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Abstract: The problem of thermal protection is explored for two idiosyncratic reactive 

systems, namely a sacrificial heat-sink material and an intumescent system where a 

dynamically evolving insulation layer is produced from an initially thin coating. Relatively 

simple mathematical models of both systems are proposed that encompass the important 

physical characteristics of each situation and these models are analysed using a mixture of 

numerical and analytical techniques. Important dimensionless parameter groups are 

identified and domains of parameter space where thermal performance is particularly good- 

or particularly bad- are identified. 
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1. Introduction 

Despite the advances in modelling various important methods of thermal protection, in particular 

reactive systems such as intumescent coatings or heat sink additives, there has been little investigation 

into the important engineering parameters that should be optimised for best performance. As a corollary 

to this, the parameters that underpin the basic dynamics of these systems have not been adequately 

explored in an engineering context. Most contributions to date have been either highly technical 

generalised mathematical analyses of reaction-diffusion systems or detailed engineering models of 

specific systems that do not look at overall behaviour. This contribution is oriented at bridging the gap 

between the two extremes. Stripped-back mathematical models that are simple enough to analyse in 

detail, yet still retain important physical details, are investigated. In particular, important parameter 

groups are identified for two important scenarios and their role in thermal protection is analysed.  

Both situations involve the use of a reactive component either as a heat sink or as a means of 
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producing a porous insulation layer and, as we shall see, the analysis yields interesting insight into the 

significant dynamics for each case. 

Before any analysis of thermal protection can be attempted, we must define what is meant by  

“best thermal performance”. Here, two commonly encountered situations are used to define optimality: 

minimisation of the temperature difference between an exposed surface and a vulnerable substrate for 

fixed heating conditions and maximisation of failure time (again for fixed heating conditions).  

Failure time in this context is defined as the time taken for a vulnerable substrate to reach a prescribed 

temperature. Naturally the rate at which heat is absorbed by a protecting layer depends on the nature of 

heat transfer from the external environment. In purely radiative heat exchange, the heat transfer rate 

can be minimised by the obvious device of minimising the surface absorptivity. For the purposes of 

this work the nature of the heat transfer from an external source is kept general so that in-depth 

properties, rather than surface properties, of the protecting layer are the main focus. 

The discussion begins with a general overview of thermal insulation and the relationship between 

porosity and thermal performance is explored. Furthermore the role of heat transfer mechanisms other 

than conduction in porous materials is also discussed. Having established the general properties of inert 

layers, the dynamics of two reactive systems are then examined. Firstly a simple heat-sink system is 

analysed where a single-step in-depth endothermic reaction proceeds as the material is heated. Later,  

a simple dynamically evolving insulation layer is analysed where a reaction is assumed to occur in a 

thin coating that produces a thick insulating layer. In this case the rate of heat transfer to the unexposed 

surface is governed by a balance between the rate at which expansion occurs and the rate at which heat 

is added to the system. 

2. Thermal Insulation 

An obvious strategy for thermal protection of polymers involves the use of an insulating layer.  

The ultimate purpose of the insulation depends on the specific application. Two typical scenarios are: 

 Maximisation of the temperature difference between the exposed surface and the polymer. 

 Maximise the time for which the polymer remains below a specific temperature. 

Such a layer could be inert or develop transiently via a reactive pathway (such as in the case of  

char-promoting systems). Consider for a moment an inert solid of thickness L, subject to a constant 

external heat flux q". It may be shown that the difference between the temperature at the exposed 

surface and unexposed surface ∆T is given by 
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Here t is time; α is thermal diffusivity and λ′ = λ/L is the conduction heat transfer coefficient, defined by  

the ratio of thermal conductivity λ to solid thickness L. It is clear from this expression that ∆T is a 

monotonic increasing function of time and that the maximum temperature difference is given by q"/(2λ′). 

