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Abstract: The objective of this study was to investigate the compressive strength parallel to the
grain of bamboo scrimber during and after exposure to various temperatures, in a range from 20 to
225 °C. These data were used to provide a basis for the evaluation of the fire performance of bamboo
structures. A total of 152 specimens, assembled as group “during-fire” and “post-fire”, were tested
during and after exposure to high temperatures. The experimental results indicated that there were
significant differences in compressive properties between the “during-fire” and “post-fire” groups.
At one temperature level, the compressive strength and modulus of elasticity of the “post-fire” group
were significantly higher than those properties of the “during fire” group, but the ductility coefficient
was reversed. FTIR analysis results showed that 175 °C was a key turning point, at which thermal
decomposition occurred in the cellulose of the bamboo and phenolic resin.
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1. Introduction

Employed as a popular green building material, bamboo offers a high strength-to-weight ratio,
but is also a rapidly growing plant, which can be harvested as a mature commercial material in three
to five years [1,2]. Consequently, bamboo has become increasingly popular throughout the world for
use in construction, particularly in China. This is more than a coincidence; rich bamboo resources in
China amount to more than 500 species, which represents about one-third of the world’s bamboo.

To fully utilize these abundant resources, many bamboo-based composites such as bamboo
scrimber, laminated bamboo lumber and glued-laminated bamboo have been developed in China.
These products offer the advantages of high manufacturing efficiency and utilization as well as good
physical and mechanical properties [3]. With an increased use of bamboo-based composites, it is
important to investigate their combustion behavior during and after exposure to high temperatures,
due their relative flammability.

The effect of temperature on wood or wood-based composites has been extensively studied.
At high temperature, the physical and mechanical properties of wood are strongly related to the
thermal degradation of the polymers in the material and the variation of water content in the product
during a fire. There are two traditional methods used to assess the thermo-mechanical properties
of wood. One method concerns the immediate effect of temperature where the sample is initially
heated to a prescribed temperature and then maintained at this temperature during a mechanical test.
Gerhards [4] has summarized the relevant studies on the immediate effect of moisture content and
temperature on the mechanical properties of clear wood. For instance, paricd wood loses about 65% of
its compressive strength parallel to the grain when exposed to 230 °C heat for 3 h [5]. At 220 °C over a
period of 2 h, the embedding strength of pinus sylvestris decreased to nearly half its original strength at
room temperature [6].
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The second method used to ascertain the permanent effect of temperature on wood entails first
heating the sample to the prescribed temperature and then cooling it to room temperature, where the
mechanical test is performed. Many research studies have employed this method to assess the post-fire
residual strength of structural wooden members [7-9].

Other than wood or wood-based composites, few studies have been conducted to determine the
changes in the mechanical performance of bamboo scrimber at or after exposure to high temperatures.
Because of the increased use of bamboo scrimber as a building material, more research on this material
isneeded. Determination of the performance and mechanical properties of full-sized bamboo structural
members, when subjected to extreme heat, is a difficult task to accomplish due to the high cost and
complexity of the material and testing. As a result, thermo-mechanical testing of smaller sample
materials, to determine its mechanical characteristics at high temperature, is used to assess the safety
of structural members exposed to fire [4].

Therefore, the objective of this study was to investigate the compressive strength of bamboo
scrimber during and after exposure to various temperatures, to provide a basis for the evaluation of
the behavior of bamboo structures in a building fire.

2. Materials and Methods

2.1. Materials

For this study, 10 pieces of commercial bamboo scrimber plates, fabricated using hot-pressing
technology, were supplied by Sichuan Hongya bamboo Co., Ltd. with the dimensions of
20 x 1250 x 2500 mm?® (Hongya, Sichuan, China). The raw material of the bamboo scrimber was
Ci bamboo (Neosino calamus affinis) from Hongya county, Sichuan Province, in the southwestern
part of China; harvested at the age of four to five years. The adhesive used to prepare the scrimber
plates was a commercially available low molecular weight phenol formaldehyde resin (PF16L510,
Beijing Dynea Chemical Industry Co., Ltd., Beijing, China). The resin had a 49% solids content,
a viscosity of 20-40 centi Poise (CPS), a pH of 10-11 and was dissolved in water. All the test specimens
were randomly cut from these plates and then were used for the determination of the influence of
temperature on compressive strength parallel to grain.

