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Abstract: Nickel and sulfur doped lithium manganese spinels with a nominal composition of
LiMn2´xNixO4–ySy (0.1 ď x ď 0.5 and y = 0.01) were synthesized by a xerogel-type sol-gel method
followed by subsequent calcinations at 300 and 650 ˝C in air. The samples were investigated in
terms of physicochemical properties using X-ray powder diffraction (XRD), transmission electron
microscopy (EDS-TEM), N2 adsorption-desorption measurements (N2-BET), differential scanning
calorimetry (DSC), and electrical conductivity studies (EC). Electrochemical characteristics of
Li/Li+/LiMn2´xNixO4–ySy cells were examined by galvanostatic charge/discharge tests (CELL TEST),
electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). The XRD showed that
for samples calcined at 650 ˝C containing 0.1 and 0.2 mole of Ni single phase materials of Fd-3m
group symmetry and nanoparticles size of around 50 nm were obtained. The energy dispersive
X-ray spectroscopy (EDS) mapping confirmed homogenous distribution of nickel and sulfur in the
obtained spinel materials. Moreover, it was revealed that the adverse phase transition at around
room temperature typical for the stoichiometric spinel was successfully suppressed by Ni and S
substitution. Electrochemical results indicated that slight substitution of nickel (x = 0.1) and sulfur
(y = 0.01) in the LiMn2O4 enhances the electrochemical performance along with the rate capability
and capacity retention.
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1. Introduction

The search for low weight, high energy and power density lithium-ion batteries (LIBs) has
increased in recent years due to a growing demand for energy storage in the field of large scale
applications (e.g., hybrid electric vehicles, electric vehicles (xEV), and stationary energy storage
systems (ESS)) [1–3].

One of the most attractive cathode materials for rechargeable LIBs is lithium manganese oxide
spinel (LiMn2O4, LMO). In comparison with layered lithium cobalt oxide (LiCoO2, LCO), lithium
nickel oxide (LiNiO2, LNO), and related systems, the LMO reveals many intrinsic features such as
low cost, wide abundance of resources, environmental benignity, high working potential, excellent
safety characteristics, and competitive theoretical capacity of approximately 148 mAh¨g´1 [4–7].
Nonetheless, the major drawback is that the stoichiometric LiMn2O4 spinel suffers from severe capacity
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fading during electrochemical charging/discharging processes [8,9]. This limits its cycle ability along
with the rate performance and prevents its broad commercialization. The decrease of capacity is
generally attributed to the phase transition occurring in the LMO spinel at room temperature owing
to Jahn-Teller distortion of high spin Mn3+ ions [10–12], and even more importantly, the increased
surface reactivity between electrolyte and highly delithiated cathode material, leading to dissolution
of manganese in the electrolyte [13,14]. To overcome the above problems, many research efforts have
been made so far. One method is to introduce a heterogeneous atom into the LMO structure [15–20].
The other way is to modify the surface of the spinel [21–27]. A coating layer on the spinel particles can
reduce the contact area of electrode/electrolyte interface and suppress the dissolution of manganese.
Furthermore, it has been reported that nanostructured LMO can present enhanced performance [28–31].

Although there are a lot of doping modification methods described in the literature, most
of them are not compounded (cation or anion only). Accordingly, co-doping still remains worth
studying. A very interesting approach, which could improve the structural and chemical properties of
LiMn2O4 spinel material, thereby leading to the promotion of cycling stability, involves the synergetic
substitution of nickel and sulfur [32,33]. It is believed that sulfur replacing oxygen in the spinel
structure not only reduces the octahedral symmetry, and as a consequence suppresses the phase
transition near room temperature, but also increases the capacity of the material as well as improves the
coulombic efficiency [20,34]. On the other hand, stabilization of the spinel structure and an increase of
its chemical stability can also be performed by partial substitution of the Mn3+ ions by other transition
metal ions, like Ni [35]. It was reported that a LiMn2O4 spinel-based electrode, in which a small
amount of manganese was substituted by another 3d metal, shows improved cycling performance and
can supply a higher energy density than the common lithium manganese spinel by shifting the voltage
profile to a higher potentials as new voltage plateaus corresponding to Ni2+/Ni3+ and Ni3+/Ni4+ redox
couples are introduced [36,37]. In this work we report the synthesis of nanostructured Ni and S doped
lithium manganese oxides using a xerogel-type sol-gel method [27,34,38,39]. The aim concerning this
study was to find the best compromise among chemical composition and physicochemical properties
as well as electrochemical characteristic of the prepared materials. It was discovered that nickel and
sulfur substitution can enhance capacity retention and the charge and discharge performance of the
LMO cathode under the high current rates.

