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Abstract: We report a novel method to pattern the stiffness of an elastomeric nanocomposite 

by selectively impeding the cross-linking reactions at desired locations while curing. This is 

accomplished by using a magnetic field to enforce a desired concentration distribution of 

colloidal magnetite nanoparticles (MNPs) in the liquid precursor of polydimethysiloxane 

(PDMS) elastomer. MNPs impede the cross-linking of PDMS; when they are dispersed in 

liquid PDMS, the cured elastomer exhibits lower stiffness in portions containing a higher 

nanoparticle concentration. Consequently, a desired stiffness pattern is produced by selecting 

the required magnetic field distribution a priori. Up to 200% variation in the reduced 

modulus is observed over a 2 mm length, and gradients of up to 12.6 MPa·mm−1 are obtained. 

This is a significant improvement over conventional nanocomposite systems where only 

small unidirectional variations can be achieved by varying nanoparticle concentration.  

The method has promising prospects in additive manufacturing; it can be integrated with 

existing systems thereby adding the capability to produce microscale heterogeneities in 

mechanical properties. 
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1. Introduction 

Heterogeneities in mechanical properties, also known as functional grading, enhances the mechanical 

performance of materials [1]. Complex heterogeneities with nano- and micro-meter length scales are of 

particular significance in structural materials, e.g., they enhance damage tolerance in tough biomaterials 

such as bones [2,3]. Existing methods to produce heterogeneities, however, are archaic as they only offer 

unidirectional variations [4]. Here, we present a novel method to enforce any arbitrary pattern in the 

stiffness of an elastomeric material. This is achieved by selectively impeding cross-linking reactions at 

desired locations while curing. High spatial resolutions with sharp gradients can be achieved;  

we demonstrate up to 200% variation in the stiffness over a 2 mm length. 

Wide adoption of polymeric materials has motivated several methods for functional grading in polymer 

composites. Such a composite typically comprises a filler phase (A) distributed in a polymeric matrix (B). 

Gradients in A:B proportions induce spatial variations in material properties [5]. Grading is often achieved 

only with discrete steps which limit spatial resolution, e.g., during compression molding of multiple sheets 

containing composition variations [6], or by layer-wise curing of co-polymer blends in varying 

proportions [7]. Continuous grading can be accomplished only when A and B have different densities, 

e.g., employing centrifugal or gravity forces to induce variations in the A:B ratio [8–11]. At smaller 

length scales, continuous grading can be enforced with diffusion which allows limited control [12,13]. 

Other methods such as melt-mixing of co-polymers [14] and sophisticated extrusion processes [15] have 

also been explored. However, none of these allow patterning beyond a unidirectional gradient. Herein, 

we overcome this limitation by using a magnetic field to enforce concentration variations. 

Use of magnetic nanoparticles is popular because they can be remotely manipulated using a magnetic 

field [16–22]. For instance, it finds application in targeted drug delivery wherein the nanoparticles are 

conjugated with bio-molecules [23,24]. Control over spatial distribution of such nanoparticle-conjugates 

enables localized reactions [25,26]. We present a method which allows such spatial control over 

reactions with the intent to pattern stiffness. Cross-linking of polydimethylsiloxane (PDMS) occurs 

through the hydrosilylation reaction which is catalyzed, for example, by the platinum present in 

Karstedt’s catalyst [27–29]. When colloidal magnetite nanoparticles (MNPs) are dispersed in liquid 

PDMS, they impede the cross-linking reactions [30]. This degrades the stiffness of the resulting 

elastomer [31,32]. We use an external magnetic field to enforce a desired concentration distribution of 

MNPs in liquid PDMS while curing. This enables us to enforce a desired pattern of stiffness in PDMS. 