The effects of nine temperature levels (Table 1), in the range from 20 to 225 °C, on the compressive
strength parallel to grain, were investigated. Eighteen specimens were tested at each temperature level:
eight specimens were tested for compressive strength in group A, eight specimens for compressive test
in group B, and the other two specimens were subjected to Fourier transform infrared spectroscopy
(FTIR) testing.

Table 1. Average density of heated bamboo scrimber and standard deviation (SD) of compressive tests.

Temperature (°C) Number of Specimens Group A Group B
Avg (g/cm®) SD (g/cm?®) Avg (g/cm®) SD (g/cm?)

20 10 1.117 0.071 - -

50 18 1.142 0.033 1.173 0.022
75 18 1.167 0.041 1.151 0.052
100 18 1.150 0.025 1.148 0.024
125 18 1.134 0.032 1.141 0.042
150 18 1.143 0.036 1.169 0.042
175 18 1.142 0.034 1.116 0.044
200 18 1.165 0.041 1.153 0.043
225 18 1.144 0.037 1.119 0.061

Total 152

The dimensions of each specimen were 20 x 20 x 30 mm?>. Before the compression test, all the
specimens were conditioned at 20 °C and 65% relative humidity in a standard room, to arrive at
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equilibrium moisture content (EMC). The average moisture of all the specimens was 8.2%. The average
density and standard deviation were 1.15 and 0.047 g/cm?3.

2.2. Specimen Heat Processing

For each temperature level, 18 specimens were preheated in a drying oven for 120 min, to arrive
at the prescribed temperature. After this preheating process, eight specimens were transferred to
a temperature-controlled universal testing machine and were maintained at temperature for 5 min,
before the compressive strength was determined. These specimens were defined as group A. The other
10 specimens were cooled to room temperature for 24 h directly after the preheating period. The cooled
specimens did not require a temperature re-equilibration. After the cooling period, eight specimens of
this group were tested to determine the permanent compressive strength and were defined as group B.
The other two specimens were used for Fourier transform infrared spectroscopy (FTIR) test.

2.3. Mass Loss Test

According to Chinese national standard [10], the mass loss after high temperature calibration can
be calculated using Equation (1).
m = 100(wy — wy)/w 1)

where m is the mass loss (%), wy is the initial mass of the specimens before heating (g), w; is the mass
of the specimens before the compressive test (g).

2.4. Mechanical Test

Static compression tests for the specimens were conducted using an INSTRON 5582 universal
testing machine with a temperature-controlled chamber according to Chinese national standard [11].
The load bases were placed inside the chamber. Specimens were loaded at a rate of 1 mm/min, which
were continued until failure. The compressive strength parallel to grain (f), modulus of elasticity (E),
and ductility coefficient (i) were determined using Equations (2)—(4).

f = FmaX/A (2)
E=klI/A (3)
w=A, /Ay 4)

where Frayx is the maximum load (N), A is the cross-section area of the test specimen (mm?), k is the
linear stiffness (N/mm), ! is the length of specimen (mm), A, is the ultimate displacement (mm), and
Ay is the yield displacement (mm). These statistical parameters are defined in Figure 1.

Load (kN)
>~

—Y 1

f 1
Displacement (mm)

Figure 1. Statistical parameters of compression test.



Materials 2016, 9, 436 40f9

2.5. FTIR Test

The bamboo scrimber specimen was ground into a powder which was then mixed with the KBr
to form a pellet. Fourier transform infrared (TENSOR27, Bruker Corporation, Saarbrucken, Germany)
spectra were obtained on the KBr pellet, to determine the relationship between chemical constituents
and the mechanical properties of bamboo scrimber.

