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Abstract: In this paper, we present a new sixth-order iterative method for solving nonlinear systems
and prove a local convergence result. The new method requires solving five linear systems per
iteration. An important feature of the new method is that the LU (lower upper, also called
LU factorization) decomposition of the Jacobian matrix is computed only once in each iteration.
The computational efficiency index of the new method is compared to that of some known methods.
Numerical results are given to show that the convergence behavior of the new method is similar to the
existing methods. The new method can be applied to small- and medium-sized nonlinear systems.
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1. Introduction

We consider the problem of finding a zero of a nonlinear function F : D ⊂ Rm → Rm , that is,
a solution α of the nonlinear system F(x) = 0 with m equations and m unknowns. Newton’s
method [1,2] is the well-known method for solving nonlinear systems, which can be written as:

x(k+1) = x(k) − F′(x(k))
−1

F(x(k)), (1)

where F′(x(k)) is the Jacobian matrix of the function F evaluated in the kth iteration and F′(x(k))
−1

is
the inverse of F′(x(k)). Newton’s method is denoted by NM. Newton’s method converges quadratically
if F′(α) is nonsingular and F′(x) is Lipschitz continuous on D. The method (1) can be written as:{

F′(x(k))γ(k) = F(x(k)),
x(k+1) = x(k) − γ(k),

(2)

which requires (m3 −m)/3 multiplications and divisions in the LU decomposition (lower upper, also
called LU factorization) and m2 multiplications and divisions for solving two triangular linear systems.
So, the computational cost (multiplications and divisions) of the method (1) is (m3 −m)/3 + m2.

In order to accelerate the convergence or to reduce the computational cost and function evaluation
in each step of the iterative process, many efficient methods have been proposed for solving nonlinear
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systems, see [3–21] and the references therein. Cordero et al. [3,4] developed some variants of Newton’s
method. One of the methods is the following fourth-order method [3]:{

y(k) = x(k) − F′(x(k))
−1

F(x(k)),

x(k+1) = y(k) − [2I − F′(x(k))
−1

F′(y(k))]F′(x(k))
−1

F(y(k)),
(3)

where I is the identity matrix. Method (3) is denoted by CM4 and requires LU decomposition of the
Jacobian matrix only once per full iteration. Based on method (3), Cordero et al. [4] presented the
following sixth-order method:

y(k) = x(k) − F′(x(k))
−1

F(x(k)),

z(k) = y(k) − [2I − F′(x(k))
−1

F′(y(k))]F′(x(k))
−1

F(y(k)),

x(k+1) = z(k) − F′(y(k))
−1

F(z(k)),

(4)

where I is the identity matrix. Method (4) is denoted by CHM and requires two LU decompositions of
the Jacobian matrix, one for F′(x(k)) and one for F′(y(k)). Grau-Sánchez et al. [5] obtained the following
sixth-order method:

y(k) = x(k) − F[x(k) + F(x(k)), x− F(x(k))]
−1

F(x(k)),

z(k) = y(k) −
{

2F[x(k), y(k)]− F[x(k) + F(x(k)), x− F(x(k))]
}−1

F(y(k)),

x(k+1) = z(k) −
{

2F[x(k), y(k)]− F[x(k) + F(x(k)), x− F(x(k))]
}−1

F(z(k)),

(5)

where F[·, ·] denotes the first-order divided difference of D. Method (5) is denoted by SNAM and
requires two LU decompositions for solving the linear systems involved.

It is well known that the computational cost of the iterative method greatly influences the efficiency
of the iterative method. The number of LU decompositions that are used in the iterative method
thus plays an important role when it comes to measuring the computational cost. So, we can reduce
the computational cost of the iterative method by reducing the number of LU decompositions in
each iteration.

The purpose of this paper is to construct a new sixth-order iterative method for solving small- and
medium-sized systems. The theoretical advantages of the new method are based on the assumption
that the Jacobian matrix is dense and that LU factorization is used to solve systems with the Jacobian.
This assumption is not correct for sparse Jacobian matrices. An important feature of the new method is
that the LU decomposition is computed only once per full iteration. This paper is organized as follows.
In Section 2, based on the well-known fourth-order method (3), we present a sixth-order iterative
method for solving nonlinear systems. The new method only increases one function evaluation, F. For a
system of m equations, each iteration uses 3m+ 2m2 evaluations of scalar functions. The computational
efficiency is compared to some well-known methods in Section 3. In Section 4, numerical examples are
given to illustrate the convergence behavior of our method. Section 5 offers a short conclusion.