It follows that λ′ is a critical parameter for an insulating layer and in order to maximise ∆T, λ′ should 

be as small as possible. This implies that thermal conductivity should be as small as possible and the 

layer thickness as large as possible. Practical reasons usually restrict the thickness of the layer, so it is 
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sensible to seek to minimise λ. Insulators are usually porous solids, comprising gas-filled pores 

embedded in a solid matrix. A simple argument shows that the composite thermal conductivity lies 

between two bounds, given by [1–3] 

   1 1
1 s

 
   

   
, (2)

where Λ = λg/λs; φ is porosity (the ratio of pore volume to total volume) and the subscripts s and g refer 

to a solid (or skeletal) property and a pore property respectively. The maximum difference between the 

upper and lower bounds is λs(1 − Λ1/2)2, which is at a porosity of Λ1/2/(1 + Λ1/2). For a given porosity, 

the actual value of thermal conductivity is dictated by the shape and orientation of the pores, the pore 

distribution and to a lesser extent, the pore size [2]. 

Correlations exist for a number of idealised situations featuring specifically shaped pores. Perhaps 

the most well known is Maxwell’s expression for spherical pores of modest porosity, 

2 ( 1) 2

2 ( 1)s

   


  
, (3)

which is ~1 − 3φ/2 for small φ and Λ. Perhaps more realistic, but less convenient, is the implicit 

expression for randomly distributed spherical pores [4,5]: 
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s
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   
. (4)

The theoretical thermal conductivity bounds suggest that increasing porosity will reduce thermal 

conductivity and hence heat transfer rate. If conduction was the only heat transfer mechanism occurring 

in a pore this would always be the case. However, there are two other modes of heat transfer that 

contribute to the total heat transfer rate across a pore: convection and radiation. If there is no gas flowing 

through the porous insulation, then free convection within a pore is the only possibility for a convective 

contribution. When the insulation layer is orientated such that temperature increases with vertical 

distance, there is a vacuum inside the pore or the environment is zero-gravity, then free convection is 

impossible. If this is not the case then the Rayleigh-Bénard instability triggers convection when the 

pore Rayleigh number Ra = gβ∆Tporeδ3/(αgνg) reaches a critical value (typically of the order of 103,  

but specific physical circumstances dictate the actual value). Here, g is gravitational acceleration; β is 

the expansion coefficient of the internal gas; ∆Tpore is the temperature difference across the pore in the 

vertical direction; δ is the pore size and αg, νg are the thermal diffusivity and kinematic viscosity of the 

internal gas respectively. For most practical applications, the Rayleigh-Bénard criterion suggests that 

pores of size less than ~1 cm will be too small to trigger internal convection. 

Radiation through the interior region of a pore will also contribute to the total heat transfer, 

especially at high temperature. For small pores it transpires that this additional heat transfer may be 

accounted for approximately by augmenting the thermal conductivity [3,6], which to leading order 

produces an additional temperature-dependent term, giving the total thermal conductivity as  

λtot = λ + φλR(T3 − T3 
a )/T3 

a . Here λR is a parameter that depends on pore size (together with other  

pore-specific variables, but not porosity) and Ta is ambient temperature. 
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Now consider the case when a porous char layer is produced dynamically during thermal 

degradation of the original polymer. It is clear that porosity will change (probably increase) as time 

progresses. So it follows that the total thermal conductivity will be such that ∂λtot/∂φ = ∂λ/∂φ + λR(T3 − T3 
a)/T

3 
a. 

In general λ will be a decreasing function of φ, implying that ∂λ/∂φ < 0, so a temperature T* will exist 

such that when T < T*, λeff will be a reducing function of φ and when T > T*, λeff will be an increasing 

function of porosity. Clearly, the value of T* will be important for the thermal effectiveness of the 

insulation: if T* is less than the maximum temperature that the exposed surface will achieve, then the 

performance will be sub-optimal. From above, it is apparent that 

1/3 1/3*

1/3

1 1
1 ~

a R R

T

T

    
          

, (5)

since in practice it is likely that λR << 1. Note that the last relation becomes invalid if −∂λ/∂φ is very 

small, which is only the case if λ is close to the theoretical lower limit. For chars with porosity 

dependence close to the theoretical upper limit, λ/λs ~ 1 − φ(1 − Λ) and since in practice it is likely that 

