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Abstract: The objective of this study was to improve the solubility of albendazole and 

optimize the preparation of an oral nanoparticle formulation, using β-cyclodextrin (βCD) 

and chitosan-tripolyphosphate (TPP) nanoparticles. The solubility of albendazole in buffers, 

surfactants, and various concentrations of acetic acid solution was investigated. To determine 

drug loading, the cytotoxic effects of the albendazole concentration in human hepatocellular 

carcinoma cells (HepG2) were investigated. The formulations were prepared by mixing the 

drug solution in Tween 20 with the chitosan solution. TPP solution was added dropwise 

with sonication to produce a nanoparticle through ionic crosslinking. Then the particle size, 

polydispersity index, and zeta potential of the nanoparticles were investigated to obtain an 

optimal composition. The solubility of albendazole was greater in pH 2 buffer, Tween 20, 

and βCD depending on the concentration of acetic acid. Drug loading was determined as 

100 µg/mL based on the results of cell viability. The optimized ratio of Tween 20, 

chitosan/hydroxypropyl βCD, and TPP was 2:5:1, which resulted in smaller particle size 

and proper zeta positive values of the zeta potential. The chitosan-TPP nanoparticles 

increased the drug solubility and had a small particle size with homogeneity in formulating 

albendazole as a potential anticancer agent. 
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1. Introduction 

Albendazole is a poorly water-soluble but highly permeable anthelmintic drug [1], classified as a 

type II drug based on the Biopharmaceutical Classification System. Recently, the anticancer effects of 

albendazole were investigated [2,3], however, its antitumor efficacy is limited by low solubility. Thus, 

an appropriate solubilization formulation of albendazole is necessary to increase drug efficacy. 

Moreover, β-cyclodextrin (βCD) is an efficient carrier for the delivery of albendazole [4,5]. 

Cyclodextrins (CDs) are cup-shaped molecules with hydrophobic cavities and hydrophilic exteriors 

that can interact with various hydrophobic guest molecules to form supramolecular inclusion 

complexes [6,7]. CDs have been exploited to enhance the bioavailability of insoluble drugs by increasing 

drug solubility and permeability. Moreover, the safety of CDs in humans has been well established [6,8]. 

Various formulations such as liposomes [9], suspensions [10,11], solid dispersions [12], 

microspheres [13], and nanoparticles [14] have recently been developed for albendazole. Of these, 

chitosan-based drug delivery systems are of great interest due to their biocompatibility, prolonged drug 

release, and lack of toxicity. Chitosan is a biodegradable and biocompatible cationic polymer widely 

studied in the preparation of nanoparticles for drug delivery [15,16]. Chitosan is frequently used in the 

development of controlled drug delivery systems [17] due to its adhesive properties and the ability to 

enhance the penetration of large molecules across mucosal surfaces, demonstrating sustained release [18]. 

Nanoparticles can be prepared by electrostatic interaction and resultant ionotropic gelation between 

chitosan and the tripolyphosphate (TPP) polyanion [19,20]. This interaction requires only mild 

temperature and pH conditions [21] and the nanoparticle size can be controlled by varying the chitosan 

to TPP ratio, pH, and the molar mass of the chitosan [22]. Due to their submicron size, TPP-chitosan 

nanoparticles can penetrate into tissues via capillaries [23]. 

However, common methods such as TPP crosslinking, emulsification-solvent volatilization,  

and the macromolecular condensed method cannot be used to produce albendazole-associated chitosan 

nanoparticles because of the incompatibility of the drug and the carrier. Albendazole, which is 

relatively insoluble in water and most organic solvents, can be dissolved in an acid medium, such as 

glacial acetic acid. In addition, the chitosan carrier is largely inhibited by its solubility in weak acidic 

environments (pH < 6.0). 

In the present study, we improved the solubility of albendazole using different surfactants and 

different pH conditions and prepared albendazole-loaded nanoparticles with adequate size distribution. 