2. The New Method and Analysis of Convergence

Based on the method (3), we construct the following iterative scheme:
y(k) = x(k) − F′(x(k))

−1
F(x(k)),

z(k) = y(k) − (2I − F′(x(k))
−1

F′(y(k)))F′(x(k))
−1

F(y(k)),

x(k+1) = z(k) − (2I − F′(x(k))
−1

F′(y(k)))F′(x(k))
−1

F(z(k)),

(6)
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where I is the identity matrix. We note that the first two steps of method (6) are the same as those of
method (3), and the third step of method (6) increases one function evaluation F(z(k)). Method (6) will
be denoted by M6. For method (6), we have the following convergence analysis.

Theorem 1. Let α ∈ Rm be a solution of the system F(x) = 0 and F : D ⊂ Rm → Rm be sufficiently
differentiable in an open neighborhood D of α. Suppose that F′(x) is nonsingular in D. Then, for an initial
approximation sufficiently close to α, the iterations converge with order 6.

Proof. By using the notation introduced in [6], we have the following Taylor’s expansion of F(x(k))
around α:

F(x(k)) = F′(α)[e + A2e2 + A3e3 + O(e4)], (7)

where Ai =
1
i! F′(α)−1F(i)(α) ∈ Li(Rm, Rm), e = x(k) − α Aiei ∈ Rm, F(i)(α) ∈ L(Rm × · · · × Rm, Rm),

F−1(α) ∈ L(Rm) and ei denotes (e,
i· · ·, e). From (7) the derivatives of F(x(k)) can be written as:

F′(x(k)) = F′(α)[I + 2A2e + 3A3e2 + O(e3)] = F′(α)D(e) + O(e3), (8)

where D(e) = I + 2A2e + 3A3e2. The inverse of (8) can be written as:

F′(x(k))
−1

= D(e)−1F′(α)−1 + O(e3). (9)

Then, we compel the inverse of D(e) to be (see [6]):

D(e)−1 = I + X2e + X3e2 + O(e3), (10)

such that X2 verifies:
D(e)D(e)−1 = D(e)−1D(e) = I. (11)

Solving system (11), we get:
X2 = −2A2, (12)

X3 = 4A2
2 − 3A3, (13)

then,
F′(x(k))

−1
= [I − 2A2e + (4A2

2 − 3A3)e2]F′(α)−1 + O(e3). (14)

Let us denote E = y(k) − α. From (6), (7) and (14), we arrive at:

E = e− F′(x(k))
−1

F(x(k)) = A2e2 + O(e3). (15)

By a similar argument to that of (7), we obtain:

F(y(k)) = F′(α)[E + A2E2 + O(E3)] = F′(α)[A2e2 + A3
2e4 + O(e5)], (16)

F′(y(k)) = F′(α)[I + 2A2E + O(E2)] = F′(α)[I + 2A2
2e2 + O(e3)]. (17)

From (14) and (17), we have:

(2I − F′(x(k))
−1

F′(y(k)))F′(x(k))
−1

= [I − 2A2E− 4A2
2e2]F′(α)−1 + O(e3)= [I − 6A2

2e2]F′(α)−1 + O(e3). (18)

Let us denote ε = z(k) − α. From (14), (15) and (18), we get:

ε = z(k) − α = E− [I − 2A2E− 4A2
2e2][E + A2E2 + O(E3)]

= A2E2 + 4A2
2e2E + O(e5)

= 5A3
2e4 + O(e5),

(19)
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F(z(k)) = F′(α)[ε + A2ε2 + O(ε3)]= F′(α)[5A3
2e4 + O(e5)]. (20)

Therefore, from (15) and (18)—(20), we obtain the error equation:

en+1 = x(k+1) − α = ε− [I − 2A2E− 4A2
2e2][ε + O(ε2)]

= 2A2Eε + 4A2
2e2ε + O(e7)

= 30A5
2e6 + O(e7).