λg << λs, it follows that T*/Ta ~ λ−1/3 
R . For very small pores, it may be shown that [6] λR ≈ 4εσT3 

aδ, where ε 

is the emissivity of the internal surface of the pore and σ is the Stefan-Boltzmann constant. In order to 

minimise λtot we require λR to be as small as possible, which implies that the pore size δ must be as 

small as possible (this also ensures that T* is as large as possible). Hence an optimal porous insulator 

naturally has large porosity, but must consist of a large number of small pores, rather than a small 

number of large pores. 

Now consider the requirement that the insulation must limit the temperature at the unexposed face for 

as long as possible, rather than maximising the temperature drop across its thickness. It transpires that the 

functional dependence of thermal conductivity on porosity plays a critical role in the performance of the 

insulating layer. The purpose of the insulating layer is now to minimise the heat transfer rate at the 

unexposed surface and this implies that the thermal diffusion timescale tD = L2/a must be as large as 

possible. The density and specific heat capacity of the insulation are ρ = (1 − φ)ρs + φρg ≈ (1 − φ)ρs 

and c = (1 − φρg/ρ)cs + φρgcg/ρ ≈ cs respectively. Hence 

2
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s s

t

c L


 

. (6)

This last relation implies that, for a porous material, in order to maximise failure time  / 1     

should be as small as possible. 

The question naturally arises that for what type of material is   a reducing function of porosity?  

In other terms, when is / 0d d  ? If we look for example at the thermal conductivity upper bound 

λ/λs = 1 − φ(1 − Λ) and ignore radiation, we find that 

 2
/ 1

d

d


  




, (7)

which clearly is always positive. If radiation is included at a fixed temperature, then from above, since 

increasing porosity increases the radiative contribution to λtot, it follows that for the thermal 

conductivity upper bound tot  will still always be an increasing function of φ. Hence, any insulation 
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material whose functional dependence of thermal conductivity on porosity is close to the upper bound 

would not make a good choice in this context since increasing porosity for such a material would 

actually reduce the thermal protection. 

It is interesting that if ignition resistance is the goal, i.e., maximising the exposure time prior to 

ignition, then the low thermal conduction coefficient strategy is counter-productive. The reason for this is 

that if thermal conductivity is low, then heat transfer away from the exposed surface is also low.  

This means that material away from the exposed surface remains at a low temperature but most of the 

absorbed heat is confined to a region close to the exposed surface, implying that the temperature of the 

exposed surface increases rapidly. Degradation reactions in this region therefore proceed quickly and 

the rate of production of combustible volatile species is high, resulting in rapid ignition. 

Many models of ignition have been considered in the literature. Traditional engineering approaches 

have applied simplifying criteria such as the assumptions that ignition occurs at a critical surface 

temperature or at a critical mass flux of combustible volatile gases [7–17]. The simplest of these is the 

critical surface temperature assumption, since the ignition problem then reduces to a straightforward 

heat transfer calculation. Looking at this behaviour in detail for thick specimens, consider the 

dimensionless diffusion equation, θτ = θxx, where θ = (T − Ta)T*, T* being some appropriate 

temperature scale (to be specified below), τ is the ratio of time to diffusion time scale and x is the ratio 

of distance from the exposed surface to thickness. Integrating this equation over thickness, gives the 

ordinary differential equation   1

0

x

x x


 
   , where    

1

0

,
x

x

x dx




      is the average temperature in the 

sample. Assuming that the sample is well insulated on the unexposed surface, so that 1
0x x

  ,  

we have that 0x x 
  . For simplicity, if we ignore heat losses (which will be reasonable for the 

case of very high incident heat flux) then  *

0
/x x

q T


    , where T* is the temperature scale. Thus, 

setting η = q"/(T*λ′) and denoting the surface temperature by θ0(τ), we have that in the region of x = 0,  