MNP-polymer nanocomposites are synthesized by solution-casting the polymers after dissolving 

them in a ferrofluid, i.e., a colloidal dispersion of MNPs [33,34]. An external magnetic field can be used 

to organize the MNPs into a desired microstructure in the solution [35]. The solvent is subsequently 

evaporated and the polymer is cured under exposure to a magnetic field, thus preserving the 

microstructure. This enables a ‘material printer’; beginning with the same polymer-MNP solution,  

an external magnetic field is used to vary the material properties, resulting in different manifestations of 
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the final material [36–39]. However, previous studies have been restricted to the control of bulk 

mechanical [37], magnetic [36] and electrical [40] properties of a material. 

We earlier reported a solution casting method for easy control of the concentration distribution of 

MNPs in PDMS [35]. PDMS was first dissolved in a ferrofluid, the solvent was then evaporated and the 

polymer cured while being exposed to a magnetic field. Spatial variations in field strength facilitated a 

desired concentration distribution of MNPs in the finished elastomer. However, initially the entire 

PDMS had a homogeneous nanoparticle concentration. Thus, it was uncertain if the gradients in MNP 

concentration that were eventually produced enabled selective impeding of cross-linking at desired 

locations in the PDMS elastomer and thereby produced sharp gradients in the stiffness of the solid. Here, 

using instrumented nanoindentation, we demonstrate the capability to produce high resolution patterns 

of stiffness. The method is illustrated in Figure 1. 

 

Figure 1. Control of magnetite nanoparticle (MNP) concentration distribution to pattern 

stiffness of polydimethysiloxane (PDMS). (a) PDMS is dissolved in a kerosene-based 

ferrofluid containing MNPs (shown disproportionately large). The solution is cast into a mold 

adjacent to a permanent magnet. Within ~30 min, all MNPs move to the region adjacent to the 

magnet. The kerosene is then evaporated and the polymer cured, thus preserving the MNP 

concentration distribution. Instrumented nanoindentation is performed in the region with the 

highest gradient of MNP concentration; (b) Acrylic mold with a coverslip as its floor, showing 

an NdFeB magnet covering part of the floor; (c) Solution of PDMS in kerosene is injected into 

the mold; (d) After ~30 min, MNPs concentrate in the region above the magnet; (e) Magnified 

image of the boundary, showing a sharp gradient in MNP concentration. 

2. Results and Discussion 

Cross-linking in PDMS occurs through the hydrosilylation reaction where linear chains of PDMS 

react with a cross-linker yielding a 3D elastomer matrix [29,41]. This reaction is catalyzed, e.g.,  

by Karsted’s catalyst, an organometallic complex containing platinum [27,28]. The cross-linking 
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reaction is sensitive to additives in liquid PDMS. Particularly, addition of MNPs are known to impede  

cross-linking [30]. The exact mechanism of impedance is not known but various factors have been 

suggested, e.g., pollution of Karsted’s catalyst by the MNPs [31] or the complex interactions between 

the MNP surface and the polymer chains [32,42]. When MNPs are dispersed in liquid PDMS, the bulk 

elastic modulus E of the cured elastomer is degraded [31,32] possibly due to the resulting decrease in 

cross-link density [29]. However, there are insufficient data to clearly demonstrate the trends in the 

variation of E with MNP mass fraction (ψ), particularly within the range of ψ that we have used.  

Our materials and methods also differ significantly from previous reports. Thus, our first step was to 

determine the influence of MNP addition on the stiffness of PDMS. 

To determine the efficacy of MNPs in degrading stiffness, we prepared composite samples that were 

cured in the absence of a magnetic field, i.e., these are expected to contain a relatively homogeneous 

distribution of MNPs [37,39,43]. Representative indentation data and the reduced modulus (Er) 

calculated from the same are presented in Figure 2. There is no appreciable variation in Er with ψ up to 

ψ = 5% although the data may indicate a slight increase. However, at higher MNP concentrations, the 

cross-link impeding effect of MNPs dominate. This possibly reduces the cross-link density produced in 

the finished elastomer [30]. Thus, Er decreases monotonically with ψ thereafter. For ψ >20%,  

the impedance to cross-linking reaches a level where curing is no longer possible, i.e., the sample 

remains a liquid. This observation is consistent with earlier reports [31].  

