxocluster [213]. In this regard, electrochemical impedance spectroscopy (EIS) was 

performed in order to evaluate if the coatings actually protect the metallic substrate from corrosion. 

Although the water uptake of hybrids is greater than that of pure PMMA and some improvements in 

the process are required, the hybrid coatings appear promising as barrier against corrosion and they 

generally behave better than pure PMMA, when deposited on different aluminium alloy substrates. 

Oxoclusters-based hybrids, typically based either on polymethacrylate or on hybrid silica as host 

matrix, have been successfully used also for the development of different protective coatings for wood 

and cellulose [111,114,214]. 

The use of oxoclusters-based hybrids has been very recently extended to materials for catalytic 

applications. Actually, the idea of protecting a catalytically active system by embedding it in/anchoring 

it on a matrix is the underlying and widely used concept in heterogeneous catalysis. The use of hybrid 

materials to “heterogenize” catalysts, in particular by the embedding of the catalyst into a polymer 

matrix, is a fertile field of research. Recently, we have evidenced the possibility to use zirconium-based 

oxoclusters to activate hydrogen peroxide, for the oxidation of organic substrates [215]. The oxidation of 
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methyl p-tolylsulfide to the corresponding sulfoxide and sulfone was chosen as model reaction, 

showing an interesting selectivity towards the oxidation of the sulfoxide. Now, we have embedded Zr 

and Hf oxoclusters into PMMA matrix and proved their effectiveness towards the oxydesulfurization 

of a model fuel [216]. To this aim, we have exploited such reactivity to perform the oxidation of 

dibenzothiophene (DBT) to the corresponding sulfoxide (DBTO) and sulfone (DBTO2). Up to 90% 

yield for DBT conversion was obtained in 24 h, with an 85% selectivity for DBTO2. In most cases, 

thanks to the enhanced affinity of the polymeric matrix towards polar substrates and solvents, the 

heterogeneous set-up have shown to be more efficient than the corresponding homogeneous systems, 

and has allowed the recovery and recycling of the catalytic species. FT-IR, SS-NMR and XAS showed 

good stability of the hybrids under catalytic conditions. 

3. Polyoxometalate-Based Hybrid Materials 

Polyoxometalates (POM) discovery dates back to the last third of the XIX century, when early 

transition elements of groups V and VI, such as Nb, V, Ta, Mo, and W in their higher oxidation states 

(configuration d
0
 or d

1
) were found to form polynuclear oxoanions in aqueous solution at acidic pH. 

Under such conditions, they can form molecular compounds of variable dimensions, ranging from  

few Ångström to tens of nanometers [95–97,116,117]. A general classification is based on their 

composition, essentially represented by two types of formula: [MmOy]
p−

 and [XxMmOy]
q−

 where M is 

the main transition metal constituent of the polyoxometalate, O is the oxygen atom and X can be a 

non-metal atom as P, Si, As, Sb, another element of the p block, or a different transition metal. The 

first formula refers to isopolyanions; the second one refers to heteropolyanions. When the latter 

incorporate different transition metals, they are called Transition Metals Substituted Polyoxometalates 

(TMSP). In most cases, the structure of the POMs derives from the aggregation of octahedral units 

MO6, although MO4 tetrahedra can also be present. Oxygen atoms exhibiting simple bonds with the 

metal allow the condensation between two octahedral units, with the formation of µ-oxo bridges 

between two metals ions. The octahedra can thus be condensed in three different ways: (i) corner 

sharing; (ii) edge sharing; (iii) face sharing. One oxygen atom—or maximum two-show a double bond 

character with the central M atom and they are not shared with other M atoms. These terminal oxygen 

atoms are essential for the aggregation to take place into discrete structures and not in an extended 

material (as for most common main-group element oxides: silicates, phosphates, germanates, etc.) [97]. 

Among the most important classes of polyoxometalates there are the Keggin heteropolyanions. 