θ ~ θ0(τ) − ηx, 0≤ x ≤ θ0/η, and θ ~ 0 for x > θ0/τ. Hence, the average temperature is such that 

   
0 /

2
0 0

0

~ / 2x dx
 

        and so the surface temperature will vary with time approximately 

according to θ0(τ) ~ η(2τ)1/2. Hence, if it is assumed that ignition occurs at a characteristic surface 

temperature Tig, setting T* = Tig − Ta, we find that the time taken for ignition tig is approximately: 

22
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ig ig a

ig

t T T

L q T

   
       

. (8)

This last relationship is interesting for it suggests that ignition time has a functional dependence of 

the form tig ~ tDf (λ′Tig/q", Tig/Tα), where tD is the diffusion time scale defined above. Furthermore, for 

fixed heating conditions, it follows that in order to maximise ignition resistance, the material parameter 

λ2/α = λρc, known as thermal inertia, must be as large as possible. For a porous material,  

λρc ~ λ(1 − φ)ρscs and so for optimal ignition resistance it follows that λ(1 − φ) should be as large 

as possible. 

Recent contributions on ignition at high incident heat flux [18,19], have shown that for infra-red 

heat sources the ignition time—heat flux dependence predicted by Equation (8) above is reliable only for 
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moderate heat fluxes up to ~40 kWm−2, particularly for PMMA. At higher heat flux, it appears that  

infra-red absorptivity has a significant effect on ignition time and that observed ignition resistance is 

actually greater than that predicted by the simple theory above. 

3. Reactive Sacrificial Additives 

The concept of a sacrificial coating for thermal protection is not new and has previously been 

implemented in heat shields for space vehicles [20]. The basic properties of ablative coatings have been 

summarised in [21]. Here the term ablation refers to the thermal degradation of a low thermal 

conductivity material under a high heat flux. Under such conditions gasification occurs in such a 

narrow temperature window as to be considered as effectively occurring at a specific temperature. 

However, it is important to realise that a sacrificial additive also encompasses any material that 

decomposes endothermically on heating- so-called heat-sink additives. An obvious candidate here is a 

hydrated mineral filler, such as alumina trihydrate or magnesium hydroxide, which liberates water on 

heating, consuming energy in the process. The dynamics of endothermic thermal degradation of 

hydrated materials specifically have been investigated previously in [22] and so in this contribution the 

general behaviour of a heat-sink additive is discussed. 

Consumption of a reactant during thermal degradation is often modelled using Arrhenius kinetics. 

Assuming first-order kinetics for simplicity, suppose that the ratio of mass to initial mass μ of a reactant 

is given by dμ/dt = −Aexp(−TA/T)μ, where A, TA are the pre-exponential factor and activation temperature 

respectively. When heating rate H = dT/dt is constant, the graph of μ vs. T has a characteristic shape 

shown in Figure 1, with a single inflexion point located at the solution of TA/T2 = Aexp(−TA/T)/H. 

Putting z = TA/T, J = ln(ATA/H), this last equation becomes z2 = eJ−Z and it may be shown that an 

acceptable approximate solution is given by 

  JJ
J

J
z 


 ln12

2
, (9)

which has error less than 2% when J > 11. 

 

Figure 1. Single-step first-order Arrhenius kinetics at constant heating rate. 
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Clearly the inflexion point provides a characteristic temperature at which the degradation reaction 

proceeds. However a more intuitive, but equally valid, characteristic temperature is the temperature at 

which half of the reactant has been consumed. This is defined as the characteristic kinetic temperature 

(CKT), which will be denoted by T1/2 [22,23]. The temperature at inflexion and T1/2 are shown in Figure 1 

and it transpires that these are always close together. In fact, it may be shown that if we set  

z1/2 = TA/T1/2, then to a good degree of approximation, 

   












8253.2

3665.0ln2
13665.02/1 J

J
Jz . (10)

The percentage relative difference between z and z1/2, i.e., 100(z1/2 − z)/z, is shown plotted as a 

function of J in Figure 2. Note that when J is large, z1/2 ~ J. 

