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Abstract: The cellulose sulfate (CS) is a newly developed cellulose derivative. The work 

aimed to investigate the effect of oleic acid (OA) content on properties of CS-OA film. The 

process of oleic acid dispersion into film was described to evaluate its effect on the properties 

of the film. Among the formulations evaluated, the OA addition decreased the solubility and 

water vapor permeability of the CS-OA film. The surface contact angle changed from 64.2° 

to 94.0° by increasing CS/OA ratio from 1:0 to 1:0.25 (w/w). The TS increased with OA 

content below 15% and decreased with OA over 15%, but the ε decreased with higher OA 

content. The micro-cracking matrices and micro pores in the film indicated the condense 

structure of the film destroyed by the incorporation of oleic acid. No chemical interaction 

between the OA and CS was observed in the XRD and FTIR spectrum. Film formulation 

containing 2% (w/w) CS, 0.3% (w/w) glycerol and 0.3% (w/w) OA, showed good properties 

of mechanic, barrier to moisture and homogeneity. 

Keywords: packaging film; cellulose sulfate; oleic acid; composite films; hydrophobic 

properties 

 

1. Introduction 

Film and coating based on biomaterials as an alternative packaging draws lots of attention because of 

the consumers’ demand for high quality foods and increased awareness of environmental issues [1].  
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The commonly used biomaterials are comprised of proteins, polysaccharides, lipids, and other 

degradable biomaterials [2]. 

Cellulose is D-glucopyranose unit of conformation chair bonded through β (1→4) glycosidic linkages. 

Cellulose ethers are a class of semi-synthetic polymers obtained by derivatization of the hydroxyl groups 

at positions 2, 3, and/or 6 of the anhydroglucose residues of cellulose. Hydroxypropylmethyl cellulose 

(HPMC), carboxymethyl cellulose (CMC) and methyl cellulose (MC) as derivatives with improved 

solubility have long been used in fiber, film and gel-based materials [3]. Films made from cellulose 

derivatives showed good tensile resistance and effective barrier against O2/CO2 [4,5]. Nonetheless, 

edible films prepared from cellulose derivatives do not act as an efficient water vapor barrier due to the 

hydrophilic nature of cellulose [6–8]. Cellulose nanocrystals (CNC) synthesized from microcrystalline 

cellulose by a sulfuric acid hydrolysis was added to PLA or PLA–PHB film to improve the thermal 

stability of the film and reduce water permeability of the film [9,10]. One method to improve the water 

vapor barrier of cellulose films is incorporation of hydrophobic substances (fatty acids, beeswax, lipids) 

into the hydrocolloid matrix either by emulsification of hydrophobic substances and hydrocolloid 

aqueous solution before drying to obtain film, or the formation of bilayer films with a hydrophobic layer 

over the hydrocolloid based film. Many authors have studied the influence of hydrophobic substances 

addition on the properties of edible films [11–15]. Some researchers applied edible film based on 

composites of cellulose derivatives and hydrophobic substances to the fruit coating [16]. 

Cellulose sulfate (CS), prepared by partial or complete substitution of the 6-hydroxyl groups  

(–OH) with sulfate group (–SO3H), is a newly developed cellulose derivatives for several medical and 

biotechnological applications because of its biocompatibility and easy biodegradability [17–19]. 

According to our previous study [20,21], the film based on CS had poor water vapor barrier due to its 

excellent solubility. It is important to increase the water vapor barrier of the CS based packaging film 

for extending its application. Hydrocolloids films incorporation of lipid can result in better functionality 

than films of single component. Glycerol was also used in film as one of the most popular plasticizers 

used in film-making techniques, due to stability and compatibility with hydrophilic bio-polymer [22]. 

The objective of this work was to evaluate the influence of oleic acid incorporation into CS film on the 

mechanical, optical, structural, and water vapor barrier properties of CS films as compared with the pure 

CS films, using glycerol as plasticizer. 

