..'.\

S
e w

materials @\py

Article
Hydrogenation Properties of TiFe Doped
with Zirconium

Catherine Gosselin and Jacques Huot *

Received: 26 August 2015 ; Accepted: 12 November 2015 ; Published: 20 November 2015
Academic Editor: Umit B. Demirci

Hydrogen Research Institute, Université du Québec a Trois-Rivieres, 3351 des Forges, Trois-Riviéres,
QC GY9A 5H7, Canada; Catherine.gosselinl@uqtr.ca
*  Correspondence: jacques.huot@uqtr.ca; Tel.: +1-819-376-5011 (ext. 3576); Fax: +1-819-376-5164

Abstract: The goal of this study was to optimize the activation behaviour of hydrogen storage
alloy TiFe. We found that the addition of a small amount of Zr in TiFe alloy greatly reduces the
hydrogenation activation time. Two different procedural synthesis methods were applied: co-melt,
where the TiFe was melted and afterward re-melted with the addition of Zr, and single-melt,
where Ti, Fe and Zr were melted together in one single operation. The co-melted sample
absorbed hydrogen at its maximum capacity in less than three hours without any pre-treatment.
The single-melted alloy absorbed its maximum capacity in less than seven hours, also without
pre-treatment. The reason for discrepancies between co-melt and single-melt alloys was found to
be the different microstructure. The effect of air exposure was also investigated. We found that
the air-exposed samples had the same maximum capacity as the argon protected samples but with
a slightly longer incubation time, which is probably due to the presence of a dense surface oxide
layer. Scanning electron microscopy revealed the presence of a rich Zr intergranular phase in the
TiFe matrix, which is responsible for the enhanced hydrogenation properties of these Zr-doped
TiFe alloys.
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1. Introduction

Solid state hydrogen storage in metal hydrides is a promising form of energy storage for
stationary machines, backup power, and for heavy duty vehicles. In these applications, the system
safety, low maintenance, compactness, and operating costs far exceed the criteria of high gravimetric
hydrogen capacity. One important aspect of this form of storage is the potential for reversibility at
room temperature, needed for most commercial and industrial applications [1].

Among the different metal hydrides, TiFe is one of the low cost intermetallic compounds that
operate near room temperature (RT) and under a mild pressure environment [2]. However, TiFe
alloy has poor activation characteristics, needing time, high pressure, and high temperature to
achieve full hydrogenation [3]. This is a major concern for commercial and industrial applications.
In order to overcome this problem, different approaches have been investigated. They include pulse
current-assisted reaction [4], ball milling [3,5], plastic deformations [6], and utilizing clusters [7].

Another approach uses element substitution for Fe or Ti with transition metals (TMs), including
Mn, Cr, Ni and Zr [8-12]. The partial substitution of Fe with TMs improves the activation process by
reducing the time, pressure, and heat needed [13].

We have recently exposed that the addition of a small amount of Zr;Nij alloy to TiFe drastically
improves the activation process. In this study, we found that the enhancement was due to the
two-phase microstructure consisting of an intergranular phase and an iron-titanium matrix. As the
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intergranular phase was found to contain most of the zirconium, we wanted to test the hypothesis that
zirconium is the main element responsible for the activation improvement [14]. Additionally, it was
reported by Nagai et al. [13] that substituting iron with zirconium greatly improved the activation
kinetics and hydrogen capacity. In this paper we report the investigation study of the use of Zr to
facilitate the activation behaviour of TiFe alloy. Therefore, the amount of zirconium added was much
less than in Nagai’s investigation. Nagai investigated the compositions TiFe;_,Zry where y =0.1,
0.2, and 0.3, which translate to an amount of zirconium from 8 to 23 wt.%. In our case, we wanted
to investigate the effect of adding a much smaller amount of Zr than in Reference [13], in the hopes
of enhancing activation behaviours of TiFe-based alloys. The compositions studied were TiFe + xZr,
where x = 0, 2, and 4 wt.%. In the present investigation, the effect of the synthesis method and
Zr proportion on activation behaviour was measured. The study of microstructure and element
distribution in the alloy gave some indication of the possible mechanism responsible for the faster
activation process.