The manufacturing parameters were optimized by determining compositions such as Tween 20, 

hydroxypropyl-β-cyclodextrin (HPβCD), chitosan, and TPP. Then, optimized formulation ratios were 

obtained based on the size and polydispersity index (PDI) of albendazole-loaded nanoparticles. 
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2. Materials and Methods 

2.1. Materials 

Albendazole was a gift from Kolmar Korea (Sejong, Korea). Chitosan (MW = 140 kDa,  

85% deacetylated), sodium tripolyphosphate (TPP), Tween 20, hydroxyl-β-cyclodextrin (HPβCD), 

(2,6-di-O-methyl)-β-cyclodextrin (DMβCD), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide (MTT) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s modified 

Eagle’s medium (DMEM), fetal bovine serum (FBS), penicillin-streptomycin, and trypsin-EDTA were 

purchased from Gibco BRL (Grand Island, NY, USA). Distilled and deionized water was used after 

sterilization. All other chemicals were of reagent grade and used without further purification. 

2.2. Cell Culture 

Human hepatocellular carcinoma cells (HepG2) were cultured in DMEM supplemented with 10% 

heat-inactivated FBS, 100 U/mL penicillin and 100 μg/mL streptomycin at 37 °C in a humidified 

incubator with 5% CO2. 

2.3. Solubilization of Albendazole in Buffers, Surfactants, and Various Concentrations of Acetic  

Acid Solution 

An excess amount of albendazole was mixed with different pH buffers, surfactants, and 

concentrations of acetic acid in water by vortexing and was maintained at an ambient temperature for 

3 days. For the solubility of albendazole in surfactants, the surfactant solutions were prepared  

1% (w/v) in distilled water. To investigate the solubility of albendazole in acetic acid solutions,  

the concentration of acetic acid was varied from 1% to 50%. The equilibrated samples were 

centrifuged at 1000 rpm for 10 min to remove undissolved albendazole. The supernatant was filtered 

through a 0.45 µm PVDF syringe filter and the concentration of albendazole was determined using a 

spectrophotometer at 295 nm [24]. 

2.4. Cytotoxicity 

Concentration-dependent cytotoxicity of albendazole was determined in HepG2 cells to verify the 

anticancer effects and loading amount of albendazole in nanoparticles. Cells were transferred from a 

100-mm cell culture plate into a 96-well plate at a density of 1 × 104 per well. After overnight 

incubation at 37 °C, the cells were exposed to different concentrations of 100 μL albendazole 

solubilized in 1% dimethylsulfoxide in media for 24 h. Then, the medium was removed and 100 μL 

MTT-containing medium (5 mg/mL) was added to the wells. Following 4 h incubation at 37 °C,  

the MTT-containing medium was carefully aspirated to avoid disturbing any formed formazan crystals 

and 100 μL MTT solubilization solution was added to each well. Plates were incubated at room 

temperature for 30 min and optical densities were determined at 570 nm using a microplate reader 

(Sunrise, Tecan Trading, Männedorf, Switzerland). Cell viability was expressed as a percentage of the 

untreated control cells. 
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2.5. Preparation of Albendazole-Loaded Chitosan-TPP Nanoparticles 

Chitosan-TPP nanoparticles were prepared using a modified ionic gelation method [25]. Briefly, 

chitosan was dissolved at 0.2% (w/v) in 0.1 M acetic acid at pH 2.86 [23,26] and HPβCD was 

dissolved in the same solution. The solution was magnetically stirred for 3 h and then filtered to 

discard any undissolved chitosan. TPP was dissolved at 0.12% (w/v) in 0.1 M NaOH. Next, the TPP 

solution was added dropwise to 1 mL chitosan solution [27] and the resultant solution was incubated 

for 60 min. The final suspension was filtered. The reaction was performed at three different ratios to 

evaluate the effects of the TPP-to-chitosan ratio on nanoparticle size and polydispersity index.  

Drug-loaded nanoparticles were prepared by solubilizing albendazole at 0.5% (w/v) in 2% Tween 20. 

After the various ratios of albendazole solution were added to the chitosan solution under sonication 

for 30 min at 25 °C, the TPP solution was mixed with the chitosan solution and albendazole under 

sonication for 30 min at 40 °C. Finally, nanoparticles were purified by centrifugation for 30 min at 

15,000 rpm and then washed twice with distilled water. The resulting particles were lyophilized. 

2.6. Measurement of Particle Size and Polydispersity Index 

The particle size distribution and polydispersity index of nanoparticles were determined using a  

light-scattering spectrophotometer (Zetasizer Nano S90, Malvern Instruments Ltd., Malvern, UK).  