 

Figure 2. Effect of magnetite nanoparticle addition on the reduced modulus (Er), determined 

from homogeneous composite samples. (a) Pure PDMS is much stiffer than PDMS cured with 

ψ = 10% (w/w) MNPs, as determined from the slope of force-displacement curves obtained 

by instrumented nanoindentation; (b) Er does not change appreciably with ψ up to ψ = 5%. 

For ψ > 5%, impeding of crosslinking becomes noticeable and Er decreases monotonically 

with further increase of ψ. 

We note a common feature of nanocomposites which contain fillers that are significantly stiffer than 

the polymer matrix. These materials exhibit a rapid rise in their elastic modulus as the particle 

concentration crosses the percolation threshold. This behavior occurs because the nanoparticles form a 

continuous network throughout the entire material due to aggregation [40,44]. However, the jump in 

elastic modulus is often of an order of magnitude or more [45,46]. We did not observe this feature for 
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the range of ψ used in our investigation (Figure 2b). Thus, although some particle aggregation and 

clustering is observed, the effect of percolation can be ignored.  

Next, we determined if heterogeneities in MNP concentration produced by the gradual magnetophoretic 

transport, lasting up to 30 min, was sufficient to produce heterogeneities in the stiffness of the finished 

material. In order to do so, we used molds with attached permanent magnets, as shown in Figure 1.  

The resulting heterogeneity in Er was determined by performing indentations over an array of points on 

the region of the sample with the largest gradient in MNP concentration, i.e., on the sample surface that 

was closest to the edge of the magnet while curing. The results are presented in Figure 3. To cover a 

large area, we first used a coarse grid with Δx = 500 µm and Δy = 250 µm spanning 4.5 mm in the  

x-direction and 1 mm in the y-direction. We denote the mass fraction of MNPs relative to PDMS in the 

starting solution by ψ*. Heterogeneities in ψ are patterned using three different values of the starting 

concentration, i.e., ψ* = 0.1%, 0.5% and 1.0%. The MNP distribution is visibly most clear in the sample 

with ψ* = 0.1%, presented in Figure 3a. A band of MNPs is observed in the sample obtained from the 

region immediately above the magnet’s edge. Approximate positions of the indentations are illustrated 

on this image. Figure 3b shows that variations in Er roughly follow the concentration distribution of 

MNPs. The material is most stiff, i.e., Er is highest in the region that contains pure PDMS (ψ = 0).  

Er decreases gradually along the x-direction due to the increase in ψ. The stiffness again rises beyond 

the band of high ψ. The starting concentration ψ* = 1.0% produces the most distinct heterogeneities.  

A higher ψ* results in a band of uncured PDMS above the magnet’s edge because the local MNP 

concentration therein possibly exceeds the ψ = 20% threshold described earlier. 

 

Figure 3. Heterogeneity in Er. (a) Sample with ψ* = 0.1% shows that MNP concentration is 

highest in the region immediately above the periphery of the magnet. Approximate locations 

of indentations are shown with dots; (b) Map of Er obtained from indentation at such points 

on a sample with ψ* = 1.0% shows that variations in Er roughly match variations in ψ. 

Subsequently, in order to determine the resolution of the method, we measured Er with finer spatial 

resolution. Such measurements were obtained from indentations made along a straight line normal to the 

band of high MNP concentration with Δx = 50 µm. As presented in Figure 4, the highest gradient in Er 

occurs for ψ* = 1.0% where Er ranges from ~5 MPa to ~15 MPa within a span of 2 mm. The steepest 

gradient, 12.6 MPa·mm−1, is obtained by fitting a straight line over 10 consecutive data points (R2 = 0.96). 

The gradient decreases for lower values of ψ*. While the trend is clear, significant noise in the data 
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prevents an accurate enumeration of any metrics for the gradient. In homogeneous samples, the noise is 

eliminated by repeating the indentation multiple times at various locations. However, in a heterogeneous 

sample, this is not possible. The general “U” shape in the Er profile is observed for all three values of 

ψ*. The minimum reduced modulus Er
min, which is the lowest for the highest value of ψ*, decreases 

linearly with increasing ψ* as seen in Figure 4d. The width of U also increases with increasing ψ*. 