Their general formula is: [XM12O40]
n−

, with M = Mo (VI) or W (VI). In 1934 Keggin obtained the 

structure of the hexahydrated dodecatungstophosphoric acid by powder X-ray investigation [217]. This 

structure is called α-Keggin and consists of a central PO4 tetrahedron surrounded by 12 octahedra WO6 

belonging to the mono-oxo terminal type. These octahedra arrange themselves in four triplets M3O13 

where the three octahedral units aggregate by edge-sharing. Finally, the four different triplets condense 

each other by corner-sharing (Figure 2). Structural isomers of Keggin polyanion are formally obtained 

from the α structure by 60° rotation of one (β isomer), two (γ isomer), three (δ isomer) or four  

(ε isomer) triplets M3O13. Such isomers are characterized by lower symmetry and by a decreased 

thermodynamic stability with respect to the α structure. 
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Figure 2. Top: polyhedra (left) and ball & stick (right) representations of α-Keggin 

polyoxotungstate [PW12O40]
3−

; bottom: ball & stick structures of other representative 

polyoxometalates. 

 

Beside Keggin polyanions, a great variety of structures (Wells-Dawson [X2M18O62]
n−

, Anderson-Evans 

[XMo6O24]
n−

, Lindqvist [M6O19]
n−

, Strandberg [P2Mo5O23]
6−

, Preyssler [P5W30O110]
15−

, etc.) can be 

obtained in particular synthetic conditions by tuning some specific parameters like concentration, 

stoichiometric ratio between the reagents, temperature, and pH [218]. 

Since POMs are hydrolytically instable in alkaline media, it is possible to exploit this behavior to 

promote in a controlled way the selective formation of structural defects. The resulting vacant or 

“lacunary” POM complexes [117,219] derive from the saturated precursors through the formal loss of 

one or more MO6 octahedral units and can be used as ligands for transition metals and organometallic 

groups or as building blocks for the preparation of oligomeric POM aggregates. 

What is noteworthy is the possibility for isostructural polyoxometalates to show different properties 

depending on the heteroatoms [220,221]. In addition, the choice of a suitable counterion for such 

complexes is fundamental to allow their solubilization in a wide range of solvents: from apolar ones 

(toluene, dichloromethane), by using lipophilic cations such as dimethyloctadecy ammonium (DODA), 

to water, with alkaline counterions or protons. 

Different scientific fields, such as medicine, materials science, and catalysis, are particularly 

interested in the properties of polyoxometalates for their acidity, redox activity, thermal and oxidative 

stability, high charge density, electron acceptor/storing capability and magnetism [222–226]. In 

particular, polyoxometalates are more stable towards the oxidative degradation than generic organic 

molecules, since they are made of metals in their higher oxidation state [227,228]. Therefore they can 

a-Keggin [PW12O40]
3-

Lindqvist

[W6O19]
2-

Wells-Dawson 

[P2W18O62]
6-

Anderson-Evans 

[TeW6O24]
6-

Strandberg

[P2Mo5O23]
6-

Preyssler

[P5W30O110]
15-
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be successfully exploited for the activation of sustainable oxidants like dioxygen and hydrogen 

peroxide to perform the oxidation of organic substrate [229–231], as well as for advanced application 

as water splitting [232,233]. 

Due to their manifold applications, POMs immobilization may reduce cost and environmental 

impact of POM-based catalysts, while their confinement into different matrixes may be useful to 

design opto-electronic devices or carrier systems for the delivery of biologically active POMs. The 

introduction of POMs into processable polymeric matrices may be of interest for the development of 

heterogeneous catalytic systems to be employed in continuous processes based on fixed-bed reactors 

and membrane reactors. In addition, the polymeric host can play a role in enhancing reaction 

selectivity, through differential sorption/permeability of reagents [234,235]. 

The physical blending method is the simplest way to fabricate POM/polymer hybrid materials. 