2. Materials and Methods

A xerogel-type sol-gel method was employed to synthesize LiMn2´xNixO4–ySy (LMNOS) spinel
materials (0.1 ď x ď 0.5 and y = 0.01). In the first step, CH3COOLi¨ 2H2O, (CH3COO)2Mn¨ 4H2O,
and (CH3COO)2Ni¨ 4H2O, in appropriate molar ratio, were dissolved together in distilled water
while stirring. Then, (NH4)2S (20 wt %) and NH3¨H2O (25 wt %) as the alkalizing agent were
slowly added into the solution. All the syntheses were conducted under constant flow of argon to
prevent uncontrolled oxidation of the Mn2+ ions. In the second step, condensation of the formed sols
was performed at 90 ˝C for three to four days under ambient pressure in air. Finally, the obtained
xerogels were calcined in a muffle furnace in air at 300 ˝C for 24 h and afterwards at 650 ˝C for 6 h.
The high-temperature calcination was required to receive improved structural and electrical properties
of the spinels and was followed by quenching. The heating rates for the calcinations processes were
1 ˝C¨min´1 and 5 ˝C¨min´1 respectively.

The X-ray powder diffraction (XRD) was conducted to investigate the crystal structure of
the resulting materials using BRUKER D2 PHASER diffractometer (Bruker, Billerica, MA, USA)
with Cu Kα radiation (λ = 0.154184 nm) at an operating current of 10 mA and voltage of 30 kV.
The diffraction patterns were recorded in the 2θ range of 10˝ to 80˝ with a step of 0.02˝. To identify
the phase composition of the samples, structural data from the International Centre for Diffraction
Data (ICDD) was used. The average crystallite size was estimated from the integral width of (111)
reflection of the cubic spinel using Scherrer’s equation. The elemental analysis on selected test areas
of the synthesized materials was provided by transmission electron microscopy (TEM) using FEI
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TECNAI TF20 X-TWIN (FEI, Hillsboro, OR, USA) high-resolution microscope operating at 200 kV and
equipped with an energy dispersive X-ray (EDX) detector (EDAX, Mahwah, NJ, USA). The textural
properties were characterized by N2 adsorption-desorption measurements performed at about´196 ˝C
on a Micromeritics 3Flex surface area analyzer (Micromeritics, Norcross, GA, USA) after sample
pre-treatment. The specific surface area was calculated according to the Brunauer-Emmett-Teller
(BET) method. To determine the pore size distribution and estimate a pore volume and an average
pore diameter the Barrett-Joyner-Halenda (BJH) method was applied. To gain knowledge about
the phase transition, the differential scanning calorimetry (DSC) experiments were carried out on
a Mettler-Toledo 821e instrument equipped with intracooler Haake (Mettler-Toledo, Columbus, OH,
USA). Every time, approximately 12 mg of each sample was placed in aluminum crucible and measured
in the temperature range of ´20 to +50 ˝C with a heating and cooling rate equal to 10 ˝C min´1 under
constant flow of argon (80 mL¨min´1) (Air Products, Allentown, PA, USA). The electrical conductivity
(EC) was studied using the four-probe ac method at 33 Hz within the temperature range of ´20 to
+40 ˝C. The powder samples were put between the parallel gold, circular electrodes in a glass tube and
pressed by a screw-press until the measured resistance of the sample remains unchanged. The electrical
conductivity complies with the Arrhenius law σ = σ0¨exp(´Ea/(kB¨T)) where σ0 is the pre-exponential
factor, Ea is the activation energy, and kB, the Boltzmann constant. The slope of the plot in the lnσ vs.
1000 T´1 coordinates enabled the evaluation of the activation energy.

