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Abstract: Nano-composite films have been the subject of extensive work for developing the
energy-storage efficiency of electrostatic capacitors. Factors such as polymer purity, nanoparticle size,
and film morphology drastically affect the electrostatic efficiency of the dielectric material that forms
the insulating film between the conductive electrodes of a capacitor. This in turn affects the energy
storage performance of the capacitor. In the present work, we have studied the dielectric properties
of four highly pure amorphous polymer films: polymethyl methacrylate (PMMA), polystyrene,
polyimide and poly-4-vinylpyridine. Comparison between the dielectric properties of these polymers
has revealed that the higher breakdown performance is a character of polyimide (PI) and PMMA.
Also, our experimental data shows that adding colloidal silica to PMMA and PIleads to a net decrease
in the dielectric properties compared to the pure polymer.

Keywords: dielectric break down; polymers; nano-composite; colloidal silica

1. Introduction

High operating voltages are an essential characteristic to assess and to improve the efficiency of the
energy storage of materials. The dielectric properties of insulating materials separating the electrodes
of a capacitor control the maximum electrostatic power of a capacitor. As an example, polypropylene
(biaxial-oriented) has a high electrical breakdown that reaches about 6 x 10® voltages per meter;
however, it has limited energy storage, which reaches about 2 Joules/cm?3. A solution to improve the
energy storage efficiency is to add nano-composite polymers [1-4]. The morphology of the fillers at
nano-scale reduces heterogeneities in nano-composites and thus improves the dielectric properties and
avoids failure. In addition, to increase these properties, several authors have suggested the addition of
metal-oxide nanoparticles TiO, and BaTiO3 [5-10]. In fact, the dielectric properties are very sensitive
to the addition of these nanoparticles because the energy density has quadratic dependence on the
electric field intensity. Monotonic reduction of the electrical breakdown appears by increasing the
metal-oxide nanoparticles [11-17]. This can be analyzed considering randomly dispersed nanoparticles
which form percolation networks which can prematurely break down the material, in particular at the
high loading rates of TiO; and BaTiOs. At such rates, it is not a facile task to achieve homogeneous
dispersions, but it is more likely to see the formation of the agglomeration which can behave as a defect
site, leading to a greater reduction of dielectric properties. Published studies [18-21] have revealed that
localized electric fields are created within the matrix with field exclusion. For example, the addition of
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(5%—-10% v /v) BaTiO3 nanoparticles generates local electrical fields which negatively affect dielectric
properties [20,21]. So, material morphology and individual field contributions are substantial factors
that affect dielectric strength and electrical breakdown. Here, the nature of filler materials can decrease
field exclusion and gives deeper insight into the effect of morphology on electrical breakdown values.
As an example for this effect, the addition of 5% w/w silica nanoparticles increases the electrical
breakdown from 2.69 x 10% volts/m up to 3.14 x 108 volts/m [22,23] and the addition of 1% silica to
polypropylene increases the electrical breakdown from 5.11 x 10® volts/m up to 7.78 x 108 volts/m [24].
In addition, the size of the filler strongly affects the breakdown values [25-27] and the increase of
these values can occur with more homogenization of the local electric field distribution through the
material [28,29]. However, other authors have proposed that the rise of the breakdown values is
essentially due to the presence of some internal barriers through the material which can be reduced by
good control of the film morphology. If one forces the electrical field to pass through more curved paths,
prolonged breakdown will be produced through tightly structured films [30]. From the experimental
point of view, alternating nano-layers of high dielectric polymers poly (vinylidene fluoride) (PVDF) and
polycarbonate has increased dielectric strength, which is created by the barriers present in the polymer.
These barriers in turn impede the transfer of the electric field [31-34]. Moreover, polyvinyl butyral
(PVB) which is added to organically modified montmorillonite (OMMT) in nano-laminar structures has
increased the breakdown strength from 1 x 108 volts/m (pure film) up to 1.3 x 108 volts/m [35,36]
when adding 10% v/v OMMT. Also, if the filler substance adopts long-range alignment, breakdown
through OMMT-polyethylene nano-composites will increase. For these films, breakdown strength
increases from 2.9 x 10® volts/m (pure film) up to 3.7 x 108 volts/m [36] when adding 6% w/w OMMT.
Thus, in general, filler composition, morphology and size are essential factors to get a preferment
dielectric material and to better understand these factors at nano-scale composites, and we get a direct
comparison between four polymers: polymethyl methacrylate (PMMA), polystyrene (PS), polyimide
(PI), and poly-4-vinylpyridine (P4VP) with about half content (50% v/v) colloidal silica. Our data
show that the electrical breakdown values through pure PMMA and pure PI are strongly reduced
by adding even small quantities of highly dispersed colloidal silica (1% v/v). On the other hand,
electrical breakdown values through nano-composites with low dielectric strength such as PS and
P4VP increase with colloidal silica added up to 15% v/v. In brief, cheap polymer nano-composites can
easily develop amorphous polymers with low breakdown values, especially if there are additional
properties as flammability suppression and heat deflection.

