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Abstract: In this study, surface properties of Ti-6Al-4V alloy coated with hydroxyapatite coatings
were investigated. Wear resistance and fatigue behaviour of samples with coating thicknesses of
10 and 50 um as well as uncoated samples were examined. Wear experiments demonstrated that
the friction factor of the uncoated titanium decreased from 0.31 to 0.06, through a fluctuating trend,
after 50 cycles of wear tests. However, the friction factor of both the coated samples (10 and 50 pm)
gradually decreased from 0.20 to 0.12 after 50 cycles. At the end of the 50th cycle, the penetration
depth of the 10 and 50 um coated samples were 7.69 and 6.06 pm, respectively. Fatigue tests showed
that hydroxyapatite coatings could improve fatigue life of a notched Ti-6Al-4V member in both low
and high cycle fatigue zones. It was understood, from fractography of the fracture surfaces, that the
fatigue zone of the uncoated specimens was generally smaller in comparison with that of the coated
specimens. No significant difference was observed between the fatigue life of coated specimens with
10 and 50 pm thicknesses.
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1. Introduction

Owing to their excellent mechanical properties and biocompatibility, metallic biomaterials are
largely used in different medical applications such as orthopaedic implants, bone plates, dental
implants and cardiovascular devices [1-3]. It is reported that 70%-80% of implants used for biomedical
applications are made of metals and metallic alloys [4] for which high strength, low elastic modulus,
excellent wear and corrosion resistance, and good biocompatibility are of paramount importance [5].
Due to the exposure to the corrosive environment of the body, metallic implants may suffer from
corrosion which can be intensified by the effect of wear induced by coming into contact with a hard
surface [6]. This can result in toxicity, adverse local tissue reaction and ultimately failure of the metallic
implant [7,8]. Given the cyclic nature of the mechanical loads applied during physical activities, fatigue
behaviour of implants is also important.

Surface modification methods, particularly coatings, have been extensively used to improve
mechanical and surface properties of metals in different applications [9-12]. Wang and Zreiqat [3]
reviewed a wide range of surface coatings used for metallic biomaterials along with their deposition
methods and properties including corrosion, wear, biocompatibility and antibacterial activity.
Hydroxyapatite (HA) coatings [Ca;o(PO4)s(OH),] are widely used in prosthetic applications as they
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possess a similar chemical composition and crystal unit to apatite of the bone [13,14]. It favourably
accelerates the bone formation process as it contains calcium phosphate [15] which makes it suitable
for bone substitution and reconstruction [10,15-17].

HA coatings have shown success in implant fixation (in-vivo) which enhances the implant life
by increasing the strength and rate of implant integration [18]. The dense layer of coating onto the
surface of implant material is mainly for bio-integration and increased implant stability to the bone
tissue [19,20]. In addition to its bioactive role, HA coatings can minimise ion release of metals in the
physiological environment of the body [15].

However, HA coatings have a brittle nature and low strength under wear conditions [21,22].
Balani et al. [23] evaluated wear behaviour of hydroxyapatite coatings reinforced by plasma-sprayed
carbon nanotubes in a simulated body fluid environment. Their results demonstrated considerable
improvements in the fracture toughness (56%) and crystallinity (27%). Moreover, coated implants
may suffer from fatigue damage under cyclic loading in the body. Thus, fatigue response of coated
metallic biomaterials needs to be investigated. The effect of surface coatings on the fatigue behaviour
of biomaterials, especially metals, has been investigated previously. Apachitei et al. [24] investigated
fatigue behaviour of Ti-6Al-4V and Ti-6Al-7Nb alloys coated with plasma electrolytic oxidation
coatings. Their study showed that this type of coatings reduces fatigue resistance of these alloys.
Vadiraj and Kamaraj [25] studied the effect of titanium nitride coatings on the fretting wear properties
of titanium alloys. They concluded that physical vapour deposition (PVD) TiN coatings can improve
fretting fatigue properties of titanium alloys.