 

Figure 4. High resolution scan of reduced modulus along a straight line for samples  

with (a) ψ* = 1.0%; (b) ψ* = 0.5%; (c) ψ* = 0.1% shows that high gradients of the reduced 

modulus can be formed. The steepest gradient in (a) is 12.6 MPa·mm−1 (R2 = 0.9623).  

The general U-shaped profile is seen in all samples. The red dashed line is a 5-point moving 

average; (d) The minimum reduced modulus (Er
min) decreases linearly with increasing ψ*. 

3. Experimental Section 

3.1. Synthesis of Magnetic Nanoparticles and Ferrofluid 

MNPs are synthesized by coprecipitation of Fe2+ and Fe3+ chlorides in an alkaline solution [47,48]. 

44.5 g FeCl2·4H2O (ACS Grade, A16327, Alfa Aesar, Ward Hill, MA, USA) and 120.8 g FeCl3·6H2O 

(ACS Grade, 12497, Alfa Aesar) are dissolved in 300 mL of degassed deionized water (LabChem, ASTM 

Type II, Zelienople, PA, USA). The solution is added slowly to 372 mL NH4OH with vigorous stirring. 
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A black precipitate of MNPs is immediately formed. A stock ferrofluid of known MNP concentration is 

then prepared by dispersing the nanoparticles in kerosene using oleic acid as surfactant. In order to do 

this, 22.5 mL of oleic acid (A16663, Alfa Aesar) is added and the aforementioned solution is stirred 

vigorously to mix. It is then maintained at near boiling for ~ 2 h until all the ammonia has evaporated. 

The solution is then cooled to room temperature, 367.5 mL of kerosene (K-1 grade, Sunnyside, Wheeling, 

IL, USA) is added, and the mixture is stirred vigorously until the kerosene is emulsified. When this 

emulsion is allowed to settle overnight, the MNPs are exchanged from the water to the kerosene.  

Thus, the kerosene along with the MNPs moves to the top while transparent water is observed at the 

bottom. The kerosene-based ferrofluid, thus prepared, is decanted off. Dynamic Light Scattering 

(Malvern ZetaSizerTM Nano ZS-90, Westborough, MA, USA) shows that the hydrodynamic diameter of 

the MNPs in this ferrofluid is ~15 nm. 

3.2. Mold Fabriction 

The molds are 15 mm square holes cut in a 3 mm thick polymethyl methacrylate (PMMA) sheet using 

a laser cutter (Epilog, Golden, CO, USA). The bottoms of the molds are made of plastic cover slips 

having a thickness of ~250 µm (VWR, Radnor, PA, USA). For samples with heterogeneities in MNP 

concentration, about half of a coverslip is covered with a rectangular NdFeB permanent magnet (Grade 

N52, 1/2'' × 1/2'' × 1/8'', gold plated, product # B882G-N52, K&J Magnetics, Pipersville, PA, USA).  

The magnet produces the gradient in magnetic field strength that is required for magnetophoresis.  

3.3. Preparation of Nanocomposites 

The PDMS pre-deposition solution should have a low viscosity to ensure a thorough dispersion of 

MNPs in the PDMS. Thus, we begin with a solution containing 1:1 (w/w) of PDMS and kerosene. In 

order to accomplish this, the stock ferrofluid is first diluted in kerosene to obtain the desired weight 

fraction of MNPs to PDMS, ψ. The two parts of the PDMS elastomer kit (SylgardTM 184, Dow Corning, 

Midland, MI, USA) are separately mixed in the prescribed ratio of 9:1 (w/w). The PDMS is then 

dissolved in the diluted ferrofluid so that the final solution has equal weights of kerosene and PDMS. 