2. Experimental

Silica nano-composite films have been prepared using the same technique as described
elsewhere [37-39] with chemicals from Sigma-Aldrich (St. Louis, MO, USA): 1-poly methyl
methacrylate (PMMA), 2-methyl ethyketone (MEK), 3-Celite, 4-methanol, 5-polystyrene, 6-poly-
4-vinylpyridine (P4VP), 7-polyimide PI derived from pyromellitic dianhydride/oxidianiline
PMDA /ODA. The obtained colloidal silica particles have radius about 15 nm with dispersion
into the polystyrene and polyimide host matrices. Phenyl group density has been estimated
using exclusion-chromatography techniques and the colloidal silica has been treated with a
phenyltrimethoxysilane to ensure homogenous dispersion through the polystyrene. If the dispersion
finds a column, the unattached capping agents move through the column after the capped silica.
Ultra-violet measurements have been used in order to estimate the relative quantities of attached
and unattached capping agents of the eluent which has been compared to initial quantity of capping
agent in the reaction to estimate graft density. The hydroxyl area of the uncapped silica has been
effectively used with the P4VP and PMMA [40]. For about three days, the colloidal silica dispersion in
di-methyl-formamide has been mixed with 10 wt. % polymer solution in di-methyl-formamide which
finally gives films about 7 micrometers thick. Using 500 nm film of aluminum as a counter-electrical
contact, one ensures the building of a capacitor structure which gives total thickness of about
7 um. The electric breakdown (EBD) and the dielectric characterization have been carried out
using power supply ensuring about 10* volts which is combined with timing circuit that creates
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300 volts per second. Thus, the EBD time is about 20 seconds which is in harmony with previously
published data [40]. The polymer nano-composite film has been kept in direct contact with a small
copper hemispherical-ends-bar to give a direct electrical contact with an effective contact area about
0.1 cm?. This makes good electrical contact and ensures removing the film heterogeneity due to
initial manufacturing by local electric fields. The heads of bars are polished after each 15 EBDs.
These 15 trails have been carried out for each film to calculate the most probable value of the particle
size using Weibull distributions. To get continuous calibrated measurements, one has periodically used
free-standing Oriented PolyPropylene (BOPP) film to play the role of test-standard. Spellman generator
with 10* volts, Keithly 6517B and 1260A Solatron have been used to perform the electrical features
of the composites. The time duration for each sweep has been kept at 30 seconds and measurements
are made at room temperature. The temperature variations at EBD due to Joule heating have been
neglected. The measured leakage currents have been taken at half of the critical voltage of EBD.

3. Results and Discussion

At 10° Hz, the above-mentioned nano-polymers have nearly the same dielectric constant; however,
they markedly differ in the EBD voltages, which ranged from 4 x 10 volts/m for PSto 8 x 108 volts/m
for PMMA. This shows how much polymer-colloid interactions are crucial for altering the EBD values.
The continuous accumulation of nanoparticles is markedly embedded when using polar non-aqueous
solvents (e.g., dimethyl formamide (DMF) and dimethylacitamide (DMAC)) when preparing the
nano-film [41], which enables the creation of electric charge stabilization of physical properties of
colloidal silica. To get an efficient drying rate, the polymer films have been subjected to a 100 °C hot
glass plate which also resulted in the aggregation of nanoparticles. More time permits the solvent to
evaporate so that the stability of the electrical charges on the colloidal silica is highly reduced and
the matrix viscosity becomes strong enough to resist diffusion of particles which leads to a strong
dispersion of Polymer Nano Composites (PNCs).