2. Results and Discussion

2.1. Activation Process

The kinetics of the first hydrogenation, also called activation, of single melt TiFe + x wt.% Zr
(x=0, 2, 4) alloys are shown in Figure 1. At room temperature, and under a hydrogen pressure of
4500 kPa, the samples with 0% and 2% did not absorb hydrogen, even after seven hours of exposure.
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Figure 1. Activation curves at room temperature under 4500 kPa of hydrogen of single-melt
TiFe + x wt.% Zr for x =0, 2, 4.

Addition of 4 wt.% zirconium yielded a significant improvement in activation time. After an
incubation time of less than one hour, the alloy started to absorb hydrogen, reaching a maximum
storage capacity of 1.45 wt.%.

Figure 2 shows the rate of absorption of hydrogen for co-melt TiFe with a content of 2 and 4 wt.%
of zirconium. Under these conditions, and similar to the single-melt sample, the samples with 2 wt.%
did not absorb hydrogen, even after five hours of exposure. The sample with 4 wt.% zirconium
shows no incubation time and readily absorbs hydrogen. In this case, the maximum storage capacity
of 1.59 wt.% was reached after four hours.
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Figure 2. Activation curves at room temperature under 4500 kPa of hydrogen of co-melt TiFe + x wt.%
Zrforx=2,4.

Thus, it is clear that the addition of 4 wt.% of zirconium drastically improves the first
hydrogenation (activation) kinetics for both single and co-melt alloys. The main difference between
them is that the co-melt alloy does not exhibit an incubation time.

Air Exposure Effect

Being able to handle alloys in air is a critical requirement for large-scale production. For this
reason, we tested the effect of air exposure by crushing the alloys in air. Figures 3 and 4 respectively,
show the activation curve of co-melt and single-melt TiFe + 4 wt.% Zr samples handled in air and
in argon.
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Figure 3. Activation curves of co-melt of TiFe + 4 wt.% Zr under Argon and under air, at room
temperature, with 4500 kPa of hydrogen.
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Figure 4. Activation curves of single-melt of TiFe + 4 wt.% Zr, under argon and under air, at room
temperature. Applied hydrogen pressure is 4500 kPa.

For both single-melt and co-melt samples, handling in air result in degradation of activation
behaviour. In the case of co-melt (Figure 3), a short incubation time was present, but, afterwards, the
absorption kinetics were very similar to the argon exposed sample.

The single-melt sample handled in air (Figure 4) presented a much longer incubation time than
its argon handled counterpart, but the hydrogenation kinetics after the incubation time were much
faster. This led to the unexpected result that full capacity was reached faster in the case of air handled
sample. Clearly, the incubation time is linked to the fact that the oxide layers, caused by the exposure
to air, prevent the penetration of hydrogen in the alloys. However, presence of some level of oxides
may, in fact, speed up the intrinsic kinetics of hydrogenation.

It should be pointed out that the air-exposed alloy did not suffer a significant loss of hydrogen
capacity. This could be explained by the fact that, as explained in the Experimental Section, the
material was crushed by hand using a mortar and pestle. After crushing, the material is composed
of very coarse grains (particles more than 400 um in diameter), thus, the surface/volume ratio was
still very small. This means that, even if the surfaces of particles are oxidized, the volume of oxidized
material is still very small. When crushed in air, all surfaces are oxidized and this is the reason for
the long incubation time. However, when hydrogen could penetrate this oxide surface, the increases
of volume of the hydride phase fracture the material and expose fresh surfaces. This is the reason for
the fast kinetics after the incubation time.