 

Figure 2. Illustration of percentage relative difference between characteristic kinetic 

temperature and temperature at inflexion. 

Another interesting feature of the CKT is that it has only weak dependence on the heating rate H.  

To see this, consider the definition of J = ln(ATA/H) = ln(ATA) − lnH. Now given realistic values for A 

and TA, it transpires that unless H is very large indeed (or very small) then |lnH| << ln(ATA). This 

observation has considerable importance when one analyses the influence of heat-sink additives on 

thermal protection, as will become apparent below. 

Now consider a reactive material P that endothermically degrades on heating in a first-order process 

to give a product P*, then assuming for convenience that the thermal properties of P and P* are the 

same, the energy equation for P will be ∂T/∂t = α∂2T/∂y2 + (∆H/c)dμ/dt. Here, ∆H is the heat of the 

degradation reaction and μ is the mass fraction of P remaining. The degradation reaction is assumed to 

proceed according to dμ/dt = −kμ, as above. If we set τ = αt/l2 (as above), θk = 1/ln(l2A/α), x = y/l,  

θ = T/TA, ε = ∆H/cTA, then the energy and rate equations in dimensionless terms are 
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Here θk plays the role of the CKT discussed above and ε is the ratio of reaction heat to sensible heat. 
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So that we may concentrate on the effect of the heat sink reaction, suppose that the exposed surface 

(at y = l) is subject to a constant heat flux q" and the unexposed surface (y = 0) is well insulated, so that 

the boundary conditions are ∂θ/∂x = G at x = 1 and ∂θ/∂x = 0 at x = 0, where G = lq"/(λTA). 

When the heat-sink material is being used to thermally protect a substrate, we are interested in the 

time taken for the temperature at the unexposed face to reach a critical value. Let the critical 

temperature be Tfail and define θfail = Tfail/TA. Numerical solutions for the dimensionless time taken 

until failure are plotted in Figure 3. Alternatively, if we are interested in ignition resistance, then the time 

taken for the exposed surface to reach a critical temperature and numerical solutions for this case are shown 

in Figure 4. The detailed solution behaviour has been investigated numerically for other values of 

dimensionless heat flux G in the range 0.001 ≤ G ≤ 0.1 and the qualitative behaviour is unchanged 

from that shown in Figures 3 and 4. 

 
(a) 

 
(b) 

Figure 3. Illustration of dimensionless failure time for G = 0.05 (failure at unexposed surface). 

(a) contour plot; (b) surface plot. 
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(a) 

 
(b) 

Figure 4. Illustration of dimensionless failure time for G = 0.05 (failure at exposed surface). 

(a) contour plot; (b) surface plot. 
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and Figure 4 were performed to confirm this, but have not been included for brevity. For the case of 

failure at the unexposed face, Figure 3 shows that the best performance (greatest failure time) occurs 

when θk < θfail and when ε is as large as possible. However, for fixed ε there is clearly an optimum value 

for θk (shown in Figure 3 as a dashed curve) that gives the best performance, but τfail is only a weak 

function of θk at values below the optimum. In other words, for fixed ε, provided that the characteristic 

kinetic temperature θk is sufficiently below θfail, it does not matter how much less θk is than θfail.  

The behaviour for failure at the exposed surface is somewhat different, however. Figure 4 indicates that 

τfail is an increasingly strong function of θk as ε increases. In fact, there are clear benefits in trying to 

make the characteristic kinetic temperature as small as possible for a given ε. 

For both cases, there is a clear requirement that 

 
failA TT

Al 1/ln 2




, (13)

which is illustrated in Figure 5. This last relation combined with the observation above regarding λTA/l 

suggests that the best performance for fixed heat flux is obtained when: 

 λ and TA are small, 

 l, ρ and A are large, 

 ∆H is large. 

 

Figure 5. Region of best performance for heat sink materials. 
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sink additive consumed. 
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(a) 

 
(b) 

Figure 6. Mass fraction of heat sink at failure at G = 0.05. (a) contour plot; (b) surface plot. 