It is noted that this approach gives “qualitatively” similar particles of silica for all the composites,
even with high silica content (about 15% v /v) (see Figure 1). At 10° Hz, the real and imaginary parts
of the complex permittivity (e* =¢' + ic"; with i = /= 1) are plotted as a function of silica concentration
(Figure 2); in Figure 2a, this is the dielectric constant. The dielectric constant ¢' is plotted as a function
of silica concentration, and in Figure 2b, the electrical conductivity o is plotted as a function of silica
concentration. Pure (0% v/v) films have the following dielectric constant: 2.6 for PS, 2.8 for PMMA,
2.9 for PI and 3.3 for P4VDP, and these are in fair accordance with a previously published study [42].

Figure 1. TEM illustrations of polymer nano-composite polystyrene films at different silica loading;:
(a) 1%; (b) 5%; (c) 7.5%; and (d) 15%.



Materials 2016, 9, 104 40f 10

o
©
)

(2) m PS v (b)
® P4vP - v v v v v
< 361 A Pl v ' 7 v
I ? E 10 v [] L d
s v PMMA ° 5 N °
& 344 e © G °
@ . °
S [ ] v A ‘E} ° -
1@ v 2 n L]
g 32 v A S .
5 A S
o u = A
E 3.0 4 | | " 5 " A A -
o] A A S " A
A " = 10°1 4 = PS
2.8+ o e P4VP
v = " E A Pl
2 PMMA
26-m Si0,vol% é’ v
T T T T T T T T 1 . SiOzvol%
0 5 10 15 20 25 30 35 40
T T T T T T T
0 5 10 15 20 25 30

Figure 2. (a) The dielectric constant ¢ as a function of silica content for PS, P4VP, Pl and PMMA; (b) The
electrical conductivity o as a function of silica content for PS, P4VP, PI and PMMA.

Figure 2a shows the relative dielectric constant ¢' of pure silica as a function of the applied
frequency. This figure reveals that silica has a high dielectric function. The dielectric constant of the
presented films is illustrated in Figure 2a as a function of the SiO, content. From this Figure, one
can see that the ¢' of the films rises linearly with the silica concentration for all films. The dielectric
dipoles within polymers are permanently polarized under the application of the DC electric field.
However, under the application of the AC field, charges will oscillate following the field depending on
the structure and morphology of the polymers, which can be either polar (such as PMMA, PVC, nylon)
or non-polar (such as Polytetrafluoroethylene, polyethylene, and polypropylene). At low frequencies,
the dipoles on the polymer have sufficient time to align with the applied AC field, though not at high
frequencies. So, polar polymers have, in general, their dielectric constant in the range of 3¢” < ¢' < 9¢”
atabout 50 Hz and 3¢” < ¢' < 5¢” at about 100 Hz. This is in good accordance with our findings.

The electrical conductivity o of the composites is illustrated as a function of the silica concentration
at a representative frequency of 100 kHz (Figure 2). The composites” electrical failure as a function of
the critical electrical breakdown is illustrated in Figure 3 for different silica concentrations where the
cumulative probability function P(E) for electrical failure is given as [43]: P(E) =1 -exp [-(E/ EBD)P];
EBD is experimentally reported and taken as a fitting parameter and b is the shape parameter [44]
combined with the linear fit of the probability distribution.
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Figure 3. The probability of failure (P%) as a function of silica content for PS, P4VP, Pl and PMMA.



Materials 2016, 9, 104 50f 10

Figure 4 reveals that the experimental EBD of the composites is sensitive to the chemical properties
of the polymer matrix. In particular, PMMA has the most important effect where, if small quantities
of PMMA are embedded in silica, it will reduce the EBD by a ratio of about 30%: for example, the
EBD of a neat composite is 8 x 108 volts/m and it is reduced down to 3.5 x 10® volts/m by adding
15% v/v; another example for PI reduces the EBD from 5.6 x 108 volts/m (neat value) down to
4.6 x 108 volts/m (20%).
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Figure 4. The breakdown strength (EBD) as a function of silica content for PS, P4VP, PI and PMMA.