2. Results and Discussion 

2.1. Rheological Behavior of the Film-Forming Emulsions 

The viscosity of film-forming solution is important to avoid non-uniform in thin liquid film  
after coating. As shown in Figure 1, the viscosity of the CS/OA blends increased from 346 mPa·s−1 to 

423 mPa·s−1 when the OA content varied from 0% to 25%. The emulsion viscosity is influenced by various 

factors, mainly by the continuous phase viscosity, interfacial film viscosity and droplet size [23]. In this 

work, the interfacial film viscosity was same to the continuous phase viscosity, because all of the 

emulsions were prepared with the same CS content under the same homogenization conditions. The 

variation of emulsion viscosity was mainly attributed to oil droplet size caused by variation of OA 

content in emulsion and the homogenization velocity. The O/W and W/O/W were possible oil-in-water 
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structure, but O/W was more stable. In O/W structure, hydrogen bond formed between carboxyl  

(–COOH) of oleic acid and hydroxyl (–OH) of cellulose sulfate as shown in Graph 1. Generally, the size 

distributions of oil droplet in O/W emulsions were trimodal with peak maximum, respectively,  

at 0.2 μm (I), 10 μm (II) and 100 μm (III), in which the predominance was population II according to 

previous research [23,24]. The number of droplet population increased with OA addition, which lead to 

the viscosity increasing due to the enhanced contact probability between O/W interfacial area and coaxial 

cylinder of viscometer. When OA content reached a critical value, the number of droplet do not increase 

any more at the same homogenization conditions, whereas the size of droplet increased due to the 

coalescence of droplets. Hence, the OA content over critical value would decrease the homogeneity of 

the O/W emulsion; correspondingly, the structure of the film became uneven. 

 

Figure 1. The effect of oleic acid on the viscosity of film forming emulsions. 

 

Graph 1. The schematic for emulsion of oleic acid, cellulose sulfate, glycerol and water. 

2.2. Microstructure of CS-OA Films 

The morphology of the CS film and composite film (CS + 25% OA) are compared in Figure 2 to 

investigate their microstructure. The surface of CS film and composite film were smooth. The circle 

splotch of different size on the film surface in Figure 2B and C was observed. It should be the function 
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of the OA diffusion on the surface. The splotch formation was accompanied with the CS-OA film 

formation during water evaporating, as shown in Figure 2F. During water evaporating, the oil droplet in 

film emulsion will move down with the liquid level. The intermolecular distance of CS becomes closer 

with the decreasing of water content in emulsion; the hydrogen bonds between CS molecules were strong 

enough to prevent the oil droplet moving in film emulsion. Pressure at O/W interface increased dramatically 

with the water continuous evaporation, especially near the interface of the film, correspondingly 

spherical droplet became ellipsoidal and oil accelerated diffusion into the film matrix over time, like a 

droplet of oil on paper. Though the number of 100-μm (III) droplets was small, it definitely diffuses at 

film surface, because its size was much bigger than thickness of the film. Therefore, more large-size 

splotches were observed in film surface, as shown in Figure 2. Fabra et al. [25] reported that the lipid 

particle size in the film emulsion containing ι-carrageenan, glycerol and lipids mixtures of oleic acid 

(OA)/beeswax (BW) varied from 4.3 to 20.3 μm with the ratio variation between OA and BW lipid. 

Nevertheless, Ghasemlou et al. [26] reported that the D3,2 (volume-surface mean diameter) of lipid 

particles in composite film emulsion based on kefiran and oleic acid (OA) varied from 1.13 μm to  

2.06 μm. The results were quite different from each other. In our research, the lipid particle was not 

observed in the surface microstructure and the size of splotch on surface varied from ~10 to ~50 μm, 

according to Figure 2. Limpisophon et al. [27] also indicated that the films with oleic acid did not have 

crystalline particles like films with stearic acid, since oleic acid is in a liquid state at room  

temperature (m.p. = 13–14 °C) in edible films based on blue shark (Prionace glauca) skin gelatin.  

Cross-section images of CS films and CS-OA films with 25% OA are compared in Figure 2, in which 

the cross-sectional microstructure of CS-OA composite film was rougher than that of CS film. The  

CS-OA blend film also showed micro-cracking matrices and micro pores of different shapes and sizes, 

which meant the condense structure of film destroyed by the incorporation of oleic acid. The main pore 

size was 0.2 μm (I) according to Figure 2E, which was different from the droplet size in emulsion 

reported [23,24]. 

 

Figure 2. Surface appearance and cross-section appearance of films; surface of CS film (A); 

CS + 25% OA film (B); CS + 25% OA film (C) and cross section of CS film (D);  

CS + 25% OA film (E); and process of CS-OA film formation during water evaporating (F). 
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2.3. Surface Water Contact Angle of CS-OA Films 

Contact angle is the angle (θ) between film surface and tangent at the droplet-film intersection. It can 

be used to indicate the hydrophobicity of the surface or the wettability of polymers [28]. The contact 

image between water droplet and CS-OA film at 0, 30, and 120 min is shown in Figure 3. The initial 

water contact angle for CS-OA film was 94°, whereas the water contact angle for pure CS film is 64.2°. 