Some water-soluble polymers, such as poly(vinylalcohol) (PVA), poly(ethylene glycol) (PEG), 

agarose, polyacrylamide and poly(vinyl pyrrolidone) (PVP), were used as compatible matrices for 

hydrosoluble POMs. Dipping or spin-coating methods were used to obtain films on different solid 

supports [92], while the electro-spinning technique was used to obtain fibers [236]. In order to match 

the hydrophobicity of water-insoluble polymers, POMs can be associated with suitable counterions 

featuring high affinity towards the organic matrix. This was successfully achieved with the 

decatungstate [W10O32]
4−

, which was isolated as tetrabutylammonium salt and incorporated  

within polymeric membranes (polysulfone PS, polyether-etherketon PEEK-WC, polyvinylidene 

difluoride PVDF, polydimethylsiloxane PDMS) [237], or as fluorophilic salt (with the cation 

[CF3(CF2)7(CH2)3]3N
+
CH3), for the incorporation within the perfluorinated polymer Hyflon

®
 [238]. 

The resulting materials were used as photocatalysts to oxidize either alcohols or hydrocarbons, 

respectively, and a matrix effect was observed on reaction selectivity. Within this scenario, the 

preparation of surfactants encapsulated POMs (SEP) is a well-known strategy to obtain POMs  

with high affinity towards low polarity media. For example, the compatibility between the 

photoluminescent complex (DODA)9(EuW10O36) and the polystyrene matrix allowed the fabrication of 

hybrid polymeric films with highly ordered honeycomb-like structures. The films were relatively 

stable and enabled to study photoluminescence and redox properties of the embedded POM [239]. 

Owing to the lack of strong chemical interactions between the POMs and the polymer, the low stability 

of these hybrid materials limits their practical applications. An interesting perspective to increase the 

composite stability consists in using polymerizable surfactants, such as dodecyl[11-(methacryloyloxy)-

undecyl]dimethylammonium bromide (DMDA) and cetyl(2-methacryloyloxyethyl)dimethylammonium 

bromide (CMDA), in order to establish strong interaction between the counter cation and the polymeric 

matrix obtained in situ [240]. A miniemulsion polymerization was also developed to incorporate 

POMs into PS latex, providing POM protection towards aqueous environment [241]. 

Another convenient strategy to effectively disperse polyanions into hybrid materials consists in the 

exchange of their counterions with positively charged polyelectrolytes (polyallylammonium, 

poly(diallyldimethylammonium), polyviologens, cationic dendrimers, and dendrons) [242–245], or 

polymers such as polyethyleneimine, poly(4-vinylpyridine), polyaniline, chitosan in their 

quaternized/protonated form. In this way, a broad number of hybrid materials and thin films were 

prepared, including hierarchical layer-by-layer (LbL) structures, with applications as opto-electronic 

devices, catalysts, sensors and antibacterial surfaces [37,92,246–249]. 
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An even more stable interaction between a POM and a polymer was observed in a ultrathin 

multilayer film, consisting of Keggin anions [PMo12O40]
3−

 and of a photosensitive diazo resin. After 

the initial absorption of the anionic clusters onto the positively charged polymer interface, UV 

irradiation was employed to foster the photodecomposition of the diazo resin, with loss of N2, and the 

photoreduction of the POM. The enhanced stability against solvent etching was explained by the 

formation of strong Mo-O-C interactions [250]. 

The previously described assembly methodology exploits multiple interactions between the 

polycharged domains, but is only limited to polyelectrolytes. The most appealing alternative is thus 

offered by the formation of covalent bonds between POMs and the polymeric backbone. 

As in the case of transition metal oxoclusters described in the former section, the preparation  

of covalently-linked hybrids generally requires surface modification of the POMs structure. This can 

be easily achieved upon covalent decoration of vacant polyanions. The nucleophilic oxygen atoms 

bordering the surface defect can indeed react with electrophilic reagents to yield organosilyl, 

organostannyl, organophosphonyl, and organogermyl hybrid derivatives [124,251,252]. The covalent 

functionalization of vacant polyoxoanions generally imparts a stabilization to the POM unit while 

tuning its electronic properties. The derivatization of polyoxometalates was exploited to obtain:  

(i) self-assembled supramolecular aggregates, including photoresponsive nanostructured systems;  

(ii) amphiphilic POM derivatives with solvophobic behavior in water/air and water/oil interface,  

polar or nonpolar solvents; (iii) conjugates with chiral and biological molecules, for application in 

enantioselective catalysis or recognition of biological targets; (iv) POM-supported organometallic 

catalysts, dendrimers, photosensitizers and sensing units. In addition, suitable organic pendants can 

foster POM immobilization onto solid supports [93]. 