Less important ratios are for PAVP are where the EBD is reduced from 4.8 x 108 volts/m down
to 4.4 x 10® volts/m (10%) when adding 15% v/v. However, for PS, the EBD is increased from
3.9 x 10% volts/m (neat) up to 4.0 x 108 volts/m (5%). It is noted that all composites suffer a high field
leakage current with increasing silica volume fraction. Because PMMA and P4VP have silica with
nearly the same hydroxyl exterior, their breakdown behavior [45] is widely different, which reflects
the minor effect of the silica surface in the explanation of the experimental data. However, several
authors have used the silica surface to improve the breakdown properties with nano-composite films
but they have attributed the results to the general morphology of films [45]. Thus, this explains
why the addition of minor concentrations of silica at the nano-scale to dielectric films with relatively
high breakdown values reduces their dielectric strength. On the contrary, adding silica to the two
nano-composite films, P4VP and PI which have relatively weaker breakdown values have a poor
effect on the breakdown strength. Giving an electrical analysis which demonstrates the EBD behavior
in these dielectric films is not a simple issue and opens the doors to several views. Here, we will
focus our scope on only two probable explanations: First, EBD starts initially by the silica colloid
nanoparticles. This is logical because failure converges towards nearly the same EBD values for all
the dielectric films with increasing silica concentrations. If breakdown only occurs in silica at certain
electric fields, this would restrain the dielectric power in PMMA and PI dielectric films. Also, the
breakdown value of neat PMMA and PI is higher than the inherent silica breakdown intensity, which is
about 4.5 x 10% volts/m. However, this last value is little bit higher than the breakdown intensity of PS
with its amorphous nature. In fact, it is indistinct why there is a feeble breakdown of PS. The alteration
of some tiny fraction of material having stronger inherent failure properties is a potential reason for
this weak value of polystyrene (PS). This is because the failure starts from some sensitive imperfections
that are sometimes become majority through the polystyrene (PS) matrix [46]. This would implicate
that the initiation processes is a less favored mechanism than the effect of silica propagation on failure.
Thus, the well-dispersed silica acts as positive factor for forestalling propagations and, at the same
time, it can play a negative role for inducing failure, and thus the performance factor depends on the
“relative” breakdown rather than the intrinsic properties of the silica itself or its surface. In general, all
these electrical breakdown intensities are in harmony with the published data [47]. The term “relative”
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breakdown has been used with the restriction that to any critical breakdown failure the positive and
negative contradiction roles of silica can happen.

The term “relative” breakdown has been used with the restriction that to any critical relative
breakdown? This can be attributed to the “relative” polarity of silica to the polymer matrix.
Our experimental data show that the poorer polar film (PS) attains the least breakdown power while
the stronger polar film (PMMA) acquires the most elevated breakdown power. So, the addition of silica
to crystallite structure formation should have a less significant impact and the same is also said for the
role of crystallite in dielectric failure. Films such as bio-oriented polypropylene (BOPP)with non-polar
nano-composites have, in general, relatively low breakdown strength, and their execution is controlled
essentially by their morphological structure rather than the by the polarity of highly disordered
regions (amorphous tiny areas). In fact, the insertion of some polar organic groups such as ketones
(C=0) increases the polarity of non-polar polymers such as BOPP [46] and this means that the polar
organic group plays the role of active trapping sites which introduces the role of scattering centers [47].
The scattering mechanism occurs at the polar surface of silica, leading to more constant trapping
centers through the matrix, and improves the electrical breakdown. This happens if one adds silica to
a non-polar polymer (for example, low-density polyethylene, polystyrene, BOPP). If the polarity of
the silica surface (either native or modified) is stronger than that of the matrix, the propagation of the
breakdown to stronger fields will be inhibited. However, conversely, PMMA and most highly polar
polymers have the polar surface of silica (either native or modified) which is characterized by less
stable trapping centers than inherent to the polymer. Here silica plays the role of a defect that fails
at the feeble electric field compared to the surrounding matrix which supplies a lesser quantity of
electric power alternative to the superior characteristics of the polar part through the polymer structure.
Also, when the volume fractions become sufficiently high, the silica surface area will play the main
role of controlling the mechanism of breakdown and, thus, the nanocomposites will be independent of
the matrix. In fact, our experimental data show that this happens at a rate of loading of about 15% v/v
which is near the critical values previously obtained for spheres in three dimensions [48]. This is well
matched with the data in Figure 5 where the Weibull factor 3 (which depends on the polarity strength)
is a function of the silica concentration in the matrix.