The electrochemical performance of the synthesized spinels was examined using R2032 coin-type
cells. The Li/Li+/LMNOS cells were assembled in an argon-filled glove box (MBraun Unilab
Plus workstation MBraun, Garching, Germany) with both H2O and O2 levels less than 0.1 ppm.
The cathodes were fabricated by mixing the 80 wt % of active material with 10 wt % of carbon
black, used as conductive agent, and 10 wt % of polyvinylidene fluoride (PVDF) binder in
N-methyl-2-pyrrolidone (NMP) solvent. The prepared slurry was stirred for 24 h and then coated on
an aluminum foil to form the working electrodes with 12 mm in diameter. The typical loading of active
materials in the assembled cells was around 2.21 mg¨ cm´2. As a negative electrode, a metallic lithium
foil was used. Both electrodes were separated by a microporous polypropylene film (Celgard 2325)
and a porous glass microfiber filters (Whatman GF/F). The electrolyte was a 1 M solution of lithium
hexafluorophosphate (LiPF6) in a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) at
a volume ratio of 1:1. The galvanostatic charge and discharge tests (CELL TEST) were run at different
C rates using ATLAS 0961 MBI multichannel battery tester at room temperature. Cut-off voltages were
4.8 and 3.5 V for the charge and discharge processes, respectively. The electrochemical impedance
spectroscopy (EIS), as well as cyclic voltammetry (CV) were conducted on a potentiostat/galvanostat
AUTOLAB PGSTAT302N/FRA2 (Metrohm Autolab, Utrecht, The Netherlands). The EIS measurements
were made at 3.75 V by applying an alternating current signal of 0.01 V amplitude in the frequency
range from 100 kHz to 0.1 Hz. The impedance data was fitted using Nova 1.8 Autolab software based
on the Boukamp model. The CV scans were performed at a scan rate of 0.05 mV¨ s´1 in the potential
range of 3.5 to 4.8 V, starting from an open circuit voltage (OCV).

3. Results and Discussion

Figure 1 shows the X-ray diffraction patterns of the prepared LiMn2´xNixO4´ySy (LMNOS)
spinel materials calcined at 650 ˝C in which 0.1 ď x ď 0.5 and y = 0.01. The well-developed, strong,
and narrow reflections depict that all products are highly crystallized. For the LiMn1.5Ni0.5O3.99S0.01

(LMN5OS), LiMn1.6Ni0.4O3.99S0.01 (LMN4OS), and LiMn1.7Ni0.3O3.99S0.01 (LMN3OS) samples, the best
fit of the XRD patterns was achieved using two phase system: LiMn2O4 (ICDD No. 00-035-0782) and
NiO (ICDD No. 00-047-1049). As for the LiMn1.8Ni0.2O3.99S0.01 (LMN2OS) and LiMn1.9Ni0.1O3.99S0.01

(LMN1OS) samples, all the diffraction peaks were indexed to the cubic LiMn2O4 spinel structure
(ICDD No. 00-035-0782) with Fd-3m space group, in which lithium ions occupy the 8a sites, manganese
ions are located in the 16d sites, and oxygen ions in the 32e sites. No trace of an impurity phase like
NiO is observable in these patterns, indicating the formation of single-phase spinel compounds in the
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0.1 ď x ď 0.2 Ni substitution range. The lattice parameters of the synthesized materials were calculated
from the XRD data (Table 1). The lattice constants for LMNOS samples are slightly lower than for
LMO or LMOS1 samples [34] which proves nickel substitution for manganese in the spinel structure
and is consistent with the previous studies published by inter alia D. H. Park et al. [40]. The decrease in
the lattice parameter of the modified samples is connected to the increase of average oxidation state of
manganese due to Ni substitution and is caused directly by the decline in the amount of Mn3+ ions
with the higher ionic radii than Mn4+ ions. The average crystallite size of the LMNOS powders was
estimated using Scherrer’s equation and summarized in Table 1.
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Figure 1. X-ray diffraction patterns of LiMn2´xNixO3.99S0.01 spinels calcined at 650 ˝C.

Table 1. Chemical composition, lattice constant, average crystallites size, and textural properties of
nanostructured LiMn2´xNixO4´ySy spinels in which 0.1 ď x ď 0.5 and y = 0.01.