2.6. Statistical Analysis

The graphical analysis was conducted using the Origin 9 software (OriginLab Corporation,
Northampton, MA, USA). The analysis of variance (ANOVA) method using SPSS 19.0 (IBM SPSS
Corporation, Chicago, IL, USA) was used to analyze the difference of compressive properties between
various temperatures, and between the immediate and permanent compressive tests. Multiple
comparisons for various temperatures were calculated using the Duncan method. The significance
level was set to 0.05.

3. Results and Discussion

3.1. Mass Loss

The mass losses of the bamboo scrimber samples during and after high temperature testing
were measured (Figure 2). The difference in mass loss between group A and B was small, which
could be neglected. The rate of mass loss was still low over the temperature range of 125-175 °C.
This indicated that the small loss can be mainly attributed to the loss of water; the mass of the bamboo
scrimber remained constant when the temperature was below 175 °C. However, the mass loss began
to increase rapidly when the temperature grew above 175 °C. At 225° C, the mass loss reached 21%.
Zhang et al. [12] and Hakkou et al. [13] reported on the influence of high temperature on bamboo and
hard wood species and found similar results.

25
—— Group A
20 —~—Group B
B'E'
= 45
w
o /
2 10-
5- //
0{ =~
0 50 100 150 200 250

Temperature [C]

Figure 2. Mass loss of specimens.

3.2. Color Changes

As an indicator of degradation, color change was measured. For both group A and B, during
the heating period, a change in the color of the bamboo scrimber occurred in the inner and external
areas of the specimens, as determined by visual observation (Figure 3a—f). When the temperature was
greater than 150 °C, the changes in color were quite apparent. At 225 °C, the color of the specimens
changed to black from light yellow (Figure 3f).
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Figure 3. Color changes: (a) 20 °C; (b) 125 °C; (c) 150 °C; (d) 175 °C; (e) 200 °C; (f) 225 °C.

(@)

The extent of the color change of the bamboo depended on the temperature to which the sample
was exposed [5]. At low temperatures ranging from 50 to 125 °C, the color changes were slight.
This is because the major alteration in the product was caused by a loss of water and volatile organic
compounds, which lead to physical changes [14]. The color changes are significant at high temperatures,
due mainly to the transfer of carbohydrates, phenols and other extracts from the interior of the sample
to the exterior during the evaporation of moisture [15,16].

3.3. Compressive Analysis

The mechanical properties of bamboo at high temperature change with exposure to heat. Due to
this, the compressive strength was measured. The mean values and standard deviations for f, E, and p
of the test samples are given in Table 2, together with the multivariance analysis. At a set temperature,
both the compressive f and E of group B were significantly higher than those of group A, but the p of
group B was significant lower than that of group A.

Table 2. Average compressive properties and Duncan test results of bamboo scrimber exposed to heat.

Heated Group A Group B
Temperature (°C) f (MPa) E (MPa) u f (MPa) E (MPa) i
20 133.0 +£10.8a 4492 + 145a 1.99 + 0.26b 133.0 £10.8d 4492 + 145ab 1.99 + 0.26b
50 102.9 + 4.1d 4165 + 264b 2.08 + 0.14ab 147.3 + 4.1c 4532 + 114ab 1.82 + 0.33ab
75 96.5 + 3.4e 4078 + 268bc 2.11 £ 0.33ab 155.8 + 6.1c 4484 + 190ab 1.83 £ 0.16ab
100 1022 +5.0d 4014 + 221bed  2.17 4 0.22ab 185.3 + 4.6b 4603 + 91a 1.84 + 0.22ab
125 119.7 £ 3.3b 4078 + 83bc 2.15 4+ 0.34ab 206.0 +£10.1a 4602 £+ 107a 1.61 £ 0.16bc
150 109.0 + 4.3¢ 3810 + 155d 2.15 + 0.29ab 206.7 + 7.4a 4436 + 163b 1.52 + 0.28bc
175 96.3 + 4.3e 3878 + 247cd 1.95 + 0.31b 202.5 £+ 7.5a 4561 + 135ab 1.99 + 0.44a
200 753 + 4.1f 3920 + 94bcd 1.86 + 0.10b 179.9 + 7.3b 4528 + 69ab 1.32 £ 0.14c
225 61.4 +4.3¢g 3313 + 363e 240 + 0.51a 114. 8 + 13.4e 4087 + 147c 1.72 + 0.49ab

The letters in the same column represent statistical differences at a 95% confidence level (p < 0.05); f: compressive
strength parallel to grain; E: modulus of elasticity; p: ductility coefficient.