The solution is vigorously stirred until it appears homogeneous under an optical microscope,  

then transferred into the PMMA molds. The molds are subsequently placed in a vacuum oven and 

subjected to an absolute pressure of ~5 kPa for 24 h at room temperature. Within the first 30 min,  

most MNPs in the solution move to the region experiencing the strongest field strength, i.e., close to the 

edges of the magnet. Within 24 h, all the kerosene is evaporated from the solution (determined by weight 

measurements). Elevated temperatures are avoided in this phase so that the polymer does not cross-link 

substantially. This is because cross-linking impedes (1) complete magnetophoresis of all MNPs, and 

more importantly, (2) the evaporation of kerosene, leading to bubble formation. After the first 24 h,  

the samples are subjected to a temperature of 60 °C for another 24 h so that the elastomer is fully cured. 

3.4. Nanoindentation 

Instrumented nanoindetation tests are performed using a NanoTest® instrument (Micro Materials 

Limited, Wrexham, UK). A schematic of the instrument is provided in Figure 5. In this study, an indenter 
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with a spherical diamond tip of 5.0 µm diameter is used to penetrate the sample surface at various points. 

Each indentation involves loading of the specimen till the indenter penetrates to a depth of 4.0 µm, 

holding the load constant to observe material creep and, finally, unloading. A loading time of 30 s, 

unloading time of 10 s and a creep dwell period of 80 s are employed for all indentations. The loading 

is performed by electromagnetic actuation of a pendulum that bears the indenter. A capacitive transducer 

yields the penetration depth at a given load. Thus, the data recorded from the experiments provide a 

load-indentation depth relationship, e.g., the ones presented in Figure 2a. The data are corrected for 

thermal drifts and the frame compliance of the instrument. Details regarding the operating principles 

have been provided previously [49]. The load-indentation depth relationship is first used to determine 

the stiffness S from the span of the unloading curve between 20% and 80% of maximum load. Next,  

the Oliver–Pharr method [50,51] is used to determine the reduced modulus Er. The latter is directly 

related to the elastic modulus Es of the sample at the point of interest by: 

2 2

s

r s

1 ν 1 ν1 i

iE E E

 
   (1) 

where Ei and νi denote the elastic modulus and Poisson’s ratio of the indenter and νs is the Poisson’s 

ratio of the sample. For diamond, Ei = 1140 GPa and νi = 0.07 As our samples are much softer with  

Ei ≈ 10 MPa, the second term in Equation (1) above is ignored. 

 

Figure 5. Schematic of the NanoTest® instrument. The indenter is attached to a pendulum 

that can rotate around a virtually frictionless pivot. The indenter is loaded against the sample 

by passing a current through the coil, which is then drawn to the permanent magnet. 

Displacement of the indenter into the sample is measured by the variation in voltage between 

the capacitor plates. 
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We realize that the Er data are not a measure of the stiffness at a location on the surface where  

the indentation is performed. Rather, it is the effective modulus of a thin layer of material close to the 

surface. Considering that the indentation depth is 4.0 µm and the indenter diameter is 5.0 µm,  

the thickness of such a layer is smaller than 50 µm [52]. We consider the determined Er to be a 

representative stiffness of the material at the surface. 

4. Conclusions 

Our findings establish the efficacy of using a magnetic field to control the concentration distribution 

of a cross-linking impeder as a means for patterning the stiffness of elastomers. We demonstrate the 

concept using the described PDMS-MNP system due to the ability of MNPs to readily impede  

cross-linking in PDMS. However, the possibility of functionalizing MNPs ensure its adaptability to 

several other polymer systems. Such magnetic control presents significantly more flexible patterning 

capabilities than conventional methods for functional grading. Possible patterns extend well beyond the 

unidirectional gradation allowed by current technology. The use of nanoparticles enables microscale 

spatial resolution in stiffness to be achieved. Thus, the method can span several length scales ranging 

from a micron to several millimetres, depending on the geometry of the magnetic field used.  

The microscale resolution enables incorporation of functional grading in microfabrication techniques. 

Further, it can significantly enhance current additive manufacturing systems by adding the capability to 

pattern heterogeneities in stiffness. 
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