2.2. Structure

From the activation measurement reported above, it is clear that activation depends, not only
on the chemistry, but also on the synthesis method. This led us to study the alloy’s microstructure
and element distribution. Figure 5 shows the micrograph and element mapping of single-melt TiFe
alloy. It is clear that the elements are evenly distributed and, at this scale, there is no intergranular
phase. It should be pointed out that the alloy was not etched after polishing. This is the reason why
the micrograph appears structureless. The bulk abundance in atomic % of Ti and Fe, as measured by
EDX, was, respectively, 50.6 + 0.1 and 49.4 + 0.1, which is very close to the nominal composition.
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Figure 5. Secondary electron micrograph and EDX mapping of TiFe alloy.

Figure 6 shows the micrographs of single-melt and co-melt of TiFe + 4 wt.% Zr alloy. It is clear
that the microstructure of these two alloys is totally different. The single-melt alloy has a much
smaller and more evenly distributed intergranular phase. Table 1 shows that the bulk abundance
of each alloy, as determined by EDX, agrees with the nominal abundance.

Figure 6. Secondary electron micrographs of (a) co-melt and (b) single melt TiFe + 4 wt.% Zr alloys.

Table 1. Bulk atomic abundance as measured by EDX of TiFe + 4 wt.% Zr single-melt and co-melt
alloys. Error on each composition is indicated in parentheses.

TiFe + 4 wt.% Zr

Alloys Atomic %
Ti Fe Zr
Nominal composition 47.85 47.85 4.30
Co-melt 50.7 (0.2) 45.8 (0.2) 3.5(0.2)
Single-melt 49.0 (0.2) 48.3(0.2) 2.7(0.2)

Figure 7 presents a higher magnification micrograph of the co-melt sample, along with element
mapping. It is clear that zirconium is mainly located in the intergranular phase. The atomic
abundances at specific points indicated in Figure 7 are listed in Table 2.

Close inspection of Table 2 indicates that a small amount of zirconium diffused into the
matrix. The two intergranular regions studied seem to have a composition close to (Ti;—,Zry),Fe.
This composition is the one found by Nagai et al. when they substituted iron with zirconium [13].
In their paper, they concluded that it was the dispersion of this (Ti;,Zry),Fe phase in TiFe alloy that
significantly accelerated the activation process. The present results agree with that conclusion.
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Figure 7. Secondary electron micrograph and EDX mapping of TiFe + 4 wt.% Zr co-melt alloy.

Numbers in the first image indicate specific points reported in Table 2.

Table 2. Atomic abundance at specific points as measured by EDX of TiFe + 4 wt.% Zr co-melt alloy.
Error on each number is indicated in parentheses.

TiFe + 4 wt.% Zr Co-Melt

N Atomic %
Localization
Ti Fe Zr
Point 1 (intergranular phase) 42.2 (0.3) 39.2 (0.3) 18.6 (0.2)
Point 2 (matrix) 50.7 (0.3) 48.6 (0.3) 0.8 (0.2)
Point 3 (intergranular phase) 51.6 (0.3) 34.8 (0.2) 13.6 (0.2)

The single-melt alloy presents a different microstructure, and element mapping as can be seen in
Figure 8. With respect to the co-melt alloy, the zirconium is mainly located in the intergranular phase.
Table 3 lists the atomic abundance at the specific points marked in Figure 8.

Table 3 indicates that, as in the case of co-melt alloy, only a small of zirconium diffused into the
matrix. Moreover, the amount of Zr in the solid solution in TiFe is the same as the co-melt alloy.
Zirconium is mainly present in the intergranular phase, as was seen for the co-melt alloy, but the
elemental composition of the intergranular phase is quite different. Here, the stoichiometry is not
of the type (Ti;—,Zry),Fe, but closer to (Ti;_,Zry)Fe or (Fe;_,Zry),Ti. Thus, the distribution and
chemistry of the intergranular phase is completely different for the co-melt and single-melt alloys.
This may explain the discrepancy in activation behaviour between single and co-melt alloys.
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Figure 8. Secondary electron micrograph and EDX mapping of TiFe + 4 wt.% Zr single-melt alloy.

Numbers in the first image indicate specific points reported in Table 3.

Table 3. Atomic abundance at specific points as measured by EDX of TiFe + 4 wt.% Zr single-melt
alloy. Error of each number is indicated in parentheses.

