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Abstract: Learning the Bayesian networks (BNs) structure from data has received increasing attention.
Many heuristic algorithms have been introduced to search for the optimal network that best matches
the given training data set. To further improve the performance of ant colony optimization (ACO) in
learning the BNs structure, this paper proposes a new improved coevolution ACO (coACO) algorithm,
which uses the pheromone information as the cooperative factor and the differential evolution (DE) as
the cooperative strategy. Different from the basic ACO, the coACO divides the entire ant colony into
various sub-colonies (groups), among which DE operators are adopted to implement the cooperative
evolutionary process. Experimental results demonstrate that the proposed coACO outperforms the
basic ACO in learning the BN structure in terms of convergence and accuracy.

Keywords: bayesian network; ant colony optimization; structure learning; cooperative evolution;
differential evolution

1. Introduction

The Bayesian network (BN) [1], which is also called the probabilistic belief network or the causal
network [2], is a kind of graphical model and knowledge representation tool. BNs can efficiently
give the probabilistic description of the dependence or independence relationships between a set of
random variables. A BN is composed of a directed acyclic graphical structure and a set of probability
parameters. The directed acyclic graphical structure represents the dependence relationships between
various variables, and the corresponding probability parameters specify their degree of dependence.
Recently, learning the BN structure from a dataset has received increasing attention [3], and researchers
have introduced various learning algorithms to obtain the structure for BNs. According to the
modeling type [3–5], these structure learning algorithms can be classified into methods based on
detecting conditional independencies [6,7], also known as constraint-based methods, the “score+search”
method [1,2,8–13], and the algorithms that combine the above two methods [14–17]. As to the
score+search method, the BN structure learning is modelled as an optimization problem. A scoring
metric is employed to evaluate how well the candidate network structure [3] matches the dataset.
The better the candidate network structure matches the dataset, the higher the score. Thus, it can use the
optimization technique to search for the network structure with the best score. However, searching for
the optimum network for BNs is an NP-hard problem [5,18], which means those exact methods become
unfeasible. Therefore, the approximate algorithms are very useful for quickly obtaining a sufficiently
highly qualified network structure. The greedy search methods, including the K2 algorithm and many
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meta-heuristic methods, such as genetic algorithm (GA) [12], evolutionary programming (EP) [12] and
particle swarm optimization (PSO) [14], are frequently used in solving the BN learning problem.

As a population-based meta-heuristic technique, ant colony optimization (ACO) also has been
introduced successfully into the problem of BN structure learning from a dataset [1,2,8,14,15].
ACO, which was originally presented under the inspiration from the collective behavior of a real ant
system [19,20], has already been applied to a wide range of optimization problems. Campos et al. [2]
first introduced ACO to the problem of BN structure learning. They described all of the elements
necessary to tackle the BN learning problem using ACO, and contrast experiments indicated that ACO
shows better performance than the estimation of distribution algorithms (EDAs) as well as the greedy
hill climbing (HC) algorithm. Based on the constraint-based local discovery algorithm, Pinto et al. [1]
proposed a local discovery ACO by using the conditional dependence test max-min parents and
children method. Ji et al. [15] proposed a hybrid method that combines ACO, the conditional
independence test, and the simulated annealing (SA) strategy, and their hybrid ACO method
outperforms the basic ACO in terms of computational time and searching capability. However, there are
two drawbacks in the above ACO-based hybrid algorithms. Firstly, the conditional independence test
can make the computation more complex and unreliable [3]. Secondly, when the number of variables
is very large, the ACO-based algorithm will easily fall into the local optimal solution and result in
a premature stagnation. To avoid the drawback caused by the conditional independence test, it is
necessary to improve the inherent searching mechanism of the ACO algorithm.

In this paper, we propose a kind of improved ACO to enhance the convergence and accuracy
of the basic ACO in solving the problem of BN structure learning. The improved ACO divides the
entire ant colony into several small sub-colonies, denoted as groups. In each ant group, ants perform
respective actions, which leads to the entire ant group evolving forward according to the information
within the group itself. Moreover, at the same time, among different groups, the information is also
shared in the form of a cooperation variable, and all of the ant groups will evolve forward together
using cooperative operations. The cooperative operations in the cooperative evolution process are
based on the differential evolution (DE) algorithm [21,22], which leads the cooperative evolution
process for all ant groups. The proposed improved ACO is denoted as coevolution ACO (coACO).
Two features make the coACO algorithm interesting: (1) the grouping operator divides the entire ant
colony into different ant groups, and, thus, the algorithm can carry out not only the social cooperation
between ant individuals but also the cooperative interaction and information shared between ant
groups; (2) the DE algorithm is employed to adjust the cooperation information and lead all ant groups
to evolve toward the optimum in a cooperative manner.