The zeta potential of nanoparticles was measured using a light-scattering spectrophotometer (ELS-Z, 

Otsuka, Japan). The samples were diluted with deionized water and then transferred in a quartz cuvette 

in the light scattering instrument to measure particle size and zeta potential, respectively. The stability 

of chitosan-TPP nanoparticles containing albendazole was investigated for 4 weeks by measuring 

particle size and the polydispersity index. 

2.7. Statistical Analyses 

Statistical analyses were performed using Student’s t-test or one-way analysis of variance 

(ANOVA). A p-value of <0.05 was considered to indicate statistical significance. All data are 

expressed as means ± standard deviations (SDs) from three independent experiments. 

3. Results and Discussion 

3.1. Solubility of Albendazole 

Incorporating the drug into the innermost phase of the nanoparticles produces the optimal benefits 

of nanoparticle formulations. Because this process depends on the solubility of the drug, the solubility 

of albendazole in various pH buffers and surfactants was evaluated as a first step for optimizing the 

nanoparticle formulation. The solubility of albendazole was greater in pH 2 buffer (23.5 µg/mL), 

which was 2.7–17.7 times higher than in the other buffers (Table 1). A minimum solubility of 

albendazole was found at pH 8 and solubility remained low over the pH 4–10 range, which was 

considered in the preparation of albendazole-loaded chitosan-TPP nanoparticles because chitosan is 

generally solubilized in 1% acetic acid. Solubility of ricobendazole, a metabolite of albendazole, 

showed a U-shaped pH solubility profile similar to albendazole, which suggests that these drugs 
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possess both acidic and basic groups [28]. Then the acid pH was determined as a preparation condition 

of albendazole-loaded chitosan-TPP nanoparticles. Regarding surfactants, Tween 20 was more 

effective for enhancing the solubility of albendazole, at 42.0 µg/mL, than other surfactants, although 

Tween 80 and Cremophor showed high solubility concurring with Mukherjee and Plakogiannis [29], 

who found low solubility of albendazole in similar solubility enhancers. When albendazole was 

solubilized in 1% solution of α-, β-, or γ-cyclodextrin, the solubilizing ability of β-cyclodextrin was 

higher than other cyclodextrin derivatives (Table 1). We considered the structural dimension of  

β-cyclodextrin appropriate to form an inclusion complex with albendazole, resulting in improved 

solubility. To prepare chitosan-TPP nanoparticles, we determined the solubility of albendazole in acetic 

acid, generally used for solubilizing chitosan. When the concentration of acetic acid was increased from 

1% to 50% (v/v), the solubility of albendazole was improved from 9.69 ± 1.06 to 3808.87 ± 112.05 µg/mL 

(Table 2). The solubility of albendazole was improved by mixing acetic acid and HPβCD up to  

1970 ± 140 µg/mL [29]. Therefore, the optimized mixing of acetic acid and derivatives of  

β-cyclodextrin was hypothesized to improve the solubility of albendazole. 

To maximize the solubilizing effect of Tween 20 and β-cyclodextrin, the effects of Tween 20, 

HPβCD, and DMβCD on the solubility of albendazole were investigated by varying the concentration 

(Figure 1). When increasing concentrations of Tween 20, HPβCD, and DMβCD from 1% to 10%, the 

solubility of albendazole was improved from 43.0 ± 7.3, 22.6 ± 2.0, and 37.5 ± 3.2 to 322.9 ± 40.6,  

173.7 ± 14.0, and 401.3 ± 28.9 µg/mL, respectively. Based on the results shown in Figure 1, Tween 20 

and HPβCD were selected for further study as a surfactant and solubilizing complex, respectively. 

Although the solubilizing capacity of DMβCD was higher than HPβCD, HPβCD was chosen  

after considering the manufacturing cost and the enhanced solubilizing effects when mixed with  

other additives. 

Table 1. Effects of different pH and surfactants on the solubility of albendazole (n = 3). 

Formulation Solubility (μg/mL) 

Buffer pH 

pH 2 23.54 ± 2.94 
pH 4 8.63 ± 0.64 
pH 6 8.04 ± 0.26 
pH 8 1.33 ± 0.13 
pH 10 3.70 ± 0.05 

Surfactant * 

Tween 20 42.03 ± 9.49 
Tween 60 8.97 ± 1.70 
Tween 80 23.58 ± 0.94 
Span 80 4.50 ± 1.11 

Arlacel 80 14.07 ± 3.50 
α-cyclodextrin 3.30 ± 0.07 
β-cyclodextrin 12.25 ± 0.22 
γ-cyclodextrin 1.33 ± 0.00 
Poloxamer 188 2.83 ± 0.44 
Poloxamer 407 2.99 ± 0.75 

Cremophor RH 40 24.48 ± 8.07 
Eudragit L-100 2.48 ± 0.44 

Note: * Concentration of surfactants was applied as 1% (v/v or w/v). 
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Table 2. Solubility of albendazole in different concentrations of acetic acid (n = 3). 