There have been however limited studies on the fatigue behaviour of metallic biomaterials coated
with HA coatings. Lynn et al. [26] investigated the effect of HA coating thickness on the fatigue
behaviour of Ti-6Al-4V. They found that changing the thickness of atmospheric plasma-spray (APS)
HA coatings from 0 to 100 um does not affect the fatigue life of the alloy, but thickness of 150 pm
considerably reduces the fatigue resistance of Ti-6Al-4V. They also investigated the effect of heat
treatment on the fatigue behaviour of this alloy coated with HA coatings [27]. It was shown that a heat
treatment at 400 °C for 90 h significantly reduces the fatigue resistance of this alloy. Fatigue tests in
these studies were limited to one constant stress amplitude (620 MPa); whereas, stress versus number
of cycles (5-N) curves could be more useful in understanding the overall fatigue behaviour. Also,
implants usually have complex geometries with fillets and reduced sections which can act as a notch.
Hence, fatigue behaviour of a notched implant material coated with HA coatings should be studied.

In this study, surface properties of hydroxyapatite coatings deposited onto Ti-6Al-4V substrate is
characterised. Two thickness of 10 and 50 um were studied. Wear tests were conducted to evaluate
wear resistance of the HA coating layer with two different thicknesses. The effect of HA coatings
thickness on the fatigue behaviour of Ti-6Al-4V notched specimens was also investigated in different
cyclic load levels. Fatigue crack initiations and propagations were examined by scanning electron
microscopy (SEM) to identify crack origins and detect coating delaminations after failure.

2. Experimental Section

2.1. Sample Preparation

Titanium alloys are one of the most commonly used metals for biomedical applications because
they offer superior properties which include low density, moderate elastic modulus (110 GPa), good
corrosion resistance and high strength [2]. In this work, Ti-6Al-4V alloy, ELI (Extra Low Interstitials)
grade (Grade 23) was used as substrate. Ti-6Al-4V ELI contains reduced amounts of oxygen, nitrogen,
carbon and iron. In this alloy, lower interstitials can improve ductility and offer better fracture
toughness. The alloy was purchased as a 0.50-inch-diameter bar from Magellan Metals, South Norwalk,
CT, USA. Small disc samples were cut from the bar using Secotom-50 (Struers, Ballerup, Denmark).
The samples had the same diameter as the bar (12.7 mm) and a 5-mm-thickness. After the cutting
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process, one face of the discs was mirror polished using Tegramin-25 (Struers, Ballerup, Denmark) to
remove surface scratches.

Three batches of samples were prepared. These included uncoated titanium samples, HA coated
samples with a coating thickness of 5-15 pm, and HA coated samples with a coating thickness of
45-55 um. Hydroxyapatite coatings were deposited onto the titanium surface using a thermal plasma
spray process by Himed, Old Bethpage, NY, USA. All the samples were coated in the targeted thickness
ranges. Nominal thicknesses of 10 and 50 um were used in this study for the afore-mentioned thickness
ranges, respectively. Prior to applying the HA coating, the disc samples were degreased using 3%
Alconox, distilled water and 99% alcohol. The polished surface was then grit-blasted with apatitic
abrasive (MCD, 180-300 um, Himed, Old Bethpage, NY, USA) and passivated as per ASTM F86-04 [28].
The coated sample is shown in Figure la. Fatigue test specimens with a reduced section in diameter, as
shown in Figure 1b, were manufactured from the Ti-6Al-4V bar. Similar to the disc samples, fatigue
test specimens were coated with hydroxyapatite coatings with two thicknesses of 10 and 50 pum.
The notched section was only coated where final fracture was expected to occur (Figure 1c).
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Figure 1. (a) Ti-6Al-4V disc sample coated with hydroxyapatite coatings; (b) fatigue test
specimen, dimensions in mm; and (c) notched section of the fatigue test specimen coated with
hydroxyapatite coatings.

2.2. Coating Characterisations

The coated disc samples were used to characterise surface properties of the coating. Scanning
electron microscopy, SEM, (FEI, Inspect F50, Hillsboro, OR, USA) and energy dispersive spectroscopy
(EDS) were used to examine the microstructure and chemical composition of the coating and Ti-6Al-4V
substrate. In addition, surface topography and roughness of the coating and titanium substrate were
characterised using a surface profilometer (WYKO NT9100, Veeco, Plainview, NY, USA) to determine
the average roughness parameters of the surface.