The compressive strength f is influenced by the temperature increase (Figure 4). It contains
many complexly influencing factors, such as the moisture content, temperature, and adhesive and
raw material itself. For group A (Figure 4a), the compressive strength initially decreased and then
increased in the temperature range of 20 to 125 °C. These changes could be the result of two factors.
First, some moisture was removed, which has an inverse relation to the strength and can lead to
the increase in strength. Second, the softening effects of the high temperature caused f to decrease.
The findings of Schaffer [17] showed that hemicelluloses soften at 55 °C and lignin begins to soften
near 100 °C. Above 125 °C, the compressive f decreased linearly with temperature, due primarily to
the decomposition of polymers in the wood or to changes in the glass transition temperature of the
polymers. As reported by some works [18,19], the hemicelluloses degrade at temperatures between
150 and 200 °C, while lignin decomposes at temperatures between 220 and 250 °C. The hemicelluloses
have a glass transition temperature (Tg) in the range of 190-220 °C and lignin has a Ty in the range
of 124-193 °C [20]. In addition, the degradation of the phenol formaldehyde resin occurred at a
temperature above 175 °C. According to the variance analysis, there were significant differences in the
compressive strength at 20 °C and at other temperatures. After 2 h at 225 °C, the maximum decrease
in f was 54%, which was consistent with the results reported in the literature [1,5].
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Figure 4. Compressive strength (f) of bamboo scrimber exposure to heat: (a) group A; (b) group B.
The box plot shows the mean value, +1.0 SD (box), Min-Max (whisker).

For group B, the compressive f first increased and then decreased (Figure 4b). There were
significant differences in the f behavior between groups A and B as a function of temperature. This is
because the softening effect of high temperature on the specimens in group B was eliminated when
the specimens had been cooled to room temperature, before the compression test. The mean values
of f for group B were 0.61, 0.72, 1.10 and 0.87 times higher than those for group A at 75, 125, 175 and
225 °C, respectively (Table 2). After 2 h at 225 °C, the bamboo scrimber of group B exhibited a drop of
14% from its initial strength at 20 °C.

The compressive E of the tested bamboo scrimber samples is shown in Figure 5. For group A
(Figure 5a), the E decreased with the increase of temperature mainly because of the softening effects
of high temperature. Above 200 °C there was a significant decrease in the E due to the degradation
of lignin and the glass transition of hemicelluloses [20]. Based on the variance analysis, there were
significant differences between the E at 20 °C and at other temperatures. The mean value at 225 °C
corresponded to 74% of the E at 20 °C.
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Figure 5. Compressive modulus of elasticity (E) of bamboo scrimber exposure to heat: (a) group A;

(b) group B.
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However, for group B (Figure 5b), the bamboo scrimber showed no significant change in the E in

the range from 20 to 200 °C. There was a significant decrease in the E at 225 °C, which was similar to
that of group A. The maximum reduction in the E was 9%. Zhang et al. [12] and Qin [21] reported that
the phyllostachys pubescen bamboo had a significant decrease in its E of up to 200 °C, and attained a
reduction of 20% above this temperature. In addition, it is very apparent from these results that the
compressive E of group B was higher than that of group A (Table 2).

The ductility coefficient (i) of the treated bamboo scrimber is shown in Figure 6, which represents
its plastic deformation capacity. A slight change was observed in p when the temperature was increased
from 20 to 200 °C. The minimum and maximum p values were 1.86 for 200 °C and 2.40 at 225 °C.
According to the variance analysis, there was no difference between the p at various temperatures
except at 225 °C.
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Figure 6. Compressive ductility coefficient (i) of bamboo scrimber exposure to heat: (a) group A;
(b) group B.