Concentration of Acetic Acid (%) Solubility (μg/mL) 

1 9.69 ± 1.06 
2 9.80 ± 4.87 
3 15.15 ± 0.85 
4 16.66 ± 0.97 
5 22.54 ± 0.37 
6 26.83 ± 0.69 
7 34.11 ± 0.34 
8 38.05 ± 1.22 
9 43.06 ± 1.66 

10 52.01 ± 4.53 
15 115.26 ± 6.79 
20 215.98 ± 11.72 
25 462.80 ± 26.24 
30 755.18 ± 37.30 
35 1139.70 ± 70.30 
40 1657.34 ± 68.86 
45 2784.98 ± 159.27 
50 3808.87 ± 112.05 

 

Figure 1. Effect of Tween 20 and cyclodextrins on the solubility of albendazole (n = 3). 

Note: * Significant difference compared to the treatment of Tween 20 in each content. 

3.2. Dose-Dependent Anticancer Effects of Albendazole 

Cell viability in HepG2 was evaluated to determine the anticancer effects of albendazole (Figure 2). 

Cell viability of albendazole was 79.1% ± 5.1% when 100 µg albendazole per well was suspended in 

distilled water [30]. However, the HepG2 cell viability of albendazole was 66.4% ± 3.0% when 20 µg 

albendazole per well solubilized in 1% DMSO in culture media was added as shown in Figure 2.  

The anticancer effect of solubilized albendazole was considered more potent than the suspended drug. 

When the solubility of albendazole in 5% DMSO media was approximately 0.9 g/mL [31], it was 
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confirmed that 400 µg/mL albendazole was completely solubilized. Therefore, the decreased cytotoxicity 

of albendazole was not due to the insolubility of the drug. To further evaluate the formulation,  

the loading amount of albendazole was fixed at 100 µg/mL. 

 

Figure 2. Cytotoxicity of albendazole at various concentrations (n = 5). Control means  

the group treated with 1% DMSO in culture media without albendazole. * Significant 

difference compared to the control group. 

3.3. Optimization of the Tween 20 to HPβCD Chitosan Ratio Based on the Solubility of Albendazole 

The formulation ratio of Tween 20 to HPβCD was optimized based on the solubility of albendazole; 

1 g albendazole was solubilized in 2% Tween 20 or 1% HPβCD solution. To obtain an optimized 

Tween 20-to-HPβCD ratio, 2% Tween 20 and 1% HPβCD were mixed in various ratios from 1:9 to 9:1 

for the preparation of the mixed solution for the solubility test of albendazole. As shown in Figure 3, 

the highest solubility of albendazole was obtained at a 9:1 ratio of Tween 20 to HPβCD. Therefore,  

the optimized Tween 20-to-HPβCD ratio was 9:1, which resulted in a higher solubility of albendazole. 

3.4. Optimization of the Formulation Based on Particle Size and Polydispersity Index 

The formulation ratio of chitosan to HPβCD was optimized based on the nanoparticle size and 

polydispersity index. Nanoparticles were prepared by varying the volume ratio of chitosan to HPβCD 

(1:2, 1:1.5, and 1:1) without drug loading. Concentrations of loading TPP solution were varied  

(1.2 mg/mL, 10 mg/mL, and 20 mg/mL). When 1.2 mg/mL TPP solution was loaded to the mixture of 

chitosan and drug, the nanoparticle size was 203.5 ± 3.53 nm. However, >10 mg/mL TPP solution did 

not produce particles due to its viscous properties. Therefore, the concentration of TPP applied was 

0.12% (w/v). The particle sizes of drug-free nanoparticles were 633, 634, and 471 nm, and their 

polydispersity indices were 0.318, 0.327, and 0.184, respectively, based on the chitosan-to-HPβCD 

ratio (Figure 4). The optimized ratio of chitosan to HPβCD was 1:1, which resulted in the smaller 

particle size and lowest polydispersity index. 
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Figure 3. Solubility of albendazole depending on the Tween 20-to-hydroxyl-β-cyclodextrin 

(HPβCD) ratio (n = 3). Note: * Significant difference compared to all the other groups. 