Sample Nominal Composition
Lattice

Constant
(nm)

Average
Crystallites
Size (nm)

Surface BET
Area

(m2¨g´1)

Pore
Volume

(cm3¨g´1)

Average Pore
Diameter

(nm)

LMN5OS LiMn1.5Ni0.5O3.99S0.01 0.8181 42 10.9 0.030 11
LMN4OS LiMn1.6Ni0.4O3.99S0.01 0.8169 40 8.7 0.041 19
LMN3OS LiMn1.7Ni0.3O3.99S0.01 0.8183 36 7.9 0.030 19
LMN2OS LiMn1.8Ni0.2O3.99S0.01 0.8172 47 3.5 0.012 13
LMN1OS LiMn1.9Ni0.1O3.99S0.01 0.8149 48 3.1 0.010 13

To confirm the presence of nickel and sulfur in the obtained spinel materials (LMN5OS and
LMN1OS) we present the TEM images of selected test area and the energy dispersive X-ray
spectroscopy (EDS) mapping of individual elements analysis (Figure 2). As shown, all observed
elements (for both samples) have homogeneous distribution and there is no significant agglomeration
of particular components. These results prove that Ni and S atoms were doped uniformly into the
LMO spinel via the sol-gel process. Additionally, the EDS maps of Ni for LMN5OS material display
some grains of NiO, which is compatible with the formation of single-phase spinel compounds only in
the 0.1 ď x ď 0.2 Ni substitution range by the sol-gel method. Obviously, lithium was not revealed in
this study as it is beyond the EDS detection range.



Materials 2016, 9, 366 5 of 13

Materials 2016, 9, 366 5 of 13 

 

 
Figure 2. Transmission electron microscopy images and elemental mapping of (a) LMN5OS sample; 
and (b) LMN1OS. 

The nitrogen adsorption-desorption isotherms of LMN5OS and LMN1OS samples are 
illustrated in Figure 3a. The LMN1OS spinel in comparison with LMN5OS material demonstrates a 
decreased amount of nitrogen adsorption and desorption. In spite of the fact that the isotherms’ 
shape may imply that the powders are mostly macroporous (the hysteresis loops are extremely 
narrow), the BJH pore size distribution analysis (Figure 3b), based on the adsorption branch data, 
exhibited significant volumes of mesopores in the diameter range of 1.5 to 20 nm with the peak pore 
size centered at around 2.5 nm for both LMNOS systems. In accordance with the isotherms, the 
textural properties such as surface area (SBET), pore volume (Vp), and average pore diameter (Dp) of 
all obtained materials were calculated and collected in Table 1. It is noticeable that the SBET value for 
LMNOS spinels diminishes with the smaller nickel content. Generally speaking, the raise in the BET 
surface area will extend the contact region between the electrode and liquid electrolyte. Hence, the 
lowest specific area for the prepared LMN1OS sample greatly contributes to the observed enhanced 
cycling stability of the electrode (Figure 6d). 

 
Figure 3. (a) N2 adsorption-desorption isotherms; and (b) the BJH (Barrett-Joyner-Halenda) pore size 
distributions of LMN5OS and LMN1OS systems. 

Figure 4 displays the results of the DSC experiments of the nickel and sulfur doped LiMn2O4 
materials. The differential scanning calorimetry curves recorded for all synthesized products present 
a similar behavior. In fact, no differences in the results of DSC analyses with the change of nickel 
content in the LiMn2−xNixO3.99S0.01 spinel structure were recognized. Furthermore, no heat effects 
were noticed during heating and cooling for all spinels, thereby indicating that they do not undergo 
a reversible cubic-orthorhombic phase transition, characteristic for LMO material [41]. On the whole, 
the subtle deviation of the LiMn2O4 stoichiometry, resulting in this case from the substitution of 
manganese and oxygen with nickel and sulfur respectively, stabilizes the spinel structure and 
suppresses the phase transition which is reflected in the thermal behavior of the compounds. 

Figure 2. Transmission electron microscopy images and elemental mapping of (a) LMN5OS sample;
and (b) LMN1OS.

The nitrogen adsorption-desorption isotherms of LMN5OS and LMN1OS samples are illustrated
in Figure 3a. The LMN1OS spinel in comparison with LMN5OS material demonstrates a decreased
amount of nitrogen adsorption and desorption. In spite of the fact that the isotherms’ shape may imply
that the powders are mostly macroporous (the hysteresis loops are extremely narrow), the BJH pore size
distribution analysis (Figure 3b), based on the adsorption branch data, exhibited significant volumes of
mesopores in the diameter range of 1.5 to 20 nm with the peak pore size centered at around 2.5 nm for
both LMNOS systems. In accordance with the isotherms, the textural properties such as surface area
(SBET), pore volume (Vp), and average pore diameter (Dp) of all obtained materials were calculated and
collected in Table 1. It is noticeable that the SBET value for LMNOS spinels diminishes with the smaller
nickel content. Generally speaking, the raise in the BET surface area will extend the contact region
between the electrode and liquid electrolyte. Hence, the lowest specific area for the prepared LMN1OS
sample greatly contributes to the observed enhanced cycling stability of the electrode (Figure 6d).
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Figure 3. (a) N2 adsorption-desorption isotherms; and (b) the BJH (Barrett-Joyner-Halenda) pore size
distributions of LMN5OS and LMN1OS systems.