TiFe + 4 wt.% Zr Single-Melt

L. Atomic %
Localization
Ti Fe Zr
Point 1 (matrix) 50.1 (0.3) 49.1 (0.2) 0.8 (0.2)
Point 2 (Intergranular) 39.6 (0.3) 479 (0.3) 12.5(0.2)
Point 3 (intergranular) 49.1 (0.3) 41.6 (0.3) 9.3(0.2)

The hydrogen capacities measured are smaller than the nominal value of 1.86 wt.% for a fully
hydride TiFeH,. At this moment we do not have a clear explanation for this fact. However, two
possible explanations could be put forward. First, the capacities measured here are for the first cycle
(activation). It is well known that, for many metal hydrides, several hydrogenation/dehydrogenation
cycles have to be performed before reaching full capacities. In the present case, we have shown
that the addition of Zr drastically improves the activation, but it may still be necessary to perform
a few more cycles in order to reach full capacity. This is the subject of an ongoing experiment.
Secondly, the presence of the intergranular phase may potentially reduce the total reversible capacity.
As the intergranular phase seems to form a hydride more easily than the main TiFe phase, we
suspect that this phase is much more stable and, thus, may possibly stay in a hydride state during
a hydrogenation/dehydrogenation cycle of the main TiFe phase. This is the reason why we did not
investigate higher Zr contents. The goal of this study was to find a way to get a faster activation
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without changing the thermodynamics and capacity of the TiFe alloy. Therefore, we just wanted to
add the minimum amount of Zr to improve the activation kinetics.

3. Experimental Section

Commercial Fe (99.9%), Ti sponge (99.9%), and Zr sponge (99.5%) were all purchased from
Alfa Aesar (City, Country) and used without further purification. Syntheses of TiFe alloy and
TiFe-Zr were done using arc melting. One method of preparation involved separately melting TiFe
alloy, and, thereafter, adding Zr and re-melting them together. This process is called co-melting.
Alloys were synthesized using the single-melt method, where all the elements are melted together.
For both methods, melting was done using an arc melting apparatus working at 240 volts (V) and
60 amperes (A). For each melting, the pellet was turned over 3 times and re-melted in order to
ensure homogeneity. The pellet was then hand crushed using a steel mortar and pestle under Argon
atmosphere or in air. The material was filled in a reactor cell and kept under vacuum for 1 h at room
temperature before exposing it to hydrogen. The hydrogen sorption properties were measured using
a home-made Sievert type apparatus. The measurements were done at room temperature (RT) under
a hydrogen pressure of 4500 kPa for absorption and 100 kPa for desorption. Morphological studies
and chemical analysis were made on a JEOL JSM-5500 scanning electron microscope.

4. Conclusions

In this study, the effect of the zirconium on TiFe alloy was investigated from the perspective of
improving the activation of this system. The addition of 4 wt.% zirconium is the minimum threshold
in order to activate the compound without any pre-treatment. The synthesized alloys were processed
under argon and in the air prior to activation. Compared to the alloy prepared under argon, the
air-exposed alloy had a similar rate of absorption and maximum capacity. The only difference was
the incubation time, which was longer when the alloy was processed in air. The improvement
of activation of the alloy is caused by the specific microstructure and chemical composition of
the intergranular phase. An intergranular phase of stoichiometry (Ti;_,Zry),Fe seems to be more
effective for activation. The whole process remained simple and inexpensive. The aim of this
investigation was to optimize the activation behaviour of TiFe to make a simple and cost-effective
material that would be efficient in storing hydrogen under mild pressure at room temperature.
It should be pointed out that we did not fine-tune the amount of necessary zirconium for the
following reason: in this investigation, the alloys were synthesized by arc melting. However, in
industry, the alloy will be made using a totally different casting technique. As the microstructure
heavily depends on the casting parameters, in this study we wanted to set the general chemical
composition that facilitates activation. In future work we will use induction melting to cast the
alloys. Then, it will be more appropriate to fine-tune the chemical composition and study the impact
of microstructure.
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