(21)

This implies that method (6) is of sixth-order convergence. This completes the proof.

In order to simplify the calculation, the new method (6) can be written as:

F′(x(k))γ(k) = F(x(k)), y(k) = x(k) − γ(k),

F′(x(k))δ(k)1 = F(y(k)), δ
(k)
2 = F′(y(k))δ(k)1 , F′(x(k))δ(k)3 = δ

(k)
2 ,

z(k) = y(k) − 2δ
(k)
1 + δ

(k)
3 ,

F′(x(k))β
(k)
1 = F(z(k)), β

(k)
2 = F′(y(k))β

(k)
1 , F′(x(k))β

(k)
3 = β

(k)
2 ,

x(k+1) = z(k) − 2β
(k)
1 + β

(k)
3 .

(22)

From (22), we can see that the LU decomposition of the Jacobian matrix F′(x(k)) would be
computed only once per iteration.

3. Computational Efficiency

Here, we want to compare the computational efficiency index of our sixth-order method (M6,
(6)) with Newton’s method (NM, (1)), Cordero’s fourth-order method (CM4, (3)), Grau-Sánchez’s
sixth-order method (SNAM, (5)) and Cordero’s sixth-order methods (CHM, (4)) and (CTVM, (18)).
The method CTVM [7] is as follows:

y(k) = x(k) − 1/2F′(x(k))
−1

F(x(k)),

z(k) = x(k) + [F′(x(k))− 2F′(y(k))]
−1

[3F(x(k))− 4F(y(k))],

x(k+1) = z(k) + [F′(x(k))− 2F′(y(k))]
−1

F(z(k)).

(23)

We define, respectively, the computational efficiency index (CEI) of the methods NM, CM4,
SNAM, CHM, CTVM and M6 as:

CEIi(µ, m) = ρi
1

Ci(µ, m) , i = 1, 2, 3, 4, 5, 6, (24)

where ρi is the convergence order of the method and Ci(µ, m) is the computational cost of method.
The Ci(µ, m) is given by [8]:

Ci(µ, m) = ai(m)µ + pi(m), (25)

where ai(m) represents the number of evaluations of the scalar functions used in the evaluations of F,
F′ and [y, x; F]. The pi(m) represents the computational cost per iteration. µ > 0 is the ratio between
multiplications (and divisions) and evaluations of functions that are required to express Ci(µ, m) in
terms of multiplications (and divisions). The divided difference [y, x; F] is defined by [9]:

[y, x; F]ij = (Fi(y1 · · · , yj−1, yj, xj+1, · · · , xm)− Fi(y1 · · · , yj−1, xj, xj+1, · · · , xm))/(yj − xj), 1 ≤ i, j ≤ m,

where F(x) and F(y) are computed separately. When we compute a divided difference, we need m2

quotients and m(m− 1) scalar function evaluations. We must add m multiplications for the scalar
product, m2 multiplications for the matrix-vector multiplication and m2 evaluations of scalar functions
for any new derivative F′. In order to factorize a matrix, we require (m3 − m)/3 multiplications
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and divisions in the LU decomposition. We require m2 multiplications and divisions for solving
two triangular linear systems.

Taking into account the previous considerations, we give the computational cost of each iterative
method in Table 1.

Table 1. Computational cost of the iterative methods.

Methods ρ a(m) p(m) C(µ, m)

NM 2 m(m + 1) (m3 −m)/3 + m2 C1 = m(m + 1)µ + (m3 −m)/3 + m2

CM4 4 2m(m + 1) (m3 −m)/3 + 4m2 + m C2 = 2m(m + 1)µ + (m3 −m)/3 + 4m2 + m
SNAM 6 m(2m + 3) 2(m3 −m)/3 + 6m2 C3 = m(2m + 3)µ + 2(m3 −m)/3 + 6m2

CHM 6 m(2m + 3) 2(m3 −m)/3 + 5m2 + m C4 = m(2m + 3)µ + 2(m3 −m)/3 + 5m2 + m
CTVM 6 m(2m + 3) 2(m3−m)/3+ 4m2 + 3m C5 = m(2m+ 3)µ+ 2(m3−m)/3+ 4m2 + 3m

M6 6 m(2m + 3) (m3 −m)/3 + 7m2 + 2m C6 = m(2m + 3)µ + (m3 −m)/3 + 7m2 + 2m

From Table 1, we can see that these sixth-order iterative methods have the same number of
function evaluations. Our method (M6) needs less LU decompositions than other methods with the
same order. Therefore, the computational cost of our method is lower.