Figure 4 displays the results of the DSC experiments of the nickel and sulfur doped LiMn2O4

materials. The differential scanning calorimetry curves recorded for all synthesized products present
a similar behavior. In fact, no differences in the results of DSC analyses with the change of nickel
content in the LiMn2´xNixO3.99S0.01 spinel structure were recognized. Furthermore, no heat effects
were noticed during heating and cooling for all spinels, thereby indicating that they do not undergo
a reversible cubic-orthorhombic phase transition, characteristic for LMO material [41]. On the whole,
the subtle deviation of the LiMn2O4 stoichiometry, resulting in this case from the substitution
of manganese and oxygen with nickel and sulfur respectively, stabilizes the spinel structure and
suppresses the phase transition which is reflected in the thermal behavior of the compounds.
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Figure 4. Differential scanning calorimetry results of Ni and S doped LiMn2O4 materials calcined
at 650 ˝C.

The dependence of electrical conductivity of the synthesized LiMn2´xNixO3.99S0.01 (x = 0.5 and 0.1)
spinels vs. reciprocal temperature (1000 T´1) is presented in Figure 5a. The Arrhenius relations
of the electrical conductivity show that the conduction process is thermally activated due to the
semiconducting nature of these materials over the studied temperature range. The obtained results
of electrical conductivity for LMNOS samples do not depict an anomalous behavior near room
temperature as it was reported for the stoichiometric LiMn2O4 spinel [34]. The linear dependencies
represented in the plots assure that no structural changes occur in the temperature range of ´20
to +40 ˝C which is in good accordance with the DSC results (Figure 4). Thus, we can maintain that
the introduction of nickel and sulfur in the LiMn2O4 spinel structure led to the suppression of the
unfavorable phase transition. The estimated values of electrical conductivity at around 25 ˝C and the
activation energy in the ´20 to +40 ˝C temperature range are gathered in Table 2. These values are
typical for small-polaron conduction mechanism in a mixed-valent system [42,43]. The σ measured at
room temperature is affected by nickel substitution, as illustrated in Figure 5b. It was indicated that
the decrease of Ni content in the spinel structure gives rise to electrical conductivity. What is more, the
electrical conductivity for the LMN1OS sample is higher than for LMO and LMOS1 materials. We can
also remark that the activation energy remains almost constant (around 0.31 eV), which is nevertheless
lower than for LMO and LMOS1 materials [34].

Table 2. Electrical properties of the synthesized spinels.

Sample
Activation

Energy
(Cooling) (eV)

Activation
Energy

(Heating) (eV)

Electrical Conductivity at
Around 25 ˝C (Cooling)

(10´5¨S¨ cm´1)

Electrical Conductivity at
Around 25 ˝C (Heating)

(10´5¨S¨ cm´1)

LMN5OS 0.30 0.30 1.46 1.35
LMN4OS 0.30 0.30 1.84 1.71
LMN3OS 0.30 0.30 2.12 1.84
LMN2OS 0.32 0.32 2.84 2.59
LMN1OS 0.32 0.32 5.97 5.46
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spinel materials; and (b) the electrical conductivity estimated at room temperature as a function of
nickel content x in LiMn2´xNixO3.99S0.01.