One can see that (3 increases as a reflection of the increasing silica content in polar polymers
which also attenuate the dielectric properties of the films. It is worth noting that homogenous trapping
sites will be created when uniform distribution of silica colloids occurs through the nanocomposite
materials. Also, due to the uniform distribution of silica, the failure variability is reduced in addition
to the decrease of the breakdown, which has some important industrial applications. By getting rid
of the potential failure at low fields, the design will be controlled by the onset failure field. As an
example, the critical electric limit can be highly increased by reducing the film thickness and vice versa.
For weak silica loading (no more than 10% v/v), PS has lower values of the Weibull factor and thus
shows more tendencies for increasing failure variability. One can attribute the electrical breakdown
and the dielectric behaviors to the presence of a large number of scattering centers within the polymer
matrix which are created from the presence of many particles and structural defects in this matrix.
Also, these behaviors are attributed to the presence of nanoparticles which can change the morphology
and thus reduce the mobility of the charge carriers. However, the crystallization effects are not, in
themselves, essential factors in controlling the dielectric behavior in such materials. In fact, the size of
the defects and their effect on the polymer morphology can play a major role either in the polymer
bulk or at the surface regions. The size distribution is correlated with the beta-parameter as illustrated
in Figure 5. So, we can consider that silica plays the role of a trapping site and not a failure site, which
means that the essential role exists on the encountering surface with a probability of a failure event on
the particle.
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Figure 5. The shape parameter () as a function of silica content for PS, P4VP, Pl and PMMA.

However, this effect should be minor at low silica concentrations but increase with loading.
In PS, this is clearly seen in the general trending of the Weibull factor with more silica loading.
Overall, for a strong loading rate of silica (more than 15%), all nano-composites have a tendency
to fail with comparable variability and silica masks the host matrix dielectric characteristics and
breakdown features.

4. Conclusions

In order to get more efficient materials for energy storage, scientists have developed the abilities of
electrostatic capacitors. In particular, electrical breakdown actions are controlled by several competing
factors such as agglomeration, substance morphology, and field exclusion. So, one can investigate the
essential mechanism(s) for breakdown in dielectric films. When adding colloidal silica to polymethyl
methacrylate (or any higher-breakdown amorphous polymers), the critical electrical breakdown will
be reduced. However, low-breakdown-strength amorphous polymers such as polystyrene keep high
values of breakdown when adding 5%-15% v /v silica. The correlation between matrix and filler will
be more important and clearer when taking these remarks into account. The four “clean” samples
have revealed excellent dielectric behavior after loading with more than 15% v /v silica with electrical
breakdown in the range of more than 4 x 108 volts/m but less than 8 x 10® volts/m. This proves
clearly that the addition of silica to amorphous polymers makes them have the same strong dielectric
behavior as the best dielectrics. In fact, silica helps the charge present in the host and nanoparticles to
be either scattered or trapped. This stimulates the dielectric properties of polymers and strengthens
the storage energy characteristics of these amorphous materials. Also, silica has a weaker failure
mode that makes it have a substantial effect in strengthening breakdown. The faint distribution of
failure probability for dielectric polymers is to weaken their dielectric power. This is attributed to
the strong distribution of crystalline defects throughout the amorphous material. One can correlate
the relative polarity of the nanoparticle surface to the matrix with keeping dispersion to arrive at
the conclusion that it is necessary to control the polarity of nanoparticles not only to control their
morphology and surface. Additional studies are necessary to further explore the basic understandings
of the starting and continuing processes in nano-composite materials and to distinguish their particle
composition, morphology, and relative polarity influences. However, this general conclusion which
is derived from the simple comparison of experimental data of P4VP, PI, PMMA and PS cannot be
generalized without taking into account simultaneous studies to examine the chemical composition,
source, physical surface and chemical properties on nanoparticles in a wide range of polymer matrices.
The data presented in this work stands with what we have previously published [49]: that one of
the most important candidates of the next generation of electronics is molecular electronics, as the
miniaturization of silicon semiconductors reaches its physical and economic bounds.
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