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Abstract: Biological creatures with unique surface wettability have long served as a source of
inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting
properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable
attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog
windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In
particular, the engineering of surface wettability by manipulating chemical properties and structure
opens emerging biomedical applications ranging from high-throughput cell culture platforms to
biomedical devices. This review describes design and fabrication methods for artificial extreme
wetting surfaces. Next, we introduce some of the newer and emerging biomedical applications
using extreme wetting surfaces. Current challenges and future prospects of the surfaces for potential
biomedical applications are also addressed.

Keywords: superhydrophobicity; extreme wetting surface; bio-inspired surface; bio-mimicking;
surface engineering; biomedical engineering

1. Introduction

Living species have modified their organs to adapt to their habitat, producing diverse natural
extreme wetting surfaces. These surfaces have received tremendous attention in multiple disciplines
because of their numerous potential applications [1-9]. Based on the developments of nanotechnology,
various surface functions such as the self-cleaning ability of lotus leaves [10], anisotropic wetting
of rice leaves [11], water-collection behavior of desert beetles [12], and liquid repellency of pitcher
plants [13] have been mimicked by engineering surface topology and chemistry. Recently, bio-inspired
surfaces with extreme wettability have been extensively used in biomedical applications because
their unique wetting property provides engineered cellular microenvironments and cell-substrate
interactions, which cannot be achieved using conventional cell and tissue culture platforms [14-19].
Despite this high interest of the utilization of extreme wetting surfaces in biomedical applications,
only a few reports have been published to understand their prospective roles and applications in the
biomedical field [20,21].

In this review, we present natural extreme wetting surfaces and their emerging applications
in the biomedical field (Figure 1). Section 2 introduces the design and fabrication of these surfaces
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inspired by the superhydrophobic water repellence of the lotus leaf, water adhesion of the rose petal,
anisotropic wettability of the rice leaf and butterfly wing, patterned wettability of the desert beetle,
and liquid slippery surfaces of the pitcher plant. Section 3 highlights emerging applications of extreme
wetting surfaces to biomedical engineering, such as cell patterning for cellular interaction studies,
functional cell spheroid cultures, biomedical devices, open-channel droplet-based lab-on-chips, and
high-throughput cell assays. In addition to concluding remarks, this review discusses challenges and
future prospects for the biomedical application of these surfaces.

Diverse extreme wetting surfaces in nature Biomolecular ~ Functional
sensing cell culture

Lotus leaf Rice leaf Namib beetle Pitcher plant

Biomedical "
} device Lab-on-a-chip
pre— W o
Self Directional Water Slippery -
cleaning wetting collection surface
Micro/nano-structure & surface chemistry Biomedical applications

Figure 1. Various natural extreme wetting surfaces and their potential biomedical applications. Lotus
leaf (image by Tanakawho, reproduced under Creative Commons Attribution (CC BY) license); Namib
beetle (image by James Anderson, reproduced under Creative Commons Attribution Non-commercial
Share-alike (CC BY-NC-SA) license); Pitcher plant (image by Bauer, reproduced under CC BY);
Biomedical device (image from the School of Natural Resources & Environment, University of
Michigan, reproduced under CC BY license); Lab-on-a-chip (image from Argonne National Laboratory,
reproduced under CC BY-NC-5SA license); and others (public domain photo and images).

2. Design and Fabrication of Bio-Inspired Extreme Wetting Surfaces

The unique surface wettability of certain living organisms has prompted scientists and engineers
to design surfaces that mimic natural properties. Various artificial superhydrophobic surfaces have
been fabricated as a result of advances in nanotechnology. Their functions, such as liquid repellence
and anisotropic wettability, are achieved through an elaborate engineering of micro/nanostructures
and surface energy. In this section, natural species exhibiting special wetting properties are introduced
along with fabrication strategies for mimicking their functions.

2.1. Non-Wettable Superhydrophobic Surfaces

For the last decade, superhydrophobic surfaces showing a water contact angle (CA) exceeding
150° have received considerable interest because of their potential applications such as self-cleaning
fabrics [6,22,23], no-loss droplet manipulation [24], and anti-corrosive coatings [8,25-28]. The
researchers identified that non-wetting behavior of water droplets on superhydrophobic surfaces
is governed by combination of surface chemistry and topology. In particular, superhydrophobicity
could be achieved on nanostructured surfaces presenting a low surface energy. In general, these
surfaces are described by Wenzel [29] and Cassie-Baxter models [30].

On an ideal flat solid surface (Figure 2a), a droplet forms a static CA (f) with the surface. This CA
is related to the surface energies of solid/gas (ysg), solid/liquid (v), and liquid/gas interfaces (yig) in
Young’s equation [31]:

Ysg = Ysl + Yig X cosf (1)

In case of a rough solid surface, effective values of vsg, Y51, and )5 should be considered because
the actual contact area between the droplet and rough surface differs from the flat surface area. In
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the Wenzel model, it is assumed that the entire rough surface is in contact with the water droplet
(Figure 2b). Here, water CA in Wenzel state (fy*) can be determined using

cos@iv = R x cosf 2)

where the surface roughness factor (R) corresponds to the ratio between the actual and projected
surface areas. In this model, the water droplet is pinned onto superhydrophobic surfaces because of its
large contact area with the surface. In the Cassie-Baxter model, it contacts the top-most layer of the
rough surface, giving rise to air pockets at the liquid-solid interface (Figure 2c). Consequently, Young’s
equation is expressed as

cosf, = —1 + f(cosf + 1) (©)]

where 6.* is the Cassie-Baxter CA; and f is the ratio between the actual droplet contact area and the
total surface area. This minimized liquid-surface contact area results in superhydrophobic surfaces
exhibiting self-cleaning and water-repellent characteristics.
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Figure 2. Schematic representations of a water droplet on flat and rough solid surfaces. (a) A droplet on
an ideal flat surface; (b) A droplet in the Wenzel state, in which the rough surface is fully wetted; (c) A
droplet in the Cassie-Baxter state, in which air pockets form at the interface between the non-wetted
rough surface and droplet.

Lotus leaves epitomize water-repellent superhydrophobic surfaces in nature (Figure 3a). In 1997,
Barthlott and Neinhuis revealed for the first time that the lotus leaf has micro/nano hierarchical
structures comprised of randomly oriented papillose epidermal cells covered with hydrophobic
epicuticular wax (Figure 3b) [10,32]. They also observed that air can be trapped under a floating water
droplet, consistent with the Cassie-Baxter equation. These findings suggested that lotus leaf-like highly
water-repellent superhydrophobic surfaces can be fabricated using micro/nano hierarchical structures
coated with low-surface-energy materials. Inspired by the lotus leaves, various methods such as
wet chemical etching [33-38], electrochemical reaction [39-41], lithography [42—44], electrodynamics [45-47],
sol-gel methods [48-52], layer-by-layer deposition [53-55], and plasma treatment [56-59] have
been developed to produce these surfaces. Jiang et al. reported an electrohydrodynamics
technique as a versatile and effective method to fabricate polystyrene (PS) composite film combining
porous microspheres and inter-woven nanofibers [60]. The fabricated PS composite film showed
superhydrophobicity owing to the increased surface roughness attributed to porous microspheres and
inter-woven nanofibers. Li et al. developed hierarchical structures comprising periodically ordered PS
colloidal crystals decorated with carbon nanotubes (CNTs) using a wet chemical self-assembly coating
method (Figure 3c) [61]. The resulting surfaces exhibited superhydrophobicity with a low sliding angle
(SA) after surface modification with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFDTS). Recently,
Zhang et al. fabricated hierarchical micro/nanostructure regular array comprising microprotrusion
structured Cu covered by nanostructured Ag dendrites via electrochemical reactions combined with
photolithography. These fabricated surfaces showed self-cleaning properties across a wide pH range
after PFDTS modification (Figure 3d) [62].



Materials 2016, 9, 116 4 of 26

Figure 3. (a) Image of a lotus leaf (image by GJ Bulte, reproduced under Creative Commons
Attribution Share-alike (CC BY-SA) license); (b) the corresponding scanning electron microscopy
(SEM) image showing the hierarchical micro/nanostructures comprising papillose cells; (c) SEM image
of a microsphere/single-walled carbon nanotube (CNT) composite array; (d) SEM image of a tetragonal
array comprising Cu microprotrusions covered by nanostructured Ag dendrites; (e) Photograph of
rose petals exhibiting water-adhesive properties; and (f) SEM image of rose petal surface (image by
Audrey, reproduced under CC BY license); (g) SEM image of a rose petal-like polystyrene (PS)-film,
onto which a water droplet was pinned even when turned upside down; (h) SEM image of Si nanowire
arrays; Inset: water droplet deposited on the array after rapid thermal annealing (RTA) at tilt angle of
180°. Reproduced from [32,34,61-64] with the permission by Springer, Copyright 1997 and by ACS
Publications, Copyright 2007, 2008, 2013 and by Elsevier, Copyright 2013.

In nature, species that have water pinning characteristics with superhydrophobicity have also
been observed. For instance, a rose petal shows a high water CA with water-adhesive property. A
droplet on rose petal does not roll off even when the surface is tilted vertically or turned upside
down (Figure 3e). A periodic array of micropapillae and nanoscale cuticular folds on top of each
micropapillae were observed on the surface of the rose petal (Figure 3f) [63,65]. This relatively large
periodic array exerts a capillary force that facilitates water droplet penetration into micropillae grooves,
explaining the water adhesive property. To mimic the liquid adhesion function of the rose petal,
Feng et al. replicated the rose petal’s micro/nanostructures using the solvent-evaporation-driven
nanoimprint pattern transfer process [63]. In the duplication process, a poly(vinyl alcohol) (PVA)
film was negatively replicated to provide a second template. The PS film obtained from this negative
replica exhibited water-adhesive superhydrophobicity with a large water CA (Figure 3g). Lai et al.
reported nanostructured superhydrophobic TiO; films with tunable surface adhesions by changing
the diameter and length of nanotubes through a simple electrochemical method [65]. Water-adhesive
force of the superhydrophobic porous nanostructures was engineered by utilizing surface roughness
and capillary force. Recently, Seo et al. presented vertically-aligned silicon nanowire (Si NW) surfaces,
whose wettability could be controlled from superhydrophilic to superhydrophobic upon rapid thermal
annealing (RTA) at 1000 °C under ambient oxygen (Figure 3h) [34]. After the RTA cycle, the surfaces
showed a significant water CA change from 0 to 154° and high water-adhesive properties. This drastic
transformation was mainly attributed to the surface chemistry change of hydrophilic silanol groups
(-5i-O-H) into hydrophobic siloxane groups (-5i-O-Si-).

Apart from the superhydrophobicity of lotus leaves and rose petals, anisotropic wettability of
natural species, which is exemplified by rice leaves and butterfly wings, has been studied. Similar to
the lotus leaf, a rice leaf presents hierarchical structures covered with waxy nanobumps (Figure 4a(i));
however, a quasi-one-dimensional arrangement of the micropapillae leads to the anisotropic wettability
(Figure 4a(ii)) [11]. This directional arrangement provides different energy barriers for wetting
depending on the orientation, allowing a droplet to easily roll off perpendicular to the rice leaf
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edge (Figure 4a(iii)). To fabricate artificial superhydrophobic surfaces exhibiting anisotropic wetting
property, several methods have been developed [11,68-74]. Wu et al. fabricated directionally aligned
poly(vinyl butyral) nanofiber arrays by electrospinning [70]. In the electrospinning process, nanofibers
are deposited between two parallel copper strips to generate uniaxially aligned arrays over large areas.
A water droplet showed anisotropic wetting behavior on the aligned fiber arrays, similar to a rice
leaf. By utilizing the fiber collector patterns, directional wetting behavior can be engineered. Recently,
Kang et al. developed three types of anisotropic microgroove arrays presenting various shapes such
as those of prism, rectangle, and overhang structures using UV-assisted micromolding process and
subsequent surface modification with octafluorocyclobutane [75]. On the various microgrooves with
different entry shapes, wetting behaviors on the surface such as static CAs and SAs were changed. In
particular, overhang line arrays exhibited the highest liquid repellency and anisotropic wetting. The
grooves guided water droplets as well as mineral oil droplets because of the extremely low surface
energy of octafluorocyclobutane (~13 mJ/m?) and the overhang structure.
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Figure 4. (a) Bidirectional anisotropic wetting of a rice leaf (Oryza sativa): (i) Photograph and SEM
images of the rice leaf; (ii) Optical profiler height map of the rice leaf; (iii) Bidirectional anisotropic
wetting behavior; (b) Unidirectional wetting behavior of a butterfly wing (Blue Morpho didius):
(i) Photograph and SEM images of the Blue Morpho didius butterfly wing; (ii) optical profiler height
map of the butterfly wing; and (iii) unidirectional anisotropic wetting behavior; (c) Droplet motion on
poly(p-xylylene) film of tilted nanorods; and (d) corresponding time-lapse frames of droplet motion.
Reproduced from [66,67] with the permission by Royal Society of Chemistry, Copyright 2012 and by
Nature Publishing Group, Copyright 2010.

In addition to anisotropic wetting, certain natural surfaces with unidirectional wetting have
been observed in nature. The wings of the butterfly Morpho show unidirectional wetting properties
because their surface presents shingle-like micro/nanostructures associated with aligned microgrooves
(Figure 4b(i)) [66,76] These ratchet-like micro/nanostructures, which are periodically overlapped
outward with respect to the wing (Figure 4b(ii)), allow a droplet to easily roll off the wing
while being tightly pinned in the opposite direction (Figure 4b(iii)). To mimic the unidirectional
wetting behavior of the butterfly wing, several anisotropic surfaces have been engineered. Recently,
Malvadkar et al. investigated unidirectional wetting behavior on tilted nanofilm with poly(p-xylylene)
(PPX) nanorod array [67]. The tilted PPX nanorods were fabricated by oblique angle polymerization,
during which the vapor flux was directed at a controlled shallow angle to achieve shadowing
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and selective polymer growth. The resulting PPX nanorod film exhibited larger water CAs and
unidirectional wettability. When the surface was oriented vertically with nanorods pointing upward,
water droplets adhered to the surface. In contrast, these droplets rolled off the surface in the opposite
direction. The unidirectional droplet movement was demonstrated by applying low-amplitude
vibrations to half-pipe structures coated with the PPX film (Figure 4c). When random vibrations were
applied to droplet located half-pipes, a unidirectional motion of the droplet was observed in the PPX
nanofilm-coated half-pipe, but vibrated randomly on the uncoated half-pipe (Figure 4d).

2.2. Patterned Wettabiltiy for Water Collection

Biological organisms that live in extreme environments have adapted to survive under their
environments. In particular, desert plants and animals exhibit specific features to get and conserve
moisture in arid environments. Specifically, Stenocara beetles in the Namib Desert gather and condense
water from fog on their bumpy back. This water-collation process relies on their hydrophilic and
hydrophobic patterns existing on the back surface [12]. The wings of Stenocara are covered by a random
array of hydrophilic smooth peaks and hydrophobic wax-coated rough troughs (Figure 5a(i)). Fog
water settles on the hydrophilic peaks and condenses until they are entirely immersed. At a critical
size, the droplet rolls down along the hydrophobic troughs (Figure 5a(ii)).
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Figure 5. (a) Water-capturing surfaces of fused Stenocara beetle overwings: (i) Photograph

Water droplet

Water guiding

and SEM images of wax-stained (colored) and unstained beetle wing regions (wax-free; black);
(ii) Time-dependent growth of water droplets in a fog-laden wind; (b) Hydrophilic-patterned
superhydrophobic Si nanowire (NW) arrays for water droplet guiding: (i) Fabrication of tilted Si
NW arrays featuring a water guiding track; (ii) Sequential photographs of a water droplet guided
along the hydrophilic track. Reproduced from [12,77] with permission by Nature Publishing Group,
Copyright 2010 and by ACS Publications, Copyright 2011.

Inspired by the hydrophilic patterned beetles’ backs, many wettability-patterned surfaces have
been produced on various inorganic and organic materials such as metals, oxides, and polymers [78-89].
Recently, Seo et al. demonstrated hydrophilic-patterned superhydrophobic Si NW arrays to guide
water droplets [77]. Superhydrophobic Si NW arrays were fabricated by metal-assisted electroless
etching and self-assembled monolayer coating while hydrophilic guiding patterns were subsequently
defined under UV illumination using shadow masks (Figure 5b(i)). Time-lapse photographs showed
that a water droplet moved along the pre-defined hydrophilic tracks because of high wettability
contrasts with surrounding superhydrophobic Si NW arrays (Figure 5b(ii)). Kang et al. presented a
mask-free, solution-based chemical method based on adhesion mechanisms found in mussel adhesive
proteins [82]. An artificial superhydrophobic porous oxide membrane surface was covered by
patterned polydimethylsiloxane (PDMS) mold to partially coat mussel-inspired polydopamine (pDA).
Because of its hydrophilicity, the patterned area became water adhesive and the surface could collect
and guide water droplets on the pDA pattern. Similarly, Li et al. developed a superhydrophobic
surface with printed superhydrophilic patterns [88]. A porous superhydrophobic surface was printed
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with phospholipid ink solution. The large difference in wettability between printed spots and a
superhydrophobic surface, resulted in the selective wetting of the spot area by aqueous solutions. This
printing technique offers a facile and simple approach to creating superhydrophilic patterns because
of its compatibility with well-established microfabrication techniques, such as microcontact printing,
inkjet printing, and dip-pen nanolithography.

2.3. Liquid Slippery Surfaces

Most insects exhibit two functional features to attach to various surfaces. Claws facilitate clinging
to rough surfaces, whereas adhesive pads promote sticking to smooth surfaces [90]. The tropical
carnivorous pitcher plants Nepenthes benefits from a specialized trapping organ that impedes insect
attachment. This organ mainly relies on the unique anisotropic and slippery characteristics of the
peristome-pitcher rim (Figure 6a) [13,91,92]. The epidermal cells on the peristome have stacked
microstructures toward the inside of the pitcher, covered with hydrophobic wax. In addition, the
hydrophilic peristome surface promotes fluid film formation by secreted nectar and rain water. These
physicochemical properties prevent claws from interlocking and adhesive pads from attaching to
the peristome.
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Figure 6. (a) Image of the Nepenthes pitcher plant (image by William Warby, reproduced under CC BY)
and SEM images of the peristome surface and inner wall. The surface presents radial ridges, while
the inner wall is covered with waxy crystals; (b) (i) Slippery film fabrication; (ii) Optical micrographs
of a sliding hexane drop at a low angle; (c) Porous matrix formation on an elastic PDMS film and
photographs of dry and lubricated substrates; (d) (i) Mechanically induced topographical changes in a
liquid slippery film upon stretching and (ii) corresponding droplet motions; (e) Sequential photographs
of oil droplet movement on the dynamic slippery surface. Reproduced from [13,93,94] with permission
by National Academy of Sciences of the USA, Copyright 2004 and by Nature Publishing Group,
Copyright 2011, 2013.

Inspired by the exceptional repellent ability of the Nepenthes pitcher plant, Wong et al.
fabricated slippery surfaces by infiltrating liquid lubricants into nanostructured porous solids with
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a low surface energy (Figure 6b(i)) [93]. These slippery films were obtained using non-volatile
perfluorinated lubricants immiscible with water- and oil-based solutions. Compared with non-infused,
superhydrophobic surfaces, these films exhibited enhanced liquid repellent properties, showing
negligible CA hysteresis and low SAs (Figure 6b(ii)); furthermore, these films had multiple
functionalities such as instantaneous and repeatable self-healing, pressure stability, and optical
transparency. They have been implemented in several applications such as marine anti-biofouling
coatings [95], anti-icing [96], and anti-bacterials [97].

In addition to the aforementioned applications of slippery surfaces, mechanical stimulus-responsive
slippery surfaces have been developed. Yao et al. fabricated a droplet adhesion controllable slippery
surface on an elastic PDMS membrane (Figure 6¢) [94]. The dynamic liquid interface reversibly
switched between relaxed and stretched states (Figure 6d). In the relaxed state, the flat and smooth
liquid interface promoted droplet sliding. In contrast, stretching exposed a rough surface that pinned
the droplet (Figure 6e). In this stretched state, even a newly formed oil drop was immobilized while
an existing one stayed at its deposition location. Both drops began to slide as soon as the stress was
released. They also investigated the effect of different deformation mechanisms such as bending,
poking, reversible swelling-drying, and self-healing.

b

Trans/Rolling Cis/Pinned
=677 % (5A290)

1.29)
! 365nm/6s

Trans ©_ M O

Low water adhesive

530nm(A)/30s|

Superhydrophobic adhesion | ®
=

Micro-arrayed
azo-LCP film

I

High water adhesive
N=N

Soe

Sliding angle / Deg.

Pd-coated Si

NW cluster

M- mmm

(i) g,=159+ 1.33° 6.= 155 + 2.17°

o O

Figure 7. (a) Switchable adhesion under UV and visible light irradiation; (b) Reversible adhesion
of superhydrophobic azobenzene liquid crystal polymer (LCP) film; (c) (i) Volume expansion of Pd
layers deposited on the Si NW arrays under atmospheric and H, ambient conditions; (ii) Contact
angles (CAs) of the Pd-coated Si NW arrays showing superhydrophobicity under atmospheric and Hj
conditions; (d) Time-lapse photographs of a moving water droplet on Pd-coated Si NW arrays under
atmospheric and H; conditions. Reproduced from [98,99] with the permission by Royal Society of
Chemistry, Copyright 2012 and by John Wiley and Sons, Copyright 2013.

2.4. Wettability Switchable Superhydrophobic Surfaces

The reversible switching of superhydrophobic adhesion properties is greatly desired for
no-loss transportation and biochemical detection requiring minimal liquid-substrate interaction is
required. Stimuli-responsive materials offer new strategies to achieve this behavior on the same
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substrate [3,24,100-109]. Li et al. first reported the switching of superhydrophobic adhesion properties
on a rough surface coated with a thermally responsive side-chain liquid crystal polymer (LCP) [102].
When the temperature surpassed a phase transition point, a water droplet was pinned onto the
polymer-coated surface because polymer chains underwent a rearrangement from a hydrophobic to
hydrophilic configuration. The reversibility of this adhesion was observed when the substrate was
cooled down to room temperature. Moreover, temperature, pH, and electrolyte responsive polymers
have been incorporated in rough surfaces to perform multi-responsive adhesion switching [103].
Photo-responsive materials have also been implemented to achieve adhesion switching surfaces.
Wang et al. reported that superhydrophobic TiO, nanotube films exhibited switchable water adhesion
under UV irradiation and heat treatment [110]. These films were selectively illuminated through a
mask to produce uniformly distributed hydrophilic regions in the superhydrophobic regions. These
well-separated illuminated regions enhanced water adhesion, while preserving superhydrophobicity.
Iluminated regions recovered their wettability through simple annealing processes (80-180 °C).

However, this strategy is unsuitable for practical applications because a temperature increase
may dramatically accelerate the evaporation of water droplets. Unlike their temperature-responsive
counterparts, photo-responsive materials benefit from localized stimulation and low thermal effect.
Li et al. fabricated a photo-responsive rough surface using an azobenzene LCP showing a distinct
polarity change between trans and cis isomers according to the irradiation wavelength [98]. Upon
UV irradiation (365 nm, 6 s), azobenzene mesogens at the surface of fabricated azobenzene LCP
film adopted a cis state and the concomitant polarity change enhanced the surface water adhesion.
Upon visible light irradiation (530 nm, 30 s), azobenzene mesogens returned to their trans state and
the surface retrieved its low water adhesion (Figure 7a). Consequently, the surface wettability was
reversibly switched from rolling to the pinned state by alternating UV and visible light irradiations
(Figure 7Db).

Because of their chemical nature, the above-mentioned strategies to control the superhydrophobic
surface adhesion properties present several limitations regarding biological applications. For example,
enzymes, biological cells, and chemicals would be affected by UV irradiation. As an alternative
approach for tuning an adhesion force of a superhydrophobic surface, Wu ef al. demonstrated that
a superhydrophobic periodic PDMS micropillar array can be tuned by varying its curvature [24].
A water droplet adopted a pinned state on a flat PDMS pillar-array film with high adhesion force.
Also, the adhesion gradually decreased with increasing surface curvature. When the curvature
increased further, the droplet was detached from the array film. This phenomenon enabled in situ
water droplet transportation without any loss. Recently, a new strategy using gas-responsive materials
was developed to overcome the limitations of chemical techniques. A new strategy was also reported
using gas-responsive materials to overcome limitations of the aforementioned techniques. Seo ef al.
demonstrated fast gas-driven adhesion switching of water droplets on a superhydrophobic Si NW
array coated with a palladium (Pd) layer [99]. The quick adhesion switching of the Pd-coated Si NW
arrays was achieved by a morphological phase transition of the coated Pd layer. Under H, atmosphere,
H atoms arising from H; decomposition were incorporated into the as-deposited Pd layer, causing
its volume to expand (Figure 7c(i)). When the ambient conditions switched from H; to atmosphere,
the expanded Pd layer instantly contracted to its initial volume. These Pd-coated Si NW arrays
exhibited superhydrophobicity under air and H; atmospheres (Figure 7c(ii)); however, they presented
low and high adhesion properties under air and H;, atmospheres, respectively (Figure 7d). Droplet
rolling off and pinning were also achieved repeatedly by alternating between these atmospheric and
H, conditions.

Section 2 summarized the design and fabrication of bio-inspired superhydrophobic surfaces with
special wetting properties. Surface micro/nanostructures and energies provided elaborate control
over wetting behaviors and liquid adhesion. These unique wetting properties of bio-inspired surfaces
have the potential to be utilized in various biomedical applications, which cannot be achieved via
conventional methods using flat petri dishes or cell culture flasks.
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3. Biomedical Applications of Bio-Inspired Extreme Wetting Surfaces

Bio-inspired surfaces with extreme wetting properties can be directly applied to various
biomedical applications, such as functional cell and tissue culture and analysis, biomedical devices,
and lab-on-a-chip devices. This section reviews the recent developments in biomedical platforms using
bio-inspired surfaces.

3.1. Cell Patterning for Cellular Interaction Studies

Protein adsorption and cell adhesion strongly depend on surface topology and chemistry. Cell
interactions with superhydrophilic and superhydrophobic surfaces fabricated by patterning have been
extensively investigated [15,16,111-119]. Piret et al. observed that Chinese Hamster Ovary K1 cells
adhered selectively to micropatterned superhydrophilic regions while cell adhesion was suppressed
on a superhydrophobic surface [16]. Similarly, Ishizaki et al. showed that surface physicochemical
properties (e.g., roughness and wettability) affect cell adhesion and cell-cell interactions [14]. In
particular, Mouse 3T3 fibroblast cells immediately adhered to the superhydrophilic regions after
seeding, whereas the cells barely adhered to the superhydrophobic surfaces. This difference in
cell attachment was attributed to the preference of protein absorption on superhydrophilic regions.
Cultured cells selectively changed their shapes and adhesive directions depending on the distances
between superhydrophilic regions. Moreover, cell-cell direct communication occurred between cells in
neighboring spots below a patterned cell distance of 250 um.
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Figure 8. (a) (i) Three-dimensional (3D) hydrogel array on hydrophilic patterned spots; (ii) The images
before and after 24 h of immersion in culture medium of alginate based 3D hydrogels; (b) Fluorescent
microscopy images of live (green)/dead (red) cells in the 24 different hydrogels after 24 h of cell culture.
Reproduced from [120] with permission by Royal Society of Chemistry, Copyright 2012.

The cultivation of multiple cell types in separated but adjacent compartments has proven crucial
for mimicking and evaluating various biological processes, such as intercellular communication and
cell signaling with respect to tissue and organism development. Efremov et al. introduced multiple cell
types patterning on a hydrophilic porous polymer substrate bearing a patterned, superhydrophobic
border [115]. These superhydrophobic border patterned hydrophilic substrates were created in two
steps: First, a hydrophilic nanoporous polymer layer was formed by a UV polymerization reaction.
Then, a hydrophobic photographing material was subsequently placed on top of the hydrophilic
polymer layer. This impregnated layer was UV irradiated again using a photomask to produce the
superhydrophobic borders. The resulting surface was used to investigate cell migration and signaling
by pre-patterned cell co-cultivation in a mutual culture medium. The migration of MLTy-mCherry and
HeLa-GFP cell lines across the thin superhydrophobic border was monitored for different geometries
during three days of co-culture. The thin border prevented cell migration and can be used to precisely
cultivate multiple cell types without intermingling. In parallel, the cell signaling mechanism was also
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investigated using Wnt proteins—a major signaling protein class emitted by organizing boundary
zones. Specifically, they cultured Wnt ligand expressing zebrafish fibroblast Pac-2 cells adjacent to but
without direct cell contact of cells between each pattern. The proteins propagated independently in the
extracellular space of a tissue without direct cell-cell contact.

Cell-cell and cell-biomaterial interactions have been widely investigated on flat 2D surfaces;
however, studies in a 3D environment are more valuable because they mimic in vivo cell
microenvironments better [121-125]. Salgado et al. investigated 3D interactions between cells and
polymeric materials on hydrophilic patterned superhydrophobic substrates [120]. A superhydrophobic
PS substrate was subjected to UV /ozone irradiation using a square-patterned photomask. Contrasting
wettabilities enabled the deposition of various 3D hydrogel volumes on the hydrophilic patterns
(Figure 8a(i)). 3D cell-hydrogel interactions were investigated for 1929 fibroblast and MC3T3-E1
pre-osteoblast cell lines. A total of 24 different hydrogels were prepared by mixing alginate (Alg)
with different ratios of chitosan (Chi), collagen (Coll), hyaluronic acid (HA), and gelatin (G). 5 puL of
polymer/ crosslinking solutions mixed with cells were deposited on the substrate and incubated for 24 h
to analyze the cytocompatibility of 24 different hydrogel compositions (Figure 8a(ii)). After 24 h of cell
culture, all the materials were analyzed in terms of cell viability, cell quantification, and cell metabolic
activity assessment. Figure 8b shows fluorescent microscopy images of live (green) /dead (red) cells in
the hydrogels after 24 h of culture. The number of dead cells was relatively low in an HA /G mixture
containing 40% Alg, but high in the Coll mixture containing 40% Alg. They revealed that high and low
viability of L929 fibroblast cells could be seen in 70% Alg content hydrogels containing Coll and HA,
and hydrogels containing Chi, respectively. L929 cells exhibited high viability in Coll and HA-type
hydrogels containing 70% Alg but poor compatibility with Chi-based hydrogels. In addition, the
presence of Coll improved pre-osteoblast MC3T3-E1 cell viability because these fibers constitute the
most abundant protein structure in pre-bone (osteoid) and bone native tissue.

3.2. Functional Cell Spheroid Culture

3D cell culture environments facilitate a more effective study of cell-cell and cell-extracellular
matrix (ECM) interactions. In particular, 3D cell spheroids provide more in vivo like microenvironments
to the cells [126,127]. They have also attracted considerable attention because of their enhanced
therapeutic functions compared with cells cultured on 2D substrates. Conventional dish culture,
spinner flask culture, and hanging drop technique have been typically used to form 3D cell
spheroids [128-131]. Among the methods, hanging drop culture benefits from cell size controllability
and viability [132-134] and can be coupled with a hydrophilic patterned superhydrophobic
surface acting as a culture platform. Lee et al. fabricated a wettability-patterned surface
using a mussel-inspired adhesive polymer pDA by photolithography on a fluorosilane-coated
superhydrophobic substrate [135]. Human mesenchymal stem cells (MSCs) and rat islet cells (ICs)
were cultured on the pDA-patterned surface by the hanging drop method. 3D MSC-spheroids were
successfully obtained on the surface and their vascular endothelial growth factor (VEGF) secretion
increased to levels approximately 300% higher than the concentrations achieved by spinner flask
culture. In addition, IC-spheroids exhibited approximately 200% sensitivity enhancement upon
glucose stimulation. Spheroid cell size uniformity, viability, and functionality improved compared
to cells cultivated by the hanging drop technique in conventional petri dishes. These results indicate
that a spherical shape of the droplets improved cellular metabolic activity by enhancing cell-cell and
cell-matrix interactions.

The usage of superhydrophobic surface without hydrophilic pattern has also proven useful
for hanging drop spheroids culture. The 3D microenvironments on the superhydrophobic surface
drastically reduce the volume of the cell culture media and prevent any interaction with the surface.
Neto el al. used micro-morphology patterned superhydrophobic surface for spheroids culture [18].
They prepared a PS superhydrophobic surface and dented the surface under the applied force with
sharp tips. Water droplets placed on the indentation exhibited high CAs but remained pinned because
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of the water penetration into the indentation. The maintained superhydrophobic properties lead
to formation of spherical droplets on the surface while minimizing the contact areas between the
droplet and surface. The formation of the 3D spheroids was achieved on the physically modified
PS superhydrophobic surface (Figure 9a(i)). Cell-containing droplets remained suspended from the
indentation-patterned surface even when the surface was turned upside down. A combinatorial
analysis of the cell spheroids developed by gravitational force was performed using different cell
densities or drug concentrations. Droplets containing immortalized mouse lung fibroblast cell line L929
with two densities of 30,000 and 40,000 cells/droplet were dispensed and cultivated on the inverted
superhydrophobic surface. After 24 h of cell culture, these droplets were exposed to different amounts
of doxorubicin anti-cancer drug to assess the dose-dependent response of the formed tumor spheroids.
Figure 9a(ii) shows the drug screening results that were obtained from the stained fluorescent images
(Figure 9a(iii)). Live (green)/dead (red) cell ratios decreased with increasing dose in both type of
spheroids. Also, these ratios were higher at lower spheroid density. In addition, dead cells mostly
accumulated in the spheroid inner regions (Figure 9a(iii)) because nutrients and waste release are more
difficult to assess in larger and denser spheroids.
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Figure 9. (a) (i) Hanging drop culture on the indentation-patterned superhydrophobic surface; (ii) Live
(green)/dead (red) cell ratios 24 h after the addition of various doxorubicin concentrations for densities
of 30,000 (left bar) and 40,000 (right bar) cells/droplet; (iii) Fluorescent images of L929 spheroids
in the presence of doxorubicin (ii); (b) (i) Culture medium droplets adhered on the Hj-exposed
Pd-coated Si NWs for different tile angle (0°, 90°, and 180°) and medium volumes (5, 10, 15 and
20 uL); (ii) Live/dead cell staining, size distribution, and vascular endothelial growth factor (VEGF)
protein secretion from spheroids after 4 days of culture at various cell densities and medium volumes.
Reproduced from [18,136] with permission by John Wiley and Sons, Copyright 2014.

To minimize cell-interface interactions during hanging drop spheroid culture, Seo et al. used
superhydrophobic surface exhibiting reversible adhesion properties [136]. The gas-driven adhesion
switchable superhydrophobic surface by deposition of hydrogen-sensitive Pd onto Si NW arrays is
shown in Figure 7c,d. The adhesion switch properties of Pd-coated Si NW arrays directly applied
to 3D spheroid formation using the hanging drop technique without any patterning process. Due
to the adhesion properties of Pd-coated Si NW arrays after exposure of Hj, various sizes of droplets
containing human adipose-derived stem cell (hADSC) could be adhered right after the exposure to
H; and maintained under ambient air (Figure 9b(i)). Figure 9b(ii) shows the maintained viability of
spheroids after four days of culture and controllability of spheroids size by different cell densities
(1.25, 2.5, and 5.0 x 10° cells/mL) and in differing medium volumes (10, 15, and 20 pL). It was
shown that VEGF secretion from hADSC spheroids depended on spheroid size. hRADSC spheroids
displayed enhanced paracrine activity upon cell density and culture medium volume adjustment.
Moreover, narrow size distribution and much enhanced VEGF secretion from hADSC spheroids
were observed compared to those grown with conventional spinner flasks and hanging on petri
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dishes. This hanging drop approach improved hADSC viability, paracrine secretion, mitochondrial
metabolic activity, apoptosis signaling, and ECM production compared to petri dish techniques. This
enhanced cell functionality may stem from the reinforced cell-cell and cell-matrix interactions upon the
formation of highly compact spheroids. Furthermore, the angiogenic potential of hADSC spheroids
was evaluated as a functional assay. The conditioned medium obtained from hADSC spheroids
cultured on Pd-coated Si NW arrays enhanced proliferation and accelerated the capillary formation of
human endothelial cells.

3.3. Biomedical Devices

In biomedical applications for implanted medical devices, adherence of undesired biological
matter on the surface has to be prevented. For example, an antibacterial property of the surface is crucial
to prevent inflammation of the implanted device or contamination during cell/tissue culture process.
To fabricate antibacterial surface, various methods have been developed [137-146]. In particular, a
bio-inspired superhydrophobic surface has received attention as a potential antibacterial surface owing
to its antifouling property, which can prevent bacterial adhesion onto the surface [147-151].
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Figure 10. (a) The bacterial growth on the PS and polycarbonate (PC) structured and flat
substrates; (b) (i) Blood repellency on slippery tethered-liquid perfluorocarbon (TLP)-coated surfaces;
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(ii) Photographs of a sliding blood droplet on the slippery surface; (c) (i) Fluorescent micrographs
of fibrinogen on acrylic or polysulfone surfaces with or without TLP coating; (ii) Photographs of
polyurethane cannulae, polycarbonate connectors, and PVC tubing with (top) or without (bottom) TLP
coating after 8 h of blood flow. Reproduced from [148] under CC BY license. Reproduced from [152]
with permission by Nature Publishing Group, Copyright 2014.

Privett ef al. developed xerogel, comprising a mixture of silica colloids, fluoroalkoxysilane, and
backbone silane [147]. Low surface energy and hierarchical structure by fluorinated silica nanoparticles
allow superhydrophobic properties of the xerogel-coated surface. The antibacterial property of the
xerogel was characterized using conventional flow cell assay with gram-positive Staphylococcus aureus
(S. aureus) and gram-negative Pseudomonas aeruginosa (P. aeruginosa). The bacterial adhesions to the
superhydrophobic xerogel-coated surface were significantly reduced by 99% and 98% compared with
the blank surface, respectively. The result showed that the superhydrophobic surface could be applied
to antibacterial applications; however, more practical fabrication methods with cost-effective and
simple procedures need to be developed to use it as a versatile platform. Feschauf et al. reported
antibacterial properties of superhydrophobic PS, polycarbonate (PC), and polyethylene (PE) surfaces
using gram-negative Escherichia coli (E. coli) [148]. The superhydrophobic PS, PC, and PE surfaces
were fabricated using a simple cast with a micro/nanostructured PDMS mold. To test the antibacterial
properties of structured PS, PC, and PE surfaces, 10 pL of E. coli bacterial solution was cultured for
24 h on the surfaces (Figure 10a). After 24 h, superhydrophobic surfaces yielded less than 100 colony
forming units (CFUs) for PS and PE, and no bacteria were grown on the PC substrate. Meanwhile, flat
PS and PC had 100,100 CFUs and PE had 25,800 CFUs. These results indicate that superhydrophobic
surfaces could effectively prevent bacterial adhesion to less than 0.1% compared with flat surfaces.
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Liquid slippery surfaces also have a great potential to be used for various medical devices
because of their wide-range of anti-fouling properties regarding various liquids and environmental
stresses. They maintain repellency across a broad range of temperatures, pressure, surface tension,
and other conditions [153]. Epstein ef al. investigated the ability of a slippery surface to prevent
biofilm attachment [154]. The bacteria are presented on a smooth slippery surface, and there is no
ability to anchor to the mobile interface in contrast with solid interface. Regardless of the underlying
porous solid structure, the slippery surface prevented diverse biofilm accumulation over a period
exceeding one week. In addition, it reduced bacterial attachment by 96%-96.6% compared with
common polyethylene glycol functionalized anti-fouling surfaces.

Liquid slippery surface can be easily integrated into any arbitrary geometries such as pipes.
Leslie et al. applied slippery properties to tubing and catheters of indwelling medical devices to
reduce morbidity and mortality originating from thrombosis, which involves the blood component
fibrinogen and platelets, and biofouling of the medical devices [152]. To create non-adhesive and
anti-thrombogenic surfaces, they prepared a tethered perfluorocarbon (TP) layer on the tube surface
and then coated it with a liquid perfluorodecalin (LP) (Figure 10b(i)). The thin mobile liquid layer
allowed the tethered-liquid perfluorocarbon (TLP) surface to effectively repel liquids even when
the surface was in contact with a flowing, immiscible fluid, such as blood. A fresh, whole human
blood droplet almost immediately slid off the surface (Figure 10b(ii)). They confirmed that the TLP
surface decreased fibrin adhesion and polymerization compared to uncoated acrylic and polysulfone
surfaces (Figure 10c(i)). Moreover, the slippery surface also reduced platelet adhesion compared
to uncoated surfaces. These results indicate that the slippery surface reduces fibrin polymerization
and suppresses both adhesion and activation of plates. Anti-thrombogenic properties of the slippery
surface were investigated in vivo using TLP-coated polyurethane cannulae, polycarbonate connectors
and medical-grade polyvinyl chloride cardiopulmonary perfusion tubing was assembled into an
arteriovenous shunt. Figure 10c(ii) shows the TLP-coated polymer tubes that decrease occlusive
thrombosis compared to control tubing after 8 h of flow. Therefore, these remarkable anti-fouling
properties may be exploited in various extracorporeal circuits and indwelling devices.

3.4. Open-Channel, Droplet-Based Lab-on-a-Chip

Open-channel droplet-based microfluidic systems have several benefits compared with
conventional closed-channel based microfluidic devices in terms of easy introduction of sample
liquid, low sample and energy consumptions, and rapid chemical and biological reactions [155-165].
Manipulation of droplet motions is most important for the open-channel droplet-based microfluidic
system. You et al. presented a droplet-based microfluidic system on a superhydrophobic porous oxide
membrane [157]. To guide the water droplets, they introduced hydrophilic pDA microline patterns on
the superhydrophobic surface. A square shape of pDA was also patterned at the center of the pDA
microline for more complex manipulation of the droplets. A liquid droplet moved along the microlines
by gravitational force and stopped on the square, which exhibited enough surface energy to capture
the droplet. This immobilized droplet only moved downward upon the addition of a second droplet.
This droplet mixing ability was applied to the synthesis of monodisperse gold nanoparticles and rapid
structural changes in proteins.

However, hydrophilic patterned superhydrophobic surfaces cannot be used for organic
solvent-based chemical and biological reactions and analyses. For a compatibility with various
solvents, You et al. introduced a pDA micropatterned slippery surface [166]. To obtain a liquid guiding
property, pDA microlines were patterned on a nanostructured surface before lubricant infiltration. The
fabricated micropatterned slippery device was compatible with a variety of solvents such as water,
ethanol, dimethyl sulfoxide, dimethylformamide, tetrahydrofuran (THF), n-hexane, 1,2-dichloroethane,
acetic acid, 2-propanol, acetone, toluene, and diesel oil. Any solvents with surface tension greater
than the lubricant (17.1 mN/m) were able to repel the infused lubricant located on top of the pDA
microlines, and could be moved along the microlines by gravitational force. They introduced the
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square shape pattern for droplet mixing at the pDA microline intersection with the same mechanism as
described above (Figure 11a(i)) [157]. Organic solvent-based chemical reactions were conducted on the
pDA micropatterned slippery surface because of the wide solvent compatibility. An organic reaction
between o-phenylenediamine and benzaldehyde was performed to produce 2-arylbenzimidazole. An
8 uL THF solution droplet containing two reactants and an 8 uL. THF droplet containing an oxidant
were deposited on the slippery surface (Figure 11a(ii)). The reaction yield (70.3%) increased compared
to a typical bulk reaction using a 4 mL vial (52.1%) because of the rapid and homogeneous mixing.
Moreover, the surface was cleaned and used repeatedly by simple washing with ultrasonication.

a. b,
(i) v, 1"droplet  Stop Mixing & roll (i)
- o ) ¥ \ / -
' N \/ b/ 0
Fgrav. = mgsin | | Vo 18
i o Analysis
Faan. = yD(1+cosa) Fgrav.2Fadh. Fgrav.<Fadh. Fgrav.2Fadh. ) . v
(ii) Reactants A, B OxidantC  Benzimidazole synthesis i |\/
NH, » NN Individual ‘
C[Nn: O_% . . / V/y: droplet moving Local dimple
\ _— Droplet merglk/
E‘: < F: X i ‘:, < and mixing
\ PDMS with
0s 7s.am Micro-pillar arrays
C. d e . .
(l) Analyte Without AgNP 10°M w/o transfection Conventional Surface
(R6G) Excitation Ll St Y A
laser W
) g L €
i . 3 10°M
AgNP— s
2
o 2 10001 Conventional Surface
(ii) i g exsitu SERS A N
E e & ‘ A L
. ! B
" . 6 \ H|Se
e ‘ el VW) 18,93 o 70.0% |\ 788% | || §§ 0
B A\ VS W A\ i\
DAC N | Ll WA s/ N \'W"/%To"w 200 \ N | XS
T SiRNA Y PPV ST W, VOO Lo L o » N A\
@ T T T 10° 10" 10% 10° 10* 10° 10" 10° 10° 10*
oy 500 1000 1500 2000

Raman shift (cm™) En-H FitH

Figure 11. (a) (i) Droplet motion and mixing on a pDA micropatterned slippery device; (ii) Chemical
reaction in organic solvent (THF) on the slippery device; (b) (i) Manipulation of water motions
such as moving, mixing and analysis on a suspended PDMS substrate with micro-pillar arrays;
(ii) SEM image of the dimple structure; (iii) Photograph of a water droplet on the PDMS substrate;
(c) (i) Surface-enhanced Raman spectroscopy (SERS) measurement system; (ii) Small interfering
RNA-lipidoid complex formation; (d) in situ/ex situ SERS analysis spectra at different concentrations
of Rhodamine 6G (R6G) for R6G/Ag nanoparticle (NP) droplet mixture and an evaporated R6G/Ag
NP droplet, respectively; (e) Fluorescent images and flow cytometry analyses of green fluorescent
protein (GFP)-HeLa cells after transfection. Reproduced from [166,167] with permission by American
Chemical Society, Copyright 2014, and permission by Nature Publishing Group, Copyright 2015.

Patterned devices designed for droplet manipulation only provide limited control over fluidic
operations, such as starting and stopping movement. Recently, Seo et al. produced a thin
superhydrophobic PDMS substrate with micro-pillar arrays for path-programmable water droplet
manipulations including droplet transportation, merging, mixing and analyses (Figure 11b(i)) [167].
When a vacuum pressure was applied at the bottom of a suspended PDMS substrate, the substrate was
stretched and deflected downward to form a local dimple structure (Figure 11b(ii)). The micropillar
array effectively reduced the contact area between the substrate and water droplets, resulting in
superhydrophobicity (Figure 11b(iii)). By utilizing the dimple structure, water droplet motions could
be individually controlled. Specifically, its border exhibited a positive curvature and the distance
between adjacent pillars on the PDMS was greater than that on a flat substrate. The reduced number of
micropillars lowered the water adhesion force, facilitating the detachment of the water droplet from the
substrate. Therefore, the motions of water droplets on the substrate could not only be easily controlled
by the vacuum-induced dimple structure, but also the moving path could be freely designed without
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additional patterning. The analytic performance of the substrate was examined by surface-enhanced
Raman spectroscopy (SERS) (Figure 11c(i)). The in situ/ex situ SERS measurements were performed
using Rhodamine 6G (R6G) with concentrations ranging from 1073 to 101> M (Figure 11d). In in situ
SERS measurements, individual water droplets containing R6G molecules and Ag nanoparticles (NPs)
were transported and merged at the Raman detection spot before data collection. The detection
limit of the R6G/Ag NP mixed droplet was 10> M due to freely diffusing R6G molecules and Ag
NPs in the mixed droplet. To overcome this detection limit, the mixture was evaporated on the
substrate and its components were concentrated within an area of hundreds of square micrometers.
The R6G molecules were detected even at 10~'> M due to the accumulations of R6G molecules and
Ag NPs for the ex situ SERS measurement. They also used the platform for generating uniform
nanoparticle complexes for intracellular gene transfer. The lipidoid (ND98) complexes with green
fluorescent protein-siRNA (siGFP) were formed by a simple merging and mixing process of the
droplets (Figure 11c(ii)). Homogeneous mixing of the droplets could be achieved on the platform and
the transfection efficiency of the lipidoid-siRNA complexes generated on the platform into GFP-HeLa
cells (78.8% + 0.5%) was increased compared to conventional manual pipetting mixing (70.0% + 1.9%)
(Figure 11e).

3.5. High-Throughput Cell Assay

High-throughput cell assays play an important role in screening the biological performance of
various biomaterial compositions toward cellular behaviors, such as cell adhesion, viability, metabolic
activity, and differentiation [168-172]. High-throughput cell assay using wettability-controlled surface
enables simple, rapid, and low cost synthesis and analysis under different combinations of biomaterials
even in a single experiment.
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Figure 12. (a) High-throughput screening platform using a superhydrophobic surface patterned
with hydrophilic spots; (b) (i) Superhydrophobic surface patterned with hydrophilic rings for
high-throughput assay; (ii) Hydrogel- and phosphate-buffered saline (PBS) droplet-loaded substrate;
(iii) Surface plots of release profiles of the fluorescein isothiocyanate labeled bovine serum albumin
(BSA-FITC) from alginate hydrogels obtained by the acquisition of fluorescent microscopy images.
Reproduced from [19,173] with permission by American Chemical Society, Copyright 2011, 2013.

Neto et al. fabricated a high-throughput screening platform using a hydrophilic spots patterned
superhydrophobic surface by UV /ozone irradiation using a photomask (Figure 12a) [19]. Cell
interactions with different mixtures of pre-absorbed proteins, albumin, and fibronectin were evaluated.
Human serum albumin and human plasma fibronectin were individually dispensed with different
relative amounts and protein concentrations on 20 hydrophilic spots. For the same total protein
concentration, more cells were detected in spots treated with higher fibronectin content. This is in
agreement with the passivating properties of albumin and the existence of integrin binding domains
in fibronectin, which provide cell adhesiveness.

In addition to in vitro screening, high-throughput assays have emerged as attractive approaches to
in vivo studies because of ethical issues and high costs related to animal testing. Recently, Oliveira et al.
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fabricated porous superhydrophobic scaffolds patterned with hydrophilic spots for high-throughput
evaluation of foreign body response. The substrates with arrays of 36 combinations of biomaterials
were used for subcutaneous implantation in Wistar rats. Lymphocyte and macrophage analyses were
conducted along with a histological analysis of the surrounding tissue to assess the inflammatory
response of distinct biomaterials. The response obtained on the hydrophilic patterned scaffolds was in
agreement with the conventional implantation of the scaffolds, suggesting that the patterned scaffolds
were useful for in vivo high-throughput assays involving few animals, short time, and low cost.

However, the dispensing of small amount of droplets by handling is not suitable for a large-scale
library of biomaterials in terms of dispensing rate and controllability. Ueda et al. presented
superhydrophobic border patterned superhydrophilic surface for high-throughput cell assay [174].
The arrays of thousands of individually separated microdroplets were simply created on the substrate
in a single step by dipping the substrate into an aqueous solution or rolling a droplet across the surface.
Large volumes of molecules, particles, cells, or any other components in aqueous solutions were
patterned in thousands of hydrophilic spots without manual pipetting or a liquid handling device. The
superhydrophobic border patterned superhydrophilic surface was used in 3D hydrogel formation for
cell screenings in a 3D microenvironment. Only several minutes were consumed to create an array of
up to 85,000 hydrogels. Similarly, Oliveira et al. developed a superhydrophobic surface patterned with
a ring-shaped hydrophilic region for high-throughput assays of bioactive agent delivery from a 3D
hydrogel (Figure 12b(i)) [173]. They prepared aqueous solutions of 1%, 1.5%, and 2% of alginate and
amounts of fluorescein isothiocyanate labeled bovine serum albumin (BSA-FITC) in concentrations
of 0.1, 0.5, and 1 mg-mL~!, respectively. Protein release from alginate hydrogels encapsulating
different BSA-FITC concentrations was investigated under nine sets of conditions. Hydrogel
precursors mixed with BSA-FITC and a hydrogel crosslinker were sequentially dropped in each
concentric superhydrophobic spot inside the ring-shaped hydrophilic region. After the crosslinking,
physiological-like PBS was added dropwise to the rings, covering the cross-linked hydrogel. The high
wettability contrast between the hydrophilic ring and superhydrophobic surroundings facilitated this
deposition of PBS droplets, which retained their quasi-spherical shape (Figure 12b(ii)). BSA-FITC
release profiles from alginate hydrogels was obtained by the acquisition of fluorescent microscopy
images (Figure 12b(iii)). Acquired images showed overview of the distribution of BSA-FITC over time
in the alginate hydrogels and PBS solution. The qualitative analysis of the distribution and amount of
BSA-FITC was also performed through the linear relationship between the fluorescence intensities and
BSA-FITC concentrations. The hydrogels with highest alginate concentration (2%) promoted slowest
BSA-FITC release in PBS for all loading conditions due to tighter polymeric networks of the hydrogel.
Also, highest BSA-FITC concentration (1 mg- mL~!) of the hydrogel led to fast release of BSA-FITC
due to the high concentration gradient.

4. Conclusions and Future Prospects

In this review article, we presented an overview of the design and fabrication of bio-inspired
surfaces with extreme wetting properties and their applications for biomedical engineering. Principles
governing these unique properties were described and representative living species ranging from
the lotus leaf to the pitcher plant were reviewed with their bio-inspired surfaces. We also described
the relevance of these properties in the biomedical field, such as cellular interactions on wettability
patterned surfaces, 3D cell culture platforms for functional cell spheroids, and anti-fouling slippery
surfaces for biomedical implantable devices. Furthermore, various functional approaches, such as
droplet-based lab-on-chips and high-throughput cell assays, were introduced.

Despite the efforts to apply bio-inspired surfaces to the biomedical field, they are still in the
early stages compared with their conventional uses in other industries. There are some critical issues
that need to be addressed for the wide usage of the bio-inspired surfaces as advanced biomedical
platforms. For instance, surface durability and long-term stability of surfaces with extreme wetting
properties should be improved. For in vitro cell/tissue culture, culture substrates should contain
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culture medium to deliver nutrients and bioactive molecules during the cell culture; however, the
continuous contact between surface and culture medium leads to protein adsorption and the liquid
penetration to micro/nanostructured surface, resulting in the change of surface wetting properties.
Thus, the development of bio-inspired surfaces with long-term stability and durability may provide
more in vivo-like microenvironments during cell culture and be used as an advanced platform to study
cellular behaviors compared to conventional methodologies. Self-healing and stimuli-responsive
composites that enable repairing damaged bio-inspired surfaces could be promising candidates for
realization of the platform with long-term stability. Moreover, development of bio-inspired smart
surfaces with the function of controllable capturing and releasing of biochemicals (e.g., drugs and
cell-secreted proteins) can be used as an advanced platform for rapid and efficient disease diagnosis
and drug discovery. Development and implementation of rapid and cost-effective fabrication methods
is also desired; incorporating conventional methodologies for mass production such as spray coating,
stamping, and 3D printing techniques they can be applied to fabricate bio-inspired surfaces. By
addressing the aforementioned issues, these functional innovations can have a strong influence on the
biomedical industry in the near future.
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