Figure 6a,b compare charge-discharge voltage profiles for the tenth and hundredth cycle of the
Li/Li+/LMNOS cells at C/10 rate at room temperature. It was found that all charge-discharge curves
can be divided into two regions at around 4.1 V (major region) and 4.7 V (minor region) which reflect
the electrochemical behavior of LiMn2O4 as well as LiMn1.5Ni0.5O4, and correspond to lithium ions
extraction/insertion into the cubic spinel structure. Each region exhibits two distinctive plateaus.
The two plateaus at ~4.1 V are attributed to the oxidation/reduction of manganese (Mn3+/Mn4+ redox
couple), while the two plateaus at ~4.7 V originate from oxidation/reduction of nickel (Ni2+/Ni3+

and Ni3+/Ni4+ redox couples). The rate performance of LMNOS powders was also investigated.
The fabricated cathode materials were subjected to 10 sets of 10 cycles at the different C rates
ranging from C/10 to 50C at room temperature. As expected, the charge and discharge capacity
decreased with the increase of current rate for all lithium cells with nickel and sulfur doped spinels
as cathodes. Nevertheless, it is worth noting that very small declines in the capacity are observed
during cycling within a single set. The specific charge-discharge capacity of the assembled Li-ion cell
with LMN1OS material vs. cycle number is displayed in Figure 6c. The first discharge capacity of the
LiMn1.9Ni0.1O3.99S0.01 cathode material is 136.8 mAh¨g´1 (C/10), which constitutes about 92% of the
theoretical capacity of the undoped LMO, and it decreases as the current rate increases to 134.9 (C/5),
132.1 (C/2), 128.7 (1C), 123.6 (2C), 107.5 (5C), 81.5 (10C), and 42.8 mAh¨g´1 (20C), respectively.
Even with the further increase of charge-discharge rate to 50C, the capacity can be approximately
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recovered when the current density is returned to C/10. The reversible capacity of 131.2 mAh¨g´1

was then retained. In addition, the cycle performance of LMN1OS spinel was evaluated with long
galvanostatic cycling tests at the current density of 5C (740 mA¨g´1) at room temperature. Figure 6d
presents the dependence of the discharge capacity on cycle number. The initial discharge capacity of
the sample is 117.3 mAh¨ g´1 which declines to 94.5 mAh¨ g´1 after 650 cycles. Thus, the total capacity
retention for the LMN1OS electrode is 80.6%. Apart from the cycling stability, Figure 6d indicates
coulombic efficiencies that range from 91% to 100%. In short, the presented results demonstrate
excellent electrochemical performance of the LiMn1.9Ni0.1O3.99S0.01 cathode material, including high
rate capability, and outstanding capacity retention. This characteristic of nickel and sulfur spinel
synthesized in the following study may be attributed to the highly crystalline, nanostructured, and,
most importantly, structurally stable nature of the material with improved electrical properties.
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Figure 6. Galvanostatic charge-discharge voltage profiles for (a) the tenth; and (b) hundredth cycle of
the LMNOS cathode materials at C/10 current rate; and (c) change in specific charge-discharge capacity
as a function of cycle at various C rates; and (d) long cycling performance at 5C of LMN1OS electrode.

The electrochemical impedance spectra of the Li/Li+/LMN1OS cell (Figure 7a) were obtained
at 3.75 V before cycling and after each set of 10 cycles (Figure 6c) at room temperature. The resulting
Nyquist plots show an unusual trend for compounds of the spinel group. They are composed of the
three depressed semicircles in the high-to-low frequencies and a straight line in the low frequency
range. This phenomenon, however, has already been reported in the literature [44]. The impedance
spectra can be interpreted on the basis of the proposed equivalent circuit (inset II of Figure 7a), the
same for all curves, except the first one recorded before cycling (inset I of Figure 7a). In these circuits,
R1 refers to the uncompensated resistance of liquid electrolyte and the resistance between the electrode
and the current collector. The R1 corresponds to the high frequency intercept at the real axis. RSEI and
RCT are the resistances which are used to model two depressed semicircles. The first depressed
semicircle (at the high frequency region) is ascribed to lithium ion diffusion through the passivation
layer (SEI), and the second depressed semicircle (at the high-to-medium frequency region) is assigned
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to the charge transfer reaction of electrode material. The capacitance of the SEI film and the capacitance
of the double layer are represented by the constant phase elements (CPE), CPE1 and CPE2, respectively.
RE and CPE3 stand for the electronic resistance of the material and the associated capacitance used to
characterize the electronic properties of the material and model the third depressed semicircle (at the
medium-to-low frequency region). Another CPE element (CPE4) is responsible in the proposed circuit
for modelling the line at the low frequencies. As a matter of fact, this is a Warburg-type element
(0.5 < N < 1) which is attributed to the lithium ion diffusion. The values of each resistor from the fitted
circuits are given in Table 3. A significant decrease of RCT resistance during cell cycling (Figure 7b)
is a direct indication of an increase of electrical transfer in the material resulting in a decrease of the
cell polarization, thereby allowing a partial compensation of capacity fading; therefore, the LMN1OS
electrode reveals improved overall electrochemical performance. Furthermore, it was shown that
the increase of charge-discharge rate to 50C does not cause the SEI destruction, as the RSEI remains
constant. Some changes, however, are induced in the RCT and RE values, after applying 50C rate,
as presented in Figure 7b.
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(a) the EIS (electrochemical impedance spectroscopy) spectra; and (b) the changes of EIS parameters.