Therefore the inclusion of OA in CS film increased the hydrophobicity. The droplet gradually permeated 

into film through the CS matrix. After 30 min the droplet left became small. After 120 min, some water 

unabsorbed was still observed on the surface of CS-OA films, compared with soluble hole formed on 

the film surface after 60 s for pure CS film [21]. This indicated that CS-OA film was less rapidly wetted, 

which explained the decreasing water solubility of CS-OA films as shown in Table 1. 

 

Figure 3. Surface water contact angle of oleic acid-cellulose sulfate films (CS + 25% OA film). 

2.4. The Effect of Oleic Acid Content on Properties of CS-OA Films 

Some properties of CS-OA films with different OA content, such as the thickness, flexibility, 

integrity, water solubility, oil permeability, transparency, mechanical properties and water vapor 

permeability are shown in Table 1. The integrity and folding property of all films are good, which was 

consistent with their easy peeling from the Teflon surface. The thickness, solubility and oil permeability 

of the CS-OA films did not change significantly under different OA content. The solubility and the 

transparency of composite films decreased gradually with addition of OA in film-forming emulsion, 

correspondingly the thickness of composite films and oil permeability increased with the OA content. 

The increasing of oil permeability can be attributed to the tunnel provided by the OA in the film. 

 



Materials 2015, 8 2351 

 

Table 1. The effects of OA content on properties of oleic acid-cellulose sulfate films. 

Sample δ (μm) Inte Fold S (h) OP (%) T (%) TS (MPa) ε (%) 
WVP × 10−11  

(gm−1s−1Pa−1) 

2g CS + 0.3g Gly 25.00 ± 0.16 a good good 0.02 ± 0.01 a 0.2 ± 0.1% a 89.3 ± 3.2 a 14.5 ± 1.5 a 27.9 ± 0.8 a 3.92 ± 0.23 a 
2g CS + 0.3g Gly + 0.1g OA 25.02 ± 0.10 a good good 1.50 ± 0.10 b 0.2 ± 0.2% a 85.0 ± 5.6 a 28.2 ± 2.1 b 18.6 ± 0.6 b 3.49 ± 0.21 a 
2g CS + 0.3g Gly + 0.2g OA 25.85 ± 0.18 b good good 2.33 ± 0.08 c 1.9 ± 0.2% b 76.9 ± 2.8 b 37.1 ± 1.7 c 13.9 ± 0.3 a 2.41 ± 0.16 b 
2g CS + 0.3g Gly + 0.3g OA 29.04 ± 0.12 c good good 4.45 ± 0.12 d 9.0 ± 0.3% c 73.5 ± 4.8 b 43.5 ± 1.3 d 9.2 ± 0.5 d 1.91 ± 0.12 bc 
2g CS + 0.3g Gly + 0.4g OA 36.60 ± 0.26 d good good 5.13 ± 0.50 de 14.6 ± 0.5% d 67.4 ± 2.3 c 36.8 ± 1.5 e 7.2 ± 0.3 e 1.57 ± 0.21 c 
2g CS + 0.3g Gly + 0.5g OA 55.20 ± 0.32 e good good 5.55 ± 0.36 e 25.1 ± 0.8% e 68.2 ± 3.1 c 34.3 ± 2.2 e 6.4 ± 0.5 e 1.52 ± 0.14 c 

δ: thickness; Inte: integrity; Fold: folding properties; S: solubility time; OP: oil permeability; T: transparency; TS: tension strength; ε: elongation at break; WVP: water vapor 

permeability; Mean ± standard deviation. Different letters represent significant differences (p < 0.05) according to the LSD test. 
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The ability of the coating to form a continuous layer over the product and the durability of the film 

are important, which can be reflected partly by mechanical properties listed in Table 1. The TS increased, 

but the ε decreased, when increasing OA content below 15%. The high TS and low ε indicated stronger 

and less extendible films. OA content over 15% decreased the values of all mechanical parameters, 

forming weaker and less extendible films. Elongation of CS-OA film significantly (p < 0.05) decreased 

when oleic acid was incorporated into the CS matrix, which has already been reported in other 

hydrocolloids films containing lipids [29–31]. It was explained by the fact that lipids were unable to 

form a cohesive and continuous matrix in the film. Oleic acid has also been reported to increase 

elongation of soy protein, corn zein, egg white and HPMC films [13,32,33]. They explained this as a 

plasticizing effect of unsaturated oleic acid. The effect of lipids on mechanical of hydrocolloids film 

may be dependent on the basic matrix properties of biomaterials, the interaction of the polymer 

molecular, the component of the film and the size distribution of the lipid droplet. 