2.3. Wear Assessments

Wear resistance of the HA coated samples and uncoated titanium sample was examined using
a scratch tester mounted on an IBIS nano-indentation system (M /S Fisher-Cripps Laboratories Pvt.
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Limited, Killarney Heights, NSW, Australia). This technique was used to evaluate wear resistance of
the material by applying a certain normal force to the surface along with a displacement amplitude for
a number of passes. A 200 pm diamond sphero-cone tip was used with a normal force of 50 mN and
a displacement amplitude of 100 um (in both left and right directions) with a velocity of 5 pm/s over
the surface. The coefficient of friction and penetration depth were measured and recorded during the
test. The wear test was performed for 50 passes for each sample and the data were recorded in every
two passes.

2.4. Fatigue Tests

Fatigue tests were conducted to study the effect of HA coatings on the fatigue resistance of
Ti-6Al-4V alloy with a notch, as shown in Figure 1b. To accomplish this, a rotating fatigue testing
machine (G.U.N.T. Gerdtebau GmbH, Hamburg, Germany, model WP 140) was used to apply
completely reversed bending stresses (stress ratio of R = —1) with a frequency of 46.7 Hz (spindle
speed of 2800 rpm), as shown in Figure 2a. Using a calibrated spring balance together with a floating
bearing, the specimens were loaded to desired levels. Depending on the load level, bending stresses
applied to the top and bottom faces of the specimens were between 450 and 600 MPa. This range
of stress amplitudes was found to be reasonable to address both low cycle and high cycle fatigue
behaviours for the specimens. Fatigue life was considered as the complete separation of the specimens
(Figure 2c). For each type of specimen and stress amplitude, three fatigue tests were performed and
the average fatigue life was used in S-N curves.

(a)

Figure 2. (a) Fatigue testing machine, GUNT WP 140; (b) HA coated specimen under fatigue loading;
and (c) HA coated specimen after fatigue failure.

3. Results and Discussion

3.1. Coating Characteristics

SEM images of both the HA coated samples (with 10 and 50 um thicknesses) and the uncoated
titanium sample are shown in Figure 3. The image of both thicknesses demonstrate that the
hydroxyapatite coatings are deposited uniformly onto the titanium substrate surface. It is apparent



Materials 2016, 9, 111 50f 13

that in spite of some micro-voids, coatings are tightly adhered together. The mirror polished surface of
the uncoated Ti-6Al-4V can be seen in Figure 3c before applying the HA coatings.

(0)

Figure 3. SEM image of: (a) HA coated sample with thickness of 10 um; (b) HA coated sample with
thickness of 50 um; and (c) uncoated Ti-6Al-4V sample.

EDS results of the coating layer are given in Figure 4. It is noted that the EDS results were the
same for both thicknesses of the coating layer, as expected. The elemental analysis confirmed the
presence of calcium (55%), phosphorus (20%) and oxygen (25%), all in percentage weight (wt%), in
hydroxyapatite coatings used in this work.

cps/eV.
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Figure 4. EDS results of hydroxyapatite coatings used in this study.

The surface roughness parameters for uncoated, 10 um coated and 50 pm coated samples were
recorded in five different areas over the sample surface. The arithmetic average (R;), root mean
squared (Rq) and maximum vertical distance between the highest and lowest data points (R;;2x) were
determined, as given in Table 1. As can be seen, there is no considerable difference in the surface
roughness measures of the two coated samples indicating that the roughness of the 10 and 50 pm
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coated samples is very similar. This confirms that the surface roughness, as a component of the surface
texture, was independent of the coating thickness. However, the surface roughness of the uncoated
titanium sample was much smaller (R, = 15.49 nm against R, = 2.60-2.66 pm) which was obviously
because of the highly polished surface finish of the substrate. The 3D surface profile for one of the
five scanned areas of these samples is shown in Figure 5 where the similarity between the two coated
samples can be seen in terms of the surface profile.

Table 1. Surface roughness measures (Rq, Ry and Ryqx) of different areas for three batches of samples.