We use the following expressions [10] to compare the computational efficiency index of each
iterative method:

Ri,j =
log CEIi
log CEIj

=
log(ρi)Cj(µ, m)

log(ρj)Ci(µ, m)
, i, j = 1, 2, 3, 4, 5, 6. (26)

For Ri,j > 1 the iterative method Mi is more efficient than Mj. We have the following theorem:

Theorem 2. For all µ > 0 we have:

1. CEI6 > CEI3 for all m ≥ 5,
2. CEI6 > CEI4 for all m ≥ 7,
3. CEI6 > CEI5 for all m ≥ 9.

Proof. We note that the methods SNAM, CHM, CTVM and method M6 have the same order ρ3 =

ρ4 = ρ5 = ρ6 = 6 and the same number of function evaluations a3(m) = a4(m) = a5(m) = a6(m)=

m(2m + 3).

1. Based on the expression (26), the relation between SNAM and M6 can be given by:

R6,3 =
log(ρ6)C3(µ, m)

log(ρ3)C6(µ, m)
=

m(2m + 3)µ + 2(m3 −m)/3 + 6m2

m(2m + 3)µ + (m3 −m)/3 + 7m2 + 2m
. (27)

Subtracting the denominator from the numerator of (27), we have:

1
3

m(m2 − 3m− 7). (28)

Equation (28) is positive for m ≥ 4.541. Thus, we get CEI6 > CEI3 for all m ≥ 5 and µ > 0.
2. The relation between CHM and M6 is given by:

R6,4 =
log(ρ6)C4(µ, m)

log(ρ4)C6(µ, m)
=

m(2m + 3)µ + 2(m3 −m)/3 + 5m2 + m
m(2m + 3)µ + (m3 −m)/3 + 7m2 + 2m

. (29)

Subtracting the denominator from the numerator of (29), we have:

1
3

m(m2 − 6m− 4). (30)
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Equation (30) is positive for m ≥ 6.606. Thus, we get CEI6 > CEI4 for all m ≥ 7 and µ > 0.
3. The relation between CHM and M6 can be given by:

R6,4 =
log(ρ6)C5(µ, m)

log(ρ5)C6(µ, m)
=

m(2m + 3)µ + 2(m3 −m)/3 + 4m2 + 3m
m(2m + 3)µ + (m3 −m)/3 + 7m2 + 2m

. (31)

Subtracting the denominator from the numerator of (31), we have:

1
3

m(m2 − 9m + 2). (32)

Equation (32) is positive for m ≥ 8.772. Thus, we obtain CEI6 > CEI5 for all m ≥ 9 and µ > 0.
This completes the proof.

Theorem 3. For all m ≥ 2 we have:

1. CEI6 > CEI1 for all µ >
m2 log(3)+3(log(3)−6 log(2))m−(6 log(2)+log(3))

3(m log(2/3)+log(4/3)) ,

2. CEI6 > CEI2 for all µ >
m2 log(3/2)+6(2 log(3)−5 log(2))m+2(log(3)−4 log(2))

6(m log(2/3)+log(4/3)) .

Proof.

1. From expression (26) and Table 1, we get the following relation between NM and M6:

R6,1 =
log(ρ6)C1(µ, m)

log(ρ1)C6(µ, m)
=

log(6)
log(2)

m(m + 1)µ + (m3 −m)/3 + m2

m(2m + 3)µ + (m3 −m)/3 + 7m2 + 2m
. (33)

We consider the boundary R6,1 = 1. The boundary can be given by the following equation:

µ = H6,1(m) =
m2 log(3) + 3(log(3)− 6 log(2))m− (6 log(2) + log(3))

3(m log(2/3) + log(4/3))
, (34)

where CEI6 > CEI1 over it (see Figure 1). Boundary (34) cuts axes at points (µ, m) = (0, 8.8948)
and (12.2470, 2). Thus, we get CEI6 > CEI1 since R6,1 > 1 for all m ≥ 2 and µ > H6,1(m).