Figure 6b shows that the p of group B decreased slightly at temperatures ranging from 20 to 150 °C.
The mean value was 1.52 at 150 °C, and 0.76 at 20 °C. In addition, the p of group B was significantly
lower than that of group A (Table 2), except at 175 °C. At 75, 150 and 225 °C, the mean values of the p
of group B were 0.87, 0.71 and 0.72 times, respectively (Table 2), compared with group A.

3.4. Changes of Chemical Components

Based on the previously detailed analysis, obvious changes occurred in the mechanical properties
of bamboo scrimber when exposed to temperatures of 125 and 175 °C. Therefore, specimens treated at
20,125, 175 and 225 °C were selected for FTIR spectrum analysis. The bamboo scrimber was composed
of bamboo and phenol formaldehyde resin, which mainly include cellulose, hemicelluloses, lignin and
phenolic resin. Figure 7 shows the FTIR spectra of the bamboo scrimber treated at various temperatures.
The characteristic bands of the infrared spectra of bamboo scrimber are shown in Table 3.

4.0
3.54

Absorbance

00 T T T T T T v T A
1800 1600 1400 1200 1000 800
Wavenumber (cm™)

Figure 7. FTIR spectra of bamboo scrimber after explored different temperatures: (a) 20 °C; (b) 125 °C;
() 175 °C; (d) 225 °C.

Table 3. Characteristic bands of the infrared spectra of bamboo scrimber.

Number = Wavenumber (cm™?) Absorption Peak Location and Assignment
1 1712 C=0 stretching of xylan (hemicelluloses)
2 1596 C=C stretching of benzene ring (phenolic resin)
3 1510 Carbon skeleton stretching of benzene ring (lignin of bamboo)
4 1427 C-H stretching of methlene
5 1373 C-H deforming and stretching (cellulose and hemicelluloses of bamboo)
6 1108 C-H stretching of aromatic ring (phenolic resin)
7 1053 C-O stretching
8 897 Anomeric carbon (C1) stretching (cellulose of bamboo)
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To determine the changes of chemical components at various temperatures, the absorption peak of
bamboo scrimber at 897 cm ™! was considered as being characteristic of bamboo. The absorption peak
at 1596 cm~! was considered typical of phenolic resin. The relative intensities of C-O and C1 stretching
against typical bands are shown in Table 4. These results indicate that both the I;594 /11108 and Igg7 /11108
decreased as the temperature increased. There was a significant difference between the materials at
125 and 175 °C. These results indicated that the temperature of 175 °C is a key turning point for the
material at which of the cellulose in the bamboo and the phenolic resin thermally decomposed.

Table 4. Relative intensities of C-O and Cl1 stretching against typical bands and Duncan test results.

Temperature (°C) I1596/T1108 Ig97/11108
20 4.98a 0.93a
125 4.95a 0.84a
175 4.41b 0.61b
225 2.92¢ 0.25¢

4. Conclusions

This investigation focused on determining the mechanical properties of bamboo scrimber
subjected to elevated temperatures simulating a building fire. The results of this study led to the
following conclusions:

e The average compressive strength parallel to the grain of bamboo scrimber was found to be
133 MPa at 20 °C, 61.4 MPa in a designated “during fire” group and 115 MPa in a “post-fire”
group at 225 °C. The strength loss of these two groups was 54% and 14%.

e  There were significant differences in the compressive properties between the two groups. At one
set temperature level, the compressive strength and modulus of elasticity of the “post-fire” group
were significantly higher than the ‘during fire” group, but the ductility coefficient of these two
groups was reversed.

e  The compressive strength was affected by temperature, but there were other complicating factors
at play including moisture content, the adhesive used and raw material.

e Changes in the color of bamboo scrimber occurred in the inner and external areas of the samples
after being subjected to high temperature, which became more apparent at temperatures above
150 °C.

e  FTIR test results showed that 175 °C was a key turning point, at which the cellulose in the bamboo
and the phenolic compounds in the resin thermally decomposed. These results may help to
estimate the behavior of bamboo structures during a fire using numerical analysis, to predict the
residual load capacity of the material.
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