In the rest of this paper, a problem description of the BN structure learning as well as the
introduction of the ACO algorithm are given in Section 2. The proposed coACO algorithm and the
detailed BN structure learning method are described in Section 3. Section 4 presents the test results.
Section 5 concludes this paper.

2. Preliminaries

2.1. Problem of BN Structure Learning

A BN is a graphical tool to represent the n-dimensional probability distribution. It can be described
by a directed acyclic graph (DAG) G ≤ X, A, Θ>. In G, each node Xi∈X represents a random variable
of interest, while each arc aij∈A represents a direct dependence relationship between the variables Xi
and Xj. In addition, the parameter θi = P(Xi|πi), where Θ = {θi}, denotes the conditional probability
distribution of Xi given its parent set πi. From the conditional distributions, the joint probability can
be uniquely determined by

P(X1, X2, · · · , Xn) =
n

∏
i=1

P(Xi|πi). (1)
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Given a training database D = {x1, x2, . . . , xm} composed of m cases and each case contains n
variables, where xi is an instance of domain variable X, the problem of the BN structure learning is to
find the BN topology structure that best matches the dataset D.

As noted previously, algorithms for learning the BN structure from data mainly include the
constraint-based methods and the score+search methods. Based on a dependency analysis, the existing
approaches are close to the semantics of BNs and relatively simpler to implement [8]. However, it is
hard to ensure the precision of the obtained structure. Furthermore, the computation for high-order
tests is complex and unreliable. For this reason, most of the developed structure learning algorithms
fall into the latter, namely the score+search methods [3,5], which treat the problem of BN structure
learning as a combinatorial optimization problem.

The BN structure learning based on score+search methods firstly uses a scoring metric to evaluate
how well the candidate BN structure matches the given dataset, and then finds the network structure
with the maximum score. Popular scoring metrics include Akaike’s information criterion (AIC),
the Bayesian information criterion (BIC), the minimum description length (MDL) score, and the
Bayesian Dirichlet equivalence (BDe) metric (usually called the K2 metric) [3]. Here, the BIC scoring
metric, which comes from the penalized maximum likelihood, is used as the structure to identify the
dataset matching degree as follows:

P(BS|D) =
n

∏
i=1

qi

∏
j=1

ri

∏
k=1

(
Nijk

Nij∗

)Nijk

− f (m)dim(BS) (2)

where, BS is the candidate BN structure;
ri is the number of possible values for the variable Xi;
qi is the number of possible configurations instantiations for its parents πi;
Nijk is the number of cases in D in which variable Xi has its k-th value, πi is instantiated to its j-th

value, and Nij∗ =
ri
∑

k=1
Nijk;

dim(BS) =
m
∑

i=1
qi(ri − 1) is the dimension (the number of parameters needed to specify the model)

of the BN; and f (m) is the non-negative penalization function that depends on the size of the dataset
and can be computed as f (m) = 0.5·log m.

Using f (BS, D) instead of P(BS|D), the BIC scoring metric [3] is defined as:

fBIC(BS, D) = log

(
n
∏
i=1

qi
∏
j=1

ri
∏

k=1

( Nijk
Nij∗

)Nijk

)
− f (m)dim(BS)

=
n
∑

i=1
fBIC(xi, πi)

(3)

where

fBIC(xi, πi) =
qi

∑
j=1

ri

∑
k=1

(
Nijk log

Nijk

Nij∗

)
− 1

2
log m · qi(ri − 1). (4)

One desirable and important feature of scoring metrics is their decomposability in the presence of
full data, and (3) shows that the BIC metric used here is decomposable. With the decomposable metric,
a local search procedure that changes one arc at each move can efficiently evaluate the improvement
obtained by this change [2,3], because it can reuse most of the computations made in previous stages.
Moreover, the score of a BN can be computed as the combination of scores obtained for smaller factors.

2.2. ACO

As a representative bio-inspired meta-heuristic algorithm, ACO was firstly put forward by Dorigo
in the 1990s [19] to solve the travel salesman problem (TSP). Till now, ACO has been proven to
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be a more common framework for various optimization problems in a wide range of fields [23–25],
such as job-shop scheduling, data mining, routing problems, and other complex optimization problems.
When observing the foraging behavior of real ant colonies, researchers discovered that real ants can
deposit a chemical substance, called a pheromone, while walking. The pheromone can be accumulative
and evaporative, through which the ant colony can carry on indirect communication and finally achieve
the cooperative goal. Ants can smell the pheromone and choose their way, in a probabilistic way,
based on the amount of pheromone. The larger the amount of pheromone deposited on a route,
the greater the probability that ants select the route. Meanwhile, on the shorter route that ants travel,
the pheromone accumulates faster than on the longer routes. Thus, the faster the amount of pheromone
increases on the shorter route, then the greater the probability that the ants travel this route. In the initial
stage when the pheromone is absent, ants choose their routes fully randomly, but after a transitory
period the shortest routes will be more and more frequently visited and pheromone will accumulate
faster and faster on them, which in turn will attract more and more ants to choose these routes.

The mathematical model of ACO is described as follows. Let Mant be the number of ants, and the
matrix τ(t) = {τij(t)} be the pheromone, of which the element τij(t) is the level of pheromone deposited
on the arc from node i to node j, at time t. The initial level of pheromone on each directed arc is
a constant value, i.e., τij(0) = τ0. Each ant builds a possible solution to the problem by moving
through a finite sequence of neighbor nodes, and these moves are directed by the ant’s internal state,
problem-specific local information, and the shared information about the pheromone [19]. For the k-th
ant located at the i-th node, it will move to the next j-th node with the transition probability:

pk
ij(t) =


[τij(t)]

α [ηij ]
β

∑
u∈allowedk

[τiu(t)]
α [ηiu ]

β if j ∈ allowedk

0 otherwise

(5)

where ηij represents the heuristic information about the problem, allowedk denotes the feasible domain
of the k-th ant at the i-th node, and α and β are parameters that determine the relative importance of
the pheromone with respect to the heuristic information.

In addition, in order to achieve a trade-off between exploitation and exploration [2], a different
transition rule is introduced and the next node j is selected as:

j =

 arg max
u∈allowedk

{
[τiu(t)][ηiu]

β
}

if q ≤ q0

J otherwise
(6)

where q is a random number uniformly distributed in [0, 1]; q0∈[0,1] is the parameter that determines
the relative importance of exploitation versus exploration; and J is a node randomly selected according
to the transition probability in (1) with α = 1.

As the ants move and build the possible solutions, the pheromone matrix is updated according
to both the global updating and local updating processes [20]. As to the local updating process
when building the solution, if an ant moves from node i to node j, then the pheromone level on the
corresponding arc ij is updated as follows:

τij ← (1− ψ) · τij + ψ · τ0 (7)

where τ0 is the initial pheromone level on all arcs, and ψ∈(0,1] denotes the parameter that can control
the pheromone evaporation. After all ants have constructed a solution, only the ant that obtains the
best solution can reinforce the pheromone level on the arcs, which constitute the best solution, S+,
obtained by the ant colony so far. The global updating rule can be expressed by

τij(t + 1) = (1− ρ) · τij(t) + ρ · ∆τij (8a)
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∆τij =

{
1

f (S+)
if {i, j} ∈ S+

τij otherwise
(8b)

where ρ∈(0,1] is the parameter that can control the pheromone evaporation, and f (S+) is the cost
associated with the best solution S+. The following Algorithm 1 shows the complete algorithm of ACO
applied to optimization problems [19].

Algorithm 1: ACO algorithm.

/*Initialization */
1 Set the iteration counter g = 0;
2 Generate Mant ants, and initialize the pheromone matrix;

/* Iterative search */
3 while termination criteria are not satisfied do
4 iteration counter g = g + 1
5 for i = 1: Mant do

/* Build a possible solution */
6 while the solution is not completed do
7 Randomly select a state/node according to the probabilistic transition rule;
8 Update the pheromone according to the local updating rule;
9 end while
10 end for

/* Pheromone updating */
11 Select the best solution and perform the global updating process;
12 end while
13 Return the best solution S+.

2.3. ACO Applied to BNs

Using the basic ACO algorithm, the best network can be found in the space of possible networks
based on the score+search framework, [1,2]. Beginning with a blank network, the ant colony
progressively searches for good single-step changes to build a complete BN. Each ant connects
randomly two variables and determines whether the arc should be included in the BN structure.
As the construction process that is illustrated in Figure 1 [2,14,15], the ant uses the incremental
construction of the solution starting from a blank network G0 through connecting an arc aij = {Xi→Xj}
and then adding it to the current network, i.e., Gh+1 = Gh∪aij. When no arc can be added to achieve a
higher score of the BN structure, the construction process of the ant will be stopped with obtaining the
final solution Gg. The pheromone placed on all candidate