4. Intumescent Chars 

Another successful strategy for thermal protection of a vulnerable substrate is the production of a 

highly porous foamed char. The desirable thermal properties of an insulating layer have already 

been discussed above and detailed models of specific intumescent systems have already been 

published [6,24–26]. Analysis of such systems is a complex affair as there are many different chemical 
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and physical processes occurring simultaneously that interact to produce the final thermal characteristics. 

However the advantageous features of a general system have not been explored in detail in any of these 

contributions and as we have already explored the important parameters for a static insulation layer 

above, in this section we concentrate on the heat transfer characteristics of an expanding layer. 

Consider an insulating layer that is expanding at a prescribed rate with a fixed heat flux applied at 

one surface. We are interested in the insulating effect of the expanding layer as time progresses and in 

particular the time taken for the temperature at the unexposed face to reach a prescribed value  

(the failure time). For simplicity, the thermal properties of the expanding layer will be taken to be constant 

so that the dynamics of the expansion process can be analysed without confusing additional effects.  

We take as a model system a reactive layer that produces a foamed char on heating. The thermal properties of 

the char are fixed as soon as it is produced and its thickness increases steadily from zero with increasing time. 

Let the char have thickness δc(t), thermal diffusivity αc and occupy the region 0 ≤ y ≤ δc(t). It is a 

straightforward matter to verify that the temperature in the expanding layer is given by the solution of 
2 2/ / /c cT t T y T y        , where /c cd dt    is the expansion rate. Suppose that the reactive 

layer producing the char (the char source) has thickness δs and density ρs. As char is produced the char 

source is consumed, so that s s c c     . The quantity E = ρs/ρc is the expansion ratio for the char and 

hence the ultimate char thickness will be given by δ∞ = Eδ0, where δ0 = δs(0) is the initial thickness of the 

reactive layer. The expression for the ultimate expanded char thickness comes about from the fact that in 

this simple model it is assumed that all of the reactive layer is converted into char. Hence conservation of 
mass implies that, for constant cross-sectional area, / /s s c s s c E             . Again for 

simplicity we shall take the heat flux on the exposed surface of the expanding layer q" to be constant 

and the unexposed face of the char source to be adiabatic so that effect of the char expansion can be 

explored without the additional effects of heat losses. These features are summarised in Figure 7. 

 

Figure 7. Illustration of simple expanding char model. 

We assume that the char source is sufficiently thin so that its temperature Ts is uniform and 
conservation of energy implies that when t > 0,  

0
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0
/ |c y

T y 
    is the heat flux in the char layer immediately above the char source, λc is the thermal 

conductivity of the char and c is the specific heat capacity of char source (assumed to be the same as 

the char). Thus the temperature of the char source is given by the solution of 

0

0

, 0,

, 0.

ss

c

s s y

q
t

cdT

Tdt
t

c y 

      
  



 (14)

Now, let tc be the time taken for the char to expand to its ultimate thickness, so that 

  , 0 ,

,
c c

c

c

t t t
t

t t

    
 


 (15)

and set  / cx y t  , / ct t  , / aT T  ,  /c c     ,  / c aq T   . It is now apparent that the 

behaviour of the simple expanding char model is determined by two parameters (ε and β) and 

physically, ε corresponds to the ratio of heat diffusion rate to expansion rate and β corresponds to the 

ratio of external heat flux to diffusion heat flux. In these variables it may be shown that the simple 

expanding char problem may be written as 

2

2 2

2

2

1
,0 1,

, 1,

x

x x

x

                      

 (16)

with boundary conditions 

 
0

0

1
, 0 1,

0, 1,
x

xx







   
        

 (17)

1

, 0 1,

, 1xx 

   
    

 (18)

and initial condition θ(x, 0) = 1. When τ is small it is necessary to seek a series expansion for the solution 

because of the singularities in Equation (16) and this shows that the initial behaviour is given by: 

   2~ 1 x O      . (19)

When the expansion rate is large, the char layer becomes fully developed long before the failure 

temperature is reached and so we would expect the failure time for this case to be dominated by the 

solution of the equivalent heat transfer problem in a layer of constant thickness (the static solution).  