The WVP values of the CS-OA emulsified films are presented in Table 1. As expected, the water 

vapor permeability decreased when the OA content increased. Incorporation of fatty acids caused a 

significant difference (p < 0.05) between the WVP of the CS films containing different OA content. The 

WVP of hydrocolloids–fatty acid films decreased as the content of fatty acids increased. The WVP 

decreased from 3.92 × 10−11 to 1.52 × 10−11 gm−1s−1Pa−1 as OA content reached 25% of the CS in the 

CS-OA film. The OA dispersed in the CS film decreased the practical interfacial area exposed to water 

vapor. In general, the relative polarity of the support polymer and the type of lipid has the strongest 

influence on the water vapor barrier of emulsified films. Similar results were obtained by other 

researches [34–36]. However, as the amounts of fatty acids increased from 20% to 25%, no significant 

differences (p > 0.05) in the WVP values among the emulsified films were observed. Fabra et al. [37] 

showed that when the beeswax content added came to over 30% of the total lipid phase (70:30 OA:BW 

relationship) no further reduction in the WVP of sodium caseinate films was observed. The poor 

dispersion of lipid in the film system with the increasing lipid content may be account for the result. 

Size, distribution and physical state of the lipid, and polymorphism also seem to play a role in WVP, 

especially when the lipid content is over a critical value. 

2.5. The Interactions among Components of Edible Film 

When two or more substances are mixed, physical blends versus chemical interactions can be 

reflected by the changes in characteristic spectra peaks [38]. FTIR spectra of the CS film with different 

OA content are shown in Figure 4. The assignments proposed for the bands observed were annotated. 

The strong broad band observed in the 3500–3000 cm−1 range was attributable to hydrogen bond between 

different O–H groups from OH of glucosidic ring, OH carboxylic function of oleic acid acids and OH 

of glycerol. A strong broad band at 1207 cm−1 was attributed to the –O-SO3
− stretching mode. A strong 

and composite band with a maximum intensity at 1066 cm−1 was assigned to the stretching mode of the 

C–O bond. A medium weak band at 2949 cm−1 was assignable to C–H stretching mode, which was more 

intense for CS-OA film than that for pure CS film. Several medium bands in the region 1400–1200 cm−1 

was assigned to the C-H bending and wagging modes, and O–H bending mode. A weak band at  

807 cm−1 was assigned to the stretching mode of the glucosidic ring from CS. The new frequency at 

2853 cm−1 for CS-OA film was attributed to the C–H stretching mode of the aliphatic chain of the fatty 
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acids. The intense IR band at 1702 cm−1 and 1620 cm−1 corresponded to C=O and COO− stretching mode 

of oleic acid, respectively. These characteristic peaks of fatty acids only appeared in the CS-OA 

composite films. No additional chemical grouping was found on the FTIR spectra, which indicated no 

chemical bond formed between the lipid and CS. 

 

Figure 4. FTIR spectra of CS-OA films (a) 0%; (b) 10%; (c) 25% OA. 

X-ray diffractogram (XRD) was used to investigate crystal structure, and assess the compatibility of 

CS and oleic acid. XRD of CS film with different contents of oleic acid blended were measured as shown 

in Figure 5. The XRD of CS film and CS-OA film showed two main crystalline reflections at 7.9° and 

23.1°, presenting the characteristic of major amorphous structures for all films, which was similar with 

the fine structure of CMC [39]. No new diffraction peaks were observed in composite films, suggesting 

no intermolecular interactions between CS and OA. 

 

Figure 5. XRD patterns of CS-OA films (a) 0%; (b) 10%; (c) 25% OA. 
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3. Experimental Section 

3.1. Materials 

Cellulose sulfate (CS) was synthesized using heterogeneous method [17], with dynamic viscosity 

(η2%, 2 wt % solution) of 346 mPa·s−1 and average substitution degree of 0.4. Glycerol and oleic acid 

(OA, C18:1) were purchased from Sinopharm Chemical Reagent Co., Ltd. (China). Distilled water was 

used to form samples preparation. 