Tested Areas 10 pm Coated Sample (um) 50 pm Coated Sample (um)  Uncoated Sample (nm)

R, =246 Rq =2.60 R, =19.18

Areal Ry =3.15 Rq=3.19 Rq = 23.39
Rmax = 12.4 Runax = 13.00 Rmax = 10.10

R, =247 R, =314 R, =13.99

Area2 Rq=3.16 Rq =3.84 Rq =17.79
Rmax = 12.20 Runax = 13.00 Runax = 9.20

R, =2.90 R, =242 R, =16.82

Area3 Rq =3.68 Rq =3.04 Rq=22.15
Rmax = 14.30 Rinax = 11.62 Runax = 8.76

R, =221 R, =2.67 R, =13.11

Aread Rq =290 Rq =340 Rq = 16.61
Rmax = 13.50 Runax = 12.80 Runax = 8.72

R, =297 Ry =247 R, =1435

Area5 Rq =378 Rq =3.02 Rq=18.13
Rmax = 13.90 Runax = 11.00 Runax = 9.14

R, =2.60 R, =2.66 R, =15.49

Average Rq =333 Rq =3.30 Rq =19.61
Rmax = 13.26 Runax = 12.28 Runax = 9.18

®

Figure 5. 3D surface profile of: (a) HA coated sample with thickness of 10 pm; (b) HA coated sample

with thickness of 50 pm; and (c) uncoated Ti-6Al-4V sample.

- 150
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3.2. Wear Resistance Results

Friction behaviour of the three samples is shown in Figure 6a in the form of friction factor through
50 passes of the sliding test. It is apparent that the friction factor of the uncoated titanium sample
was considerably greater than that of the coated samples with both thicknesses at the beginning of
the test. The friction factor was approximately steady by around 18 passes after which, there was
an overall reduction in the friction factor of the uncoated sample. The trend remained constant again
from the 34th to the 50th pass of the test. Variations in friction factor were more uniform for both
the coated samples. At the start of the test, the friction factor for these two samples was around 0.20.
With an increase in the number of passes, the friction factor gradually decreased to 0.12. The interesting
point is that at the beginning of the test, the uncoated sample had a greater friction factor in comparison
with the coated samples. However, after 50 passes, the friction factor of the uncoated sample was
found to be smaller than the coated samples. Such behaviours indicate that friction factor varies with
the number of passes of the sliding test. Figure 6b shows the behaviour of the penetration depth
versus the number of passes from the wear experiments on the three samples. It can be seen from the
plots that the penetration depth for the uncoated sample was almost constant (0.74 um) during the
wear test; whereas, the penetration depth of the coated samples gradually increased during the test.
The penetration depth of the 10 um coating was greater than that of the 50 um coating. The maximum
penetration depths for the 10 and 50 um coated samples were 7.69 and 6.06 um, respectively. Given
the maximum penetration depths were still within the thickness range of both the coated samples (10
and 50 um), the friction factors in both the coated samples, as shown in Figure 6a, were found to be
similar during the wear experiments.

0.4

(a)

—&— Uncoated sample
—&— 10 pm coated sample
—&— 50 pm coated sample

=
w
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Friction factor
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[N}

<)
e

0.0 T T T
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(b)

—&— Uncoated sample
—&— 10 pm coated sample
—&8— 50 uym coated sample

Penetration depth (um)

0 T T T T T T
0 10 20 30 40 50 60
Number of passes

Figure 6. Wear test results of: (a) friction factor versus number of passes; (b) depth of penetration versus
number of passes for three batches of samples.
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3.3. Fatigue Test Results

Figure 7 presents the S-N curves of the three batches of tested specimens. In general, HA coatings
were found to improve the fatigue resistance of Ti-6Al-4V alloy, especially at high cycle fatigue
zone. It can be seen that under stress amplitudes between 520 and 590 MPa, 10 pm coated specimen
experienced the highest number of cycles before failure. For instance, under 590 MPa, the 10 and 50 pm
coated samples failed after 139,000 and 96,000 cycles, respectively. However, the uncoated specimen
had 58,000 cycles. At 6 million cycles, two red points are marked on the curves for the uncoated and
coated specimens. These two points were considered as the fatigue limit that were 468 and 511 MPa
for the uncoated and both coated specimens, respectively.
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Figure 7. S-N curves of uncoated Ti-6Al-4V, 10 pm HA coated and 50 pm HA coated specimens, R = —1.