For this case, we simply need solutions of ∂θ/∂τ = ε∂2θ/∂x2, 0 ≤ x ≤ 1, with ∂θ/∂x = 0 on x = 0 and  

∂θ/∂x = β on x = 1. It is a straightforward matter to construct the solution of the static problem,  

giving the temperature on the unexposed face as 
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    2 2

2 2
1

12
1

6

n

static n
s

n

e
n


  



 
     

  . (20)

From this, we calculate the time taken τ(static) 
fail  for θ(static) 

s  to reach the failure temperature θfail. It is 

apparent from above that ετ(static) 
fail  = f(θfail, β) and numerical results show that a good approximation for f 

is given by the function exp(c0 + c1z + c2z2 + c3z3), where z = lnβ. For example, when θfail = 2.5 the 

coefficients cj are given by c0 = 0.5155, c1 = −0.9531, c2 = 0.1072, c3 = −0.0053.  

When the expansion rate is small but the heating rate is high, the failure time will be small and we 

would expect the temperature distribution through the slowly expanding char to be close to quadratic 

in x. Under these pseudo-steady conditions it seems reasonable to seek an approximate solution of the 

form θ(x, τ) ~ θ0(τ) + xθ1(τ) + x2θ2(τ) and the failure time will be given by the solution of θfail = θ0(τfail). 

Substitution into the model equations eventually yields 

 
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2

0 2

1 / 2 1 / 2
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2 1/ 2 1/ 2

1/ 2
1 ln 1 , 1,
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(21)

where 1/4  . Hence the failure time  ps
fail  will be given by 
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 (22)

where z = ω(θfail − 1)ε2β. 

Numerical results for ετfail (with θfail = 2.5) are shown in Figure 8 together with regions where the 

two approximate solutions given by Equations (20) and (22) above are valid. An approximate solution 

is deemed valid in this sense when the percentage relative error between the approximate and 

numerical solutions is less than 5%. 

It transpires that the solution to the static problem also has another important physical interpretation. 

Since the thickness of the expanding layer is always less than or equal to the ultimate thickness,  

it follows that the conduction heat transfer coefficient λc/δc is always greater than λc/δ∞. Now from 

Equation (1), this implies that the failure time for the expanding char will always be less than the failure 

time for the static solution, i.e., τfail < τ(static) 
fail . In other words, the failure time for the static solution 

represents the best possible performance and so it can be used as a benchmark to determine the 

effectiveness of the expanding char. Hence we can define a theoretical efficiency η given by 

 , fail

static
fail


   


. (23)

Figure 9 shows a contour plot of the theoretical efficiency together with the contour C1 

corresponding to τfail = 1. This contour is interesting because it corresponds to the case when the failure 

temperature is reached just at the point that the char finishes expanding. If τfail < 1, (the region above and to 

the right of C1) then this implies that the failure temperature has been reached before expansion is 
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complete. If τfail > 1 (the region below and to the left of C1) then failure occurs after complete 

expansion. In fact, C1 closely corresponds to a watershed that divides a basin for ετfail where 

performance is poor from a region of good performance.  

 
(a) 

 
(b) 

Figure 8. Contours of ετfail (a) and validity of approximate solutions for simple expanding 

char model (b). 

Analysis of the numerical results shows that the equation of C1 is given to a good degree of 

approximation by β = 2.604 + 0.453/ε2.195. Multiplying this expression by ε, we have that the region 
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where failure occurs before complete expansion is given by εβ > 2.604ε + 0.453/ε1.195 and as ε varies,  

it is obvious that the right-hand side of this inequality is always greater than or equal to 2.338. Hence. 

it follows that if 0.428 /c c ac q T    , then the expansion rate will always be sufficiently large to ensure 

that failure occurs after complete expansion, for any value of char thermal conductivity. 

 

Figure 9. Efficiency of simple expanding char model. 