2. The relation between CM4 and M6 is given by:

R6,2 =
log(ρ6)C2(µ, m)

log(ρ2)C6(µ, m)
=

log(6)
log(4)

2m(m + 1)µ + (m3 −m)/3 + 4m2 + m
m(2m + 3)µ + (m3 −m)/3 + 7m2 + 2m

. (35)

We consider the boundary R6,2 = 1. The boundary can be given by the following equation:

µ = H6,2(m) =
m2 log(3/2) + 6(2 log(3)− 5 log(2))m + 2(log(3)− 4 log(2))

6(m log(2/3) + log(4/3))
, (36)

where CEI6 > CEI2 over it (see Figure 1). Boundary (36) cuts axes at points (µ, m) = (0, 19.2012)
and (5.3984, 2). Thus, we get CEI6 > CEI2 since R6,2 > 1 for all m ≥ 2 and µ > H6,2(m).

This completes the proof.

In Tables 2 and 3, we show the computational efficiency indices of NM, CM4, SNAM, CHM,
CTVM and M6, for different values of the size of the nonlinear systems.
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Figure 1. The boundary functions H6,1 and H6,2 in (µ, m)—plain.

Table 2. Computational efficiency indices of the methods (µ = 2).

m CEI1 CEI2 CEI3 CEI4 CEI5 CEI6

5 1.0055606 1.0052450 1.0049895 1.0052838 1.0055283 1.0050600
7 1.0025422 1.0025753 1.0023729 1.0025126 1.0026423 1.0025375
9 1.0013845 1.0014870 1.0013340 1.0014096 1.0014831 1.0014905

11 1.0008405 1.0009480 1.0008314 1.0008761 1.0009207 1.0009643
20 1.0001777 1.0002326 1.0001898 1.0001978 1.0002060 1.0002482
50 1.0000141 1.0000224 1.0000165 1.0000169 1.0000173 1.0000258
100 1.0000019 1.0000034 1.0000023 1.0000024 1.0000024 1.0000040
200 1.0000002 1.0000005 1.0000003 1.0000003 1.0000003 1.0000006

Table 3. Computational efficiency indices of the methods (µ = 6).

m CEI1 CEI2 CEI3 CEI4 CEI5 CEI6

5 1.0028332 1.0027489 1.0028941 1.0029907 1.0030675 1.0029177
7 1.0013956 1.0014055 1.0014554 1.0015068 1.0015525 1.0015157
9 1.0008054 1.0008390 1.0008536 1.0008839 1.0009123 1.0009150

11 1.0005124 1.0005505 1.0005504 1.0005697 1.0005882 1.0006057
20 1.0001242 1.0001488 1.0001391 1.0001434 1.0001476 1.0001681
50 1.0000117 1.0000168 1.0000139 1.0000141 1.0000144 1.0000199
100 1.0000017 1.0000028 1.0000021 1.0000021 1.0000022 1.0000034
200 1.0000002 1.0000004 1.0000003 1.0000003 1.0000003 1.0000005

The results shown in Tables 2 and 3 are in concordance with the Theorems 2 and 3. We can see
that, for small- and medium-sized systems, the computational efficiency index of our method (M6) is
similar to the other methods in this paper.

4. Numerical Examples

In this section, we compare the related methods by numerical experiments. The numerical
experiments are performed using the MAPLE computer algebra system with 2048 digits. The method
M6 is compared with NM, CM4, SNAM, CHM, CTVM by solving some nonlinear systems.
The stopping criterion used is

∣∣∣∣∣∣x(k+1) − x(k)
∣∣∣∣∣∣< 10−200 or

∣∣∣∣∣∣F(x(k))
∣∣∣∣∣∣< 10−200 .

Following nonlinear systems are used: F1(x1, x2) = (2− ex1 + arctan(x2), arctan(x2
1 + x2

2 − 5))
and the initial value is x(0) = (1.35, 2)T . The solution is α ≈ ( 1.1290650391602, 1.9300808629035)T .