 

Figure 4. Effect of chitosan-to-HPβCD ratio on the size and polydispersity index of 

chitosan nanoparticles in various concentrations of loading TPP solution (n = 3). Note:  

* Significant difference compared to all the other groups. 

The ratio of chitosan to TPP was optimized based on the nanoparticle size and polydispersity index. 

Nanoparticles were prepared by varying the volume ratio of chitosan to TPP at 10:1, 9:1, 8:1, 7:1, 6:1, 

and 5:1 without drug loading. The particle sizes of drug-free nanoparticles were 298, 260, 248, 215, 

174, and 233 nm, and their polydispersity indices were 0.399, 0.397, 0.501, 0.387, 0.375, and 0.223 

based on the chitosan-to-TPP ratio (Figure 5). The optimized ratio of chitosan to TPP was 5:1,  

which did not result in a smaller particle size, but had the lowest polydispersity index. 
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For complete optimization, the volume ratios of Tween 20, chitosan, and TPP were characterized 

based on the nanoparticle size and zeta potentials. Nanoparticles were prepared by varying the volume 

ratio of Tween 20, chitosan, and TPP (1:5:1, 2:5:1, 3:5:1, 4:5:1, and 5:5:1). Tween 20 solution 

contained 2% Tween 20 and 5 mg/mL albendazole. The sizes of drug-free nanoparticles were 201, 

169, 224, 299, and 350 nm and their zeta potentials were 27.5, 19.1, 26.9, 27.1, and 28.6 based on the 

Tween 20, chitosan, and TPP ratios (Figure 6). The optimized ratio of Tween 20, chitosan, and TPP 

was 2:5:1, which resulted in a smaller particle size and appropriate positive zeta potential values. 

 

Figure 5. Effect of chitosan-to-TPP ratio on the size and zeta potential of chitosan 

nanoparticles (n = 3). Note: * Significant difference compared to all the other groups. 

 

Figure 6. Effect of 2% Tween 20 solution including albendazole on the particle size and zeta 

potential (n = 3). The volume ratio of chitosan/HPβCD solution to chitosan-tripolyphosphate 

(TPP) solution was set as 5:1. Note: * Significant difference compared to all the  

other groups. 
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3.5. Stability of Albendazole-Loaded Chitosan-TPP Nanoparticles 

From the results in Figure 6, the formulation of chitosan-TPP nanoparticles was determined as 2:5:1 

based on the smaller particle sizes of albendazole loaded nanoparticles. However, the stability of the 

nanoparticle formulations was studied to confirm the optimized formulation based on the changes in 

the particle sizes. Similar to the results from Figure 6, the particle sizes of drug-loaded nanoparticles 

were maintained consistently from 168.8 ± 12.6 nm at week 0 to 166.2 ± 11.5 nm at week 4 when 

the nanoparticles were prepared in the ratio 2:5:1 of Tween 20, chitosan, and TPP (Figure 7). 

However, large nanoparticles prepared at a 5:5:1 ratio decreased from 350.4 ± 129.9 nm at week 0 to 

282.2 ± 76.8 nm at week 4. Although the nanoparticles prepared at the 5:5:1 ratio were larger at  

week 4 compared to those at the 2:5:1 ratio, the decreasing particle size pattern likely resulted from 

degradation due to low stability at that ratio. 

 

Figure 7. Stability of albendazole-loaded chitosan-TPP nanoparticles (n = 3). The volume 

ratio of chitosan/HPβCD solution to TPP solution was set as 5:1. 

4. Conclusions 

To optimize the formulation of albendazole nanoparticles for oral delivery, we investigated the 

effective ratios of Tween 20, chitosan, and TPP. When the ratio of albendazole-loaded Tween 20 

solution, chitosan HPβCD solution, and TPP solution was 2:5:1, a small particle size and low 

polydispersity index of nanoparticles was obtained. Moreover, the nanoparticles prepared using this 

formulation ratio were stable for four weeks. In conclusion, we determined the optimal composition of 

albendazole-loaded nanoparticles, which could be useful for the preparation of stable nanoparticles. 
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