3.2. Preparation of Cellulose Sulfate Films 

Four different formulations based on cellulose sulfate (CS), glycerol (Gly) and oleic acid (OA) were 

prepared. CS (2 g) and Gly (0.3 g) were dispersed in 100 mL water in order to obtain polysaccharide 

dispersions. The OA fraction was incorporated in a CS–OA ratio of 1:0.05, 1:0.10, 1:0.15, 1:0.2, 1:0.25 

and the mixture was homogenized at 13,000 rpm for 1 min, under vacuum, using a rotor-stator 

homogenizer (Ultraturrax T25, Janke and Kunkel, Germany). Then the film forming dispersions were 

gently spread over a leveled Teflon plate (150 mm diameter, Wei Xin Instrument Co., Ltd., Yixing, China) 

with 0.18 g cm−2 and dried for approximately 4 h at 60 °C and 45% RH. Afterwards, the films were 

peeled from the casting surface and stored in desiccators at 75% RH for further testing. All treatments 

were made in triplicate. 

3.3. Rheological Behavior of the Film Forming Emulsions 

The dynamic viscosity of the film-forming solution was measured at 30 ± 0.5 °C with a NDJ-5S 

rheometer (model NDJ-5S, Fangrui Instrument Co. Ltd., Shanghai, China). The range of shear rate,  

100–300 s−1, was used because it covered all the concentrations of the samples using the same coaxial 

cylinder device. Each sample was analyzed in triplicate. 

3.4. Fourier Transform Infrared Spectroscopy (FTIR) 

The FTIR transmission spectra of the film prepared was recorded on an instrument (Shimadzu FTIR 

8400S, Kyoto, Japan) in the wavenumber range of 4000–400 cm−1, using Attenuated Total Reflectance 

mode (ATR). Spectra were recorded at a resolution of 4 cm−1 and 400 scans were carried out to obtain a 

high signal-to-noise ratio spectrum. 

3.5. X-ray Diffraction 

X-ray diffraction (XRD) patterns of all samples were analyzed by a X'Pert PRO XRD system 

(PANalytical, Almelo, The Netherlands) at 25 °C and 75% RH, between 2θ = 10° and 2θ = 80° using 

Kα Cu radiation (λ = 1.542 Å), 40 kV and 40 mA with a step size of 4°. Samples were cut into 2 cm 

squares for analysis. 
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3.6. Film Thickness 

The thickness (δ) of the sample was measured (exactness of ±0.001 mm) by a digital external 

micrometer (Mitutoyo Co., Tokyo, Japan) at ten different points of the film. Samples were conditioned 

at 25 °C and 75% RH (a saturated NaCl solution) for 24 h before they were measured. 

3.7. Scanning Electron Microscopy 

The samples were maintained in a desiccator with P2O5 for two weeks to ensure water in films 

completely removed. The cross-sections of the films were observed by cryofracture of films frozen in 

liquid N2. The microstructure of the film was analyzed using a scanning electron microscope  

(Hitachi S4800, Tokyo, Japan). Samples were fixed on a copper stubs, gold coated, and observed using 

an accelerating voltage of 5 kV. 

3.8. Mechanical Properties 

Tensile strength (TS) and elongation at break (ε) of the film were measured using a Instron Universal 

Testing Machine (Instron Corp., model 5569, MA, USA) according to the standard method [40]. Test 

samples, 25 mm × 100 mm, were cut from each film and fixed with an initial grip separation of  

30 mm. Five replicates of each film were then pulled apart at crosshead speed of 20 mm/s and preload 

of 2 N. The average thickness of film was 25 ± 2 μm. TS (MPa) was calculated by the Equation (1): 

TS = Fmax/A (1)

where Fmax is the maximum force (N) loaded on the specimen before pulling apart; A is the cross-sectional 

area (m2) of the specimen. εis defined as the Equation (2): 

ε = ∆L/L0 × 100% (2)

where ∆L is the film elongation at the moment of rupture (mm) and L0 is the initial length between  

the grips. 