The main disadvantages of covalent grafting are related to the modified properties of the 

functionalized POMs with respect to their precursors, and to the need of applying one or more 

derivatization steps, usually requiring non-conventional conditions/purification techniques. For these 

reasons, a low number of suitable POMs are available. Nevertheless, as for the oxoclusters, the 

incorporation of organic moieties provides various options for an easier processability and following 

integration into functional architectures and devices. A number of advantages are thus available when 

applying this approach, including: control of the interaction between the different domains, better 

dispersion and improved stability of the assembly. 

Among hybrid POMs, several polymerizable organosilyl-modified polyoxotungstates (e.g.,  

[α-SiW11O39(RSi)2O]
4−

, [γ-SiW10O36(RSi)2O]
4−

, [γ-SiW10O36(RSiO)4]
4−

, [α-SiW9O34(RSi)4O3]
4−

, with 

R = vinyl(–CH=CH2), 3-(methacryloxy)propyl (–(CH2)3OC(O)C(CH3)=CH2), octenyl (–(CH2)6CH=CH2), 

were prepared (Figure 3) [253–255]. 

In a first example, Judeinstein used trichloro- or triethoxy- organosilanes to introduce the following R 

groups: vinyl (–CH=CH2), allyl (–CH2CH=CH2), 3-(methacryloxy)propyl (–(CH2)3OC(O)C(CH3)=CH2), 

styryl (–C6H4CH=CH2) groups on the undecatungstate α-Keggin polyanion [α-SiW11O39]
8−

 (Figure 3a). 

Hybrid and branched polymers based on such POM units were then synthesized via radical 

polymerization, in the absence of any additional monomer, to obtain a POM-based polymer. Transparent 

thin films of these polymers turn reversibly to blue upon UV irradiation or electrochemical reduction, 

due to formation of W(V) centers, being, thus, promising for the development of photochromic and 

electrochromic devices [256]. 



Materials 2014, 7 3969 

 

 

Figure 3. Top: hybrid polyoxotungstates containing polymerizable organosilane pendants: 

(a) bis-(organosilyl) undecatungstosilicate [α-SiW11O39(RSi)2O]
4−

; (b) bis- and 

tetrakis(organosilyl) decatungstosilicates [γ-SiW10O36(RSi)2O]
4−

; and (c) [γ-SiW10O36(RSiO)4]
4−

; 

(d) tetrakis(organosilyl) nonatungstosilicate [α-SiW9O34(RSi)4O3]
4−

; (e) bis-(organosilyl) 

monovancant Well-Dawson [α2-P2W17O61(RSi)2O]
6−

. Bottom: acryl-based polymers.  

 

The vinyl-functionalized [α-SiW11O39(CH2=CHSi)2O]
4−

 (Figure 3a) was converted into the free 

acid form and copolymerized with butylacrylate and 1,6-hexanediol diacrylate, under UV irradiation, 

in the presence of a photoinitiator. The resulting material exhibits proton conductivity of 0.17 S·cm
−1

 

at 80 °C, i.e., close to the standard operating conditions of proton-exchange membrane (PEM) fuel 

cells [257]. 