F2(x1, x2, x3) = (x2 + x3 − e−x1 , x1 + x3 − e−x3 , x1 + x2 − e−x3) and the initial value is
x(0) = (0.2, 1.5, 1.5)T . The solution is α ≈ (0.351733711249, 0.351733711249, 0.351733711249)T .
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F3(x) = ( f1(x), f2(x), . . . , fn(x)), where x = (x1, x2, · · · , xn)
T and fi : Rn → R, i = 1, 2, · · · , n,

such that
fi(x) = xixi+1 − 1, i = 1, 2, · · · , n− 1,

fn(x) = xnx1 − 1.

When n is odd, the exact zeros of F4(x) are α1 = (1, 1, · · · , 1) and α2 = (−1,−1, · · · ,−1).
The initial value is x(0) = (2.5, 0.5, 1.5, 2.5, 2.5, 1.5, 2.5, 0.5, 2.5, 1.5, 8.5)T .

Table 4 presents the results showing the following information: the number of iterations k needed
to converge to the solution, the value of the stopping factors at the last step and the computational
order of convergence ρ. The computational order of convergence ρ is defined by [18]:

ρ ≈
ln(
∣∣∣∣∣∣x(k+1) − x(k)

∣∣∣∣∣∣/∣∣∣∣∣∣x(k) − x(k−1)
∣∣∣∣∣∣)

ln(
∣∣∣∣x(k) − x(k−1)

∣∣∣∣/∣∣∣∣x(k−1) − x(k−2)
∣∣∣∣) . (37)

Table 4. Numerical results for Fi(i = 1, 2, 3) by the methods.

Function Method k
∣∣∣∣∣∣x(k) − x(k−1)

∣∣∣∣∣∣ ∣∣∣∣∣∣F(x(k))
∣∣∣∣∣∣ ρ

F1 NM 8 2.42128 × 10−192 1.06480 × 10−383 1.99667
CM4 5 5.59843 × 10−147 2.69120 × 10−586 4.00129

SNAM 4 3.76810 × 10−39 3.25655 × 10−227 6.09363
CHM 4 4.18959 × 10−123 4.03125 × 10−736 5.99962

CTVM 4 2.07203 × 10−100 2.63883 × 10−597 6.00033
M6 4 7.65662 × 10−119 1.55028 × 10−710 6.00589

F2 NM 9 3.41596 × 10−116 2.48971 × 10−232 1.97549
CM4 5 3.73825 × 10−90 1.20501 × 10−359 4.02761

SNAM 4 9.18821 × 10−35 6.76819 × 10−207 5.98999
CHM 4 8.31995 × 10−52 8.11818 × 10−310 5.72008

CTVM 4 3.82928 × 10−42 4.59455 × 10−251 5.85429
M6 4 8.13364 × 10−65 6.14607 × 10−387 5.99644

F3 NM 22 2.71070 × 10−196 2.20459 × 10−392 1.99900
CM4 6 2.26562 × 10−115 1.03777 × 10−460 4.00061

SNAM nc
CHM 5 2.79450 × 10−99 4.68047 × 10−594 5.92903

CTVM 5 5.12075 × 10−193 1.30600 × 10−1157 5.97091
M6 5 1.99499 × 10−161 3.41913 × 10−967 6.08153

The numerical results shown in Table 4 are in concordance with the theory developed in this
paper. The order of convergence of our method (M6) is 6, which is higher than the methods NM and
CM4. The iterative method SNAM is not convergent (nc) for F3 with the corresponding initial value.
The convergence behavior of our method is similar to the existing methods in this paper.

5. Conclusions

In this paper, we have proposed a new iterative method of order six for solving nonlinear systems.
Although five linear systems are required to be solved in each iteration, the LU decomposition of the
linear systems are computed only once per full iteration. Numerical results are given to show that our
method has a similar convergence behavior as the existing methods in this paper. The new method is
suitable for solving small- and medium-sized systems. In order to obtain an efficient iterative method
for solving nonlinear systems, we should make the iterative method achieve an as high as possible
convergence order consuming an as small as possible computational cost. In addition, the theoretical
advantages of the new method are based on the assumption that the Jacobian matrix is dense and
that LU factorization is used to solve the systems with the Jacobian. This assumption is not correct for
sparse Jacobian matrices.
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