3.9. Water Vapor Permeability (WVP) 

WVP data were measured according to the standard ASTM method (1995) [41]. Test samples,  

90 × 90 mm, were cut from each film and sealed on cups which was previously filled with fused 

anhydrous CaCl2 (RH = 0%). And then the cups were placed into a humidity chamber at 25 °C and 75% 

RH (saturated NaCl solution) for 3 days. The sealed cups were weighed periodically (±0.0001 g) to 

calculate water vapor transported into the cup. The data, weight vs. time, was linearly regressed to 

calculate the slope. The water vapor transmission rate (WVTR) through the film was calculated from the 

slope (Δw/Δt) of the fitted line divided by the test area (A) as Equation (3), (g s−1m−2). 

WVTR = Δw/(Δt·A) (3)

where w is the weight of water transported into the cup (g), t is the time for weight change (s), A is the 

area exposed to water vapor transfer (m2). The WVP (gm−1s−1Pa−1) is calculated as Equation (4). 

WVP = (WVTR × δ)/Δp (4)
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where δ is the film thickness (m) and Δp is the water vapor partial pressure difference across the two 

sides of the film (Δp = p(RH2 − RH1) = 2081.325 Pa, where p is the saturation vapor pressure of water 

at 25 °C, RH2 = 75%, RH1 = 0%) (Pa). 

3.10. Contact Angle 

Contact angle of the film was measured using a Video-Based Contact Angle Meter model OCA 20 

(DataPhysics Instruments GmbH, Filderstadt, Germany). A droplet of 3 μL ultrapure water was dispensed 

on each film surface using a micro syringe. The contact angle was recorded by analyzing the shape of a 

sessile drop after it had been placed over the surface of each film at different time. Image analysis was 

carried out by SCA20 software. Each sample was tested with three drops and three measurements were 

conducted for each water drop. 

3.11. Flexibility 

The flexibility of the film was determined by a bending method [21]. Each sample was cut into the 

size of 20 × 40 mm and folded completely at the middle. The film was positively and negatively folded 

in turn until the film appeared rupture. The flexibility was rated as poor (folding number < 20), middle 

(20 ≤ folding number < 50), good (50 ≤ folding number < 100) and excellent (folding number ≥ 100). 

3.12. Integrity 

The CS film was deemed as good integrity of there was no breakage during peeling from the petri dish 

and vice versa. 

3.13. Oil Permeability 

Oil permeability of the film was determined following Hu’s method [42]. The mouth of a glass  

test-tube filled with 3 g soybean oil (interior diameter: 25 mm, and outer diameter: 27 mm) was covered 

with CS film (50 × 50 mm) and sealed tightly. The tube was upside down on a piece of filter paper.  

The oil penetration was judged according to the infiltration of soybean oil on filter paper as time going. 

Each sample was observed in triple. 

3.14. Water Solubility 

The solubility of film in water was characterized by the resolve time of the film. The test sample was 

placed into deionized water at 25 °C until it was completely dissolved. Three samples of each film  

were tested. 

3.15. Transparency 

Film specimen was cut into a rectangle piece (20 × 10 mm) and attached on the wall of a test cell 

directly. The light transmission (T %) of sample was measured at 560 nm using a UV-722 spectroscope 

(Rayleigh Corp., model 722, Beijing, China) and air was used as the reference. Three samples of each 

film were tested. 
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3.16. Statistical Analysis 

Data for each test were are presented as mean ± SD after statistical analysis. The significance in the 

difference between factors and levels was evaluated by the analysis of variance (ANOVA). Comparison 

of the means was done employing a Tukey test to identify which groups were significantly different 

from others (p < 0.05). 

4. Conclusions 

The above findings indicated that the hydrophobicity of CS films can be regulated by incorporation of 

OA. The OA incorporation into CS film decreased the cohesive matrix of the film, which was severely 

affected by the size distribution of the OA droplet in film-forming solution. The solubility and transparence 

of the CS-OA decreased, while the thickness and oil permeability dramatically increased with the OA content 

increasing. Films with the addition of OA presented better water vapor barrier properties as compared to pure 

CS films. The WVP decreased from 3.92 × 10−11 to 1.45 × 10−11 gm−1s−1Pa−1 when OA content varied from 

0 to 30%. The TS and E% of the CS-OA film decreased, which indicated the film was more fragile than 

pure CS film. Films with a 1:0.15:0.15 CS:glycerol:OA ratio showed the most adequate functional 

properties when considering both tensile and water transport properties (TS: 43.5 ± 1.3 MPa,  

E%: 9.2 ± 0.5, WVP: 1.91 ± 0.12 × 10−11 g m−1s−1Pa−1). 
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