Hybrid networks based on the decatungstosilicate Keggin compound  

[γ-SiW10O36{CH2=C(CH3)C(O)O(CH2)3Si}2O]
4−

 (Figure 3b) were obtained upon copolymerization with 

ethyl methacrylate. To foster further crosslinking, the polymerizable cation 

CH2=C(CH3)C(O)O(CH2)2N
+
(CH3)3 was associated to the same POM. The inorganic component was 

shown to give a substantial contribution to the swelling properties of the resulting polymeric gel into 

polar organic solvents, depending on monomers ratio and cross-linking density [258]. In a parallel 

investigation, the possibility to obtain hydrogels based on the amphiphilic sodium salt of  

[γ-SiW10O36{CH2=C(CH3)C(O)O(CH2)3SiO}4]
4−

 (Figure 3c), copolymerized with acrylamide, was 

also demonstrated. In this case, the hybrid material is able to swell in the presence of water, depending 

on POM concentration and aggregation state, up to 150 g/g [259]. Magnetic nanosized γ-Fe2O3 
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particles were then included in the absorbent material. The nanoparticles retain their rotational mobility 

within the network, and their controlled release upon swelling of the hydrogel was described [260]. 

The polyanions [SiWwOz{CH2=CH(CH2)6Six}Oy ]
4−

 with x = 2, w = 11, y = 1, z = 39; x = 2,  

w = 10, y = 1, z = 36 and x = 4, w = 9, y = 3, z = 34 (Figure 3a,b,d) were copolymerized with methyl 

methacrylate and ethylene glycol dimethacrylate, in the presence of porogenic alcohols,  

to form porous materials. The hybrid copolymers were then used in acetonitrile or in a biphasic  

(n-octane/acetonitrile) media, in the presence of aqueous hydrogen peroxide, to catalyze the oxidation 

of organic sulphides, including dibenzothiopene (DBT). In particular, the hybrid polymer based on the 

decatungstosilicate polyanion removed sulfur-based compounds from n-octane in 90 min, at 60 °C, 

and reduced the sulfur content to about 10–8 ppm, highlighting the promising potential of the 

supported POMs in the oxydesulfurization of hydrocarbons [255]. 

The Dawson polyanion ([α2-P2W17O61{CH2=C(CH3)C(O)O(CH2)3Si}2O]
6−

, Figure 3e) in its free-

acid form was polymerized with methyl methacrylate. The acidity of the hybrid copolymer was 

evaluated in CH3CN solution (homogeneous conditions) and in CH3OH (heterogeneous conditions) by 

using Hammett indicators, showing the retention of the original POM acidity and suggesting its use as 

a promising solid acid catalyst [261]. 

Other hybrid polyoxotungstates with reactive functional groups, such as thiol, sulfocyanide, amino, 

are suitable for their covalent immobilization onto supports [262–264]. For example, the Dawson POM 

[α2-P2W17O61{HS(CH2)3Si}2O]
6−

, carrying thiol groups as pendant arms, was reacted via nucleophilic 

substitution with nanolatex particles obtained by the copolymerization of styrene, vinyl benzyl chloride 

and hydroxypropyl methacrylate (cosurfactant) in an oil-in-water microemulsion. The stable colloidal 

particles display a closely packed inorganic shell with photochromic behavior [265]. 

Another organically modified Dawson POM, [α2-P2W17O61(N3CH2C6H4Si)2O]
6−

, was immobilized 

on the functionalized channels of a macroporous resin. To this aim, a polystyrene-divinylbenzene 

matrix containing benzylamine residues were modified by condensation with pentynoic acid, then the 

bis-azido POM was grafted via click chemistry. The efficiency and the stability of the solid catalyst 

were demonstrated studying the activation of H2O2, for the oxidation of tetrahydrothiophene (THT). 

The catalytic system allowed the quantitative conversion of the substrate to its corresponding sulfoxide 

in 12 h, at room temperature, in acetonitrile, where it did not show any POM leaching and was thus  

re-used up to five times [266]. 

A different approach can be followed when using arylimido derivatives of the Lindqvist 

hexamolybdate [Mo6O(19−x)(NAr)x]
2−

 (with Ar = arly groups). In these hybrids, the organic p electrons 

may extend their conjugation to the inorganic framework, thus resulting in strong d–p interactions. 

Organoimido derivatives of POMs with a remote organic functional group were thus successfully used 

as building blocks to prepare POM–organic hybrids with different architectures [267]. 

The mono p-styrenyl substituent in the derivative [Mo6O18{NC6H2(CH3)2CH=CH2}]
2−

 allowed the 

polyoxometalate complex to be introduced as a pendant group in polystyrene chains, (Figure 4a) [268]. 

Thanks to the selective reaction of octamolybdate ion [α-Mo8O26]
4−

 with iodo aryl amine, a cis 

bifunctionalized hexamolybdate [Mo6O17(NArI)2]
2−

 was obtained and polymerized via Pd catalyzed C–C 

coupling with a diethynylbenzene derivative (2,5-di(2,2-dimethylpropoxy-1,4-diethynylbenzene) [269]. 

The main chain-POM-containing linear polymer was then employed in photovoltaic devices, whereby 

a thin layer of polymer was sandwiched between a transparent anode (indium-tin oxide, ITO) and a 
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metal cathode. In this case, the photoinduced charge separation led to a power conversion efficiency of 

0.15%. Although this value compares well with other conjugated polymers, the low efficiency was 

explained in terms of the poor charge transporting properties of the polymer [270]. In a following 

paper, the authors described the preparation of a π-conjugated polymer, based on poly(phenylene 

ethynylene), bearing imido-functionalized hexamolybdates as side-chain pendants (Figure 4b). They 

observed a polymeric backbone fluorescence quenching and suggested a through-bond photoinduced 

electron transfer as the dominant mechanism [271]. Even better achievements were envisaged for a 

diblock copolymer containing an oligo(phenylene vinylene) (OPV) rigid block and a polystyryl-type 

(PS) flexible block with hexamolybdate pendants. In this case, a click chemistry step was used to join 

together the OPV block and the PS block, while the hexamolybdate was added in a post 

functionalization step, with formation of imido bonds (Figure 4c). The POM cluster in a solid film was 

found to quench 74% of the OPV fluorescence [272]. 

Figure 4. Hybrid polymers based on organoimido-functionalized hexamolybdate as  

side-chain pendants. 

 

As a final approach it is worth to mention the possibility of preparing bi-functional  

materials through the condensation of bis derivatized POMs with different functional molecules,  

such as porphyrins. Hybrid polyoxometalate-porphyrin copolymeric films were obtained by the 

electro-oxidation of zinc octaethylporphyrins in the presence of the Anderson hexamolybdate 

[MnMo6O18{(OCH2)3CNHCO(4-C5H4N)}2]
3−

. These films were applied for the photocatalytic 

reduction of Ag
I
2SO4 in the presence of propan-2-ol [273]. 

4. Conclusions 

An overview on the research results on the preparation and properties of oxoclusters/POMs 

polymeric hybrid materials has been herein described and discussed. Different methodologies for the 

preparation of such composite materials have been presented, focusing our attention on the most stable 

and promising covalent strategies. 
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As a first remark, incorporating oxoclusters/POMs into suitable polymer matrices may increase 

material processability and long-term stability, as well as thermomechanical properties. Furthermore, 

and more importantly, the possibility to chemically tailor the composition, structure and functionalities 

of the inorganic building block and of the polymer matrix pave the way to the obtainment of 

multifunctional materials. To address this stimulating challenging, the role of synthetic chemistry, 

encompasses not only the preparation of new inorganic BB with functional properties, such as redox, 

luminescence or magnetic properties, but also their careful decoration with functionalities to match 

them with suitable organic counterparts providing better compatibility, stability and performances. 

Indeed, we believe that such materials deserve much more attentions, and different combinations of 

monomers and inorganic building blocks will offer new possibility to strength most of the preliminary 

but promising studies on electro/photo active or catalytic materials. 

A further exciting perspective could be the combination, also aimed at multifunctionality, of POM 

and oxoclusters to enhance the functional properties of the inorganic counterpart of the hybrid materials. 
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