The contour plot of η also shows that there is a large region of parameter space where efficiency is 

close to 1. Note that given the definition of η, the hatched region of Figure 9 and the region of validity of 

the static solution in Figure 8 are identical, implying that to a good degree of approximation, the failure 

time in the region η > 0.95 will be given approximately by the static solution.  

Figure 10 shows a surface map and corresponding contour map of τfail. The figure shows that in the 

basin where failure occurs before complete expansion failure time is generally small, but once out of the 

basin, τfail increases rapidly with reducing ε and reducing β. Given the definitions of ε and β, we can 

write 
2/c c ct  ,  /c c c at q T     . Hence, for fixed tc, expanded char thermal properties and heat flux 

q", it follows that as expansion rate c  varies, ε and β are related through β = (γ/ε)1/2, where 
2 2/c c c at q cT     and these curves are plotted for various values of γ in the contour plot.  

As expansion rate increases we proceed from right to left along the curve. Note that as γ increases, 

larger portions of the curves lie in the basin of small failure time. 

Figure 11 illustrates numerical solutions for dimensionless substrate temperature for three cases:  

a point where failure occurs before expansion is complete (ε = 0.12, β = 80), a point on C1 where 

failure occurs just as expansion is complete (ε = 0.10, β = 73.58) and a point where failure occurs after 

expansion (ε = 0.08, β = 60). 
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(a) 

 
(b) 

Figure 10. Surface map of τfail (a) and contour plot (b). 

 

Figure 11. Illustration of numerical results for substrate temperature. 
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5. Conclusions 

Pore shape and distribution is critical in optimising the thermal performance of inert insulating layers. 

For most practical applications, pore size is not sufficiently large for internal convection to occur, 

however as temperature increases radiation heat transfer becomes important. For small pores it is 

possible to show that radiation heat transfer rate increases with pore size, suggesting that pore size 

should be kept as small as possible. If the goal of the thermal protection is maximise failure time of  

a substrate, it transpires that λtot/(1 − φ) should be as small as possible, where λtot is the total effective 

thermal conductivity including radiation augmentation. Alternatively if the goal is ignition resistance, 

then the analysis above shows that λtot/(1 − φ) should be as large as possible. 

For a simple reactive heat-sink material (RHSM) it transpires that the best thermal performance 

occurs when TA/ln(Da) < Tfail, where TA is the activation temperature for the endothermic reaction and Da 

is the Damköhler number l2A/α (here l is the thickness of the RHSM, A is the pre-exponential factor and 

α is thermal diffusivity). Furthermore, failure time is an approximately linearly increasing function of the 

Stefan parameter ∆H/cTA, where ∆H is the heat absorbed per kg of RHSM and c is specific heat capacity. 

For the simple expanding char model, it was shown that dimensionless failure time is a function of 

two dimensionless parameters: tfail/tc = f(ε, β), where 
2/c c ct  , /c c c at q T     . Here αc, λc are the 

thermal diffusivity and thermal conductivity of the expanded char respectively, tc is the time taken for 

expansion and c  is the expansion rate. Numerical results indicate that there is a basin where 

dimensionless failure time is low, given approximately by β > 2.604 + 0.453/ε2.195 for the case of  

a maximum substrate temperature (in K) of 2.5Ta. Inside the basin char expansion is slow enough  

such that failure occurs before expansion is complete and outside the dimensionless failure time 
increases rapidly as both ε and β reduce. Furthermore if εβ < 2.338, or in terms of the original variables 

0.428 /c c ac q T    , then the expansion rate will be sufficiently large to ensure that failure occurs after 

complete expansion no matter what the value of the char thermal conductivity λc. 

In both cases where thermal protection is afforded by a reactive component (either a heat sink 

reaction or an expanding insulation layer) the numerical results demonstrate clearly the seemingly 

obvious but important requirement that, for prescribed heating conditions, the reaction must proceed to 

completion for the best possible performance. In practice, this means that for effective thermal protection, 

the kinetics of the reaction must be matched to the heating rate imposed by the external source. 
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