Fatigue fracture surfaces of 10 and 50 um coated specimens and uncoated specimen were
investigated using SEM to evaluate fatigue crack initiations and propagations along with their fatigue
zone over the fracture surface. Furthermore, it was important to evaluate the coating adherence to the
substrate after fatigue failure. SEM images of three specimens including uncoated titanium specimen,
10 um HA coated and 50 um HA coated specimens failed at stress amplitude of 570 MPa are shown in
Figures 8-10 respectively. The figures present a low magnification image of the whole fracture surface
in which fatigue zones are indicated. There are also higher magnification images showing fatigue
crack initiation sites and crack propagations towards the specimen centre. Due to the presence of the
notch, and as a consequence, the stress concentration all around the specimen circumference, cracks
initiated from the edge of the notch, as expected. The interesting finding was that both the 10 and
50 pm coated specimens demonstrated the presence of the coating layer at the edge of the fracture
surface which confirms a good adherence between the HA coating and substrate under cyclic loading
(Figures 9b and 10b).

An investigation of the SEM images also showed that the fatigue zone of the uncoated titanium
specimen was generally smaller in comparison with the coated specimens. It can be concluded that
the uncoated specimen had less number of cycles for the crack propagation stage and thus smaller
fatigue zones were formed over the fracture surface. In other words, under the same stress amplitude,
coated specimens tolerated more cycles for the crack propagation stage resulting in an improvement
in the fatigue life, as can be seen also in the S-N curves of Figure 7. Moreover, the fatigue experiments
showed no significant differences between the 10 and 50 pm coated specimens. The SEM images of
these coated specimens showed similar fatigue fracture features mainly in terms of the presence of
multiple crack initiations and amount of area that is influenced by crack propagations. This together
with the fact that all the crack initiations occurred at the interface of the titanium substrate and the
coating layer could explain the similar fatigue behaviour of both the 10 and 50 um coated specimens.
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Final fracture zone in all the three specimens showed ductile fracture features. Figure 11 demonstrates
the final fracture zone of the 10 pm coated specimen in which dimples can be seen over the surface.

Figure 8. SEM images of fatigue fracture surface of uncoated Ti-6Al-4V specimen failed under stress
amplitude of 570 MPa and R = —1: (a) fracture surface showing fatigue zones; (b) fatigue crack initiation
site A; (c) fatigue crack initiation site B; and (d) higher magnification image of a deep crack in area C.

A

Substrate

Figure 9. Cont.
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Figure 9. SEM images of fatigue fracture surface of 10 pm HA coated specimen failed under stress
amplitude of 570 MPa and R = —1: (a) fracture surface showing fatigue zone; (b) fatigue crack initiation
site A; (c) higher magnification image of fatigue crack initiation point C; and (d) higher magnification
image of fatigue crack initiation site B.

Substrate

Figure 10. SEM images of fatigue fracture surface of 50 um HA coated specimen failed under stress
amplitude of 570 MPa and R = —1: (a) fracture surface showing fatigue zones; (b) fatigue crack initiation

site A; (c) fatigue crack initiation site B; and (d) higher magnification image of fatigue crack initiation
point C.



Materials 2016, 9, 111 11 of 13

Figure 11. SEM image of the final fracture zone, taken from the 10 um HA coated specimen.

4. Conclusions

Surface properties of Ti-6Al-4V substrate coated with hydroxyapatite coatings were characterised.
SEM images of the coated samples demonstrated that HA coatings were uniformly deposited onto the
substrate surface. The surface roughness measures (R;, Rg and Ryax) for coated samples with 10 and
50 um thicknesses were found to be similar. However, roughness parameters were much smaller in
the mirror-polished uncoated titanium sample. The friction factor of both the coated samples was also
similar decreasing from 0.20 to 0.12 after 50 cycles of the sliding test. This similarity was because the
maximum penetration depths of the wear experiments were well within the thickness ranges of the
coating. Although at the start of the test the friction factor of the uncoated sample was greater than the
coated samples, after 50 cycles, the friction factor became less than that of the coated samples. Fatigue
resistance of a notched specimen of Ti-6Al-4V coated with hydroxyapatite coatings was also studied.
S-N curves of the coated and uncoated specimens were presented. It was found that HA coatings could
improve fatigue life of the titanium notched specimen in both low and high cyclic fatigue zones. SEM
images of the fracture surface showed smaller fatigue zones in the uncoated specimen in comparison
with the coated ones. The coating layer was found to remain adhered to the substrate under fatigue
loading. Moreover, the fatigue behaviour of both the 10 and 50 pm coated specimens was found to
be similar. This was justified based on the similarity between the fatigue fracture features that was
observed in both the coated specimens.
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