Table 3. Parameters of EIS measurements (calculated values of resistors in proposed equivalent circuits)
for LMN1OS electrode.

R1 (Ω) RSEI (Ω) RCT (Ω) RE (Ω)

before cycling 15 - 191 57
after 10th cycle C/10 23 15 143 29
after 20th cycle C/5 18 11 100 32
after 30th cycle C/2 14 10 65 32
after 40th cycle 1C 10 9 51 24
after 50th cycle 2C 10 9 49 27
after 60th cycle 5C 11 8 33 25
after 70th cycle 10C 9 8 23 21
after 80th cycle 20C 11 8 21 15
after 90th cycle 50C 11 8 23 18

after 100th cycle C/10 11 8 13 13

Three subsequent cyclic voltammetry (CV) curves of LMN1OS electrode, measured at room
temperature in the range from 3.5 to 4.8 V, are depicted in Figure 8. These voltammograms demonstrate
two main regions of electrochemical activity of the sample which are related to the four pairs of
reversible oxidation and reduction current peaks at 4.05, 4.17, 4.62, 4.72 V and 3.99, 4.09, 4.59, 4.69 V
respectively. The major doublet redox peaks at around 4.1 V originate from the Mn3+/Mn4+ redox
couple, whereas the smaller redox peaks at around 4.7 V are ascribed to the Ni2+/Ni3+ and Ni3+/Ni4+
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redox couples. As presented in the literature, for ordered LiMn1.5Ni0.5O4 spinel the ~4.1 V peaks are
not observed from the CV because oxidation states of Ni and Mn are +2 and +4 respectively [45]. In this
case, the appearance of ~4.1 V peaks signal the existence of Mn3+ ions which are mainly responsible
for the capacity of the LMN1OS material. The results of the CV are in good agreement with those
preceding galvanostatic charge-discharge experiments (associated plateaus in the charge/discharge
profiles in Figure 6a,b). Besides the well-defined and well-known redox peaks, a peak at around 3.88 V
is observed. It may be related to the structure ordering of nickel and sulfur doped LMO spinel, as the
peak is gradually converting during cycling. This behavior of LMN1OS spinel can be also concluded
from Figure 6c (the first ten cycles).
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4. Conclusions

Nickel and sulfur co-doped LiMn2O4 cathode materials were successfully synthesized by the
xerogel-type sol-gel process. Based on this method, nanosized materials with spinel structure,
homogeneous distributions of elements, and various nickel content were obtained. However, the
formation of single-phase spinel compounds is possible in the 0.1 ď x ď 0.2 Ni substitution range.
Due to the introduction of Ni and S in the LMO spinel structure, the unfavorable phase transition
around room temperature was diminished. What is more, the additive of nickel in the LiMn2O4

affected the electrical properties of the spinel. It was indicated that the decrease of nickel content in the
spinel structure gives rise to electrical conductivity at room temperature, while the activation energies
of conduction remained constant but still lower than for the LMO material. The electrochemical
studies performed with the synthesized materials delivered high capacity and excellent cycling
behavior of the LiMn1.9Ni0.1O3.99S0.01 cathode material (the first discharge capacity of the LMN1OS
cathode is about 10 mAh¨g´1 higher than for the LMO sample obtained by the same sol-gel
procedure [34]). Additionally, it was demonstrated that the nickel and sulfur doped spinel show
outstanding rate capability, very good capacity retention, and reversibility in comparison to the
stoichiometric spinel. It was found that the loss of initial capacity for the LMN1OS sample was only
around 19% after 650 cycles at 5C current density. On the basis of our results it can be pointed out that
the effect of synergetic substitution of lithium manganese oxide spinel with Ni and S is an efficient
way to promote its structural stability and electrochemical performance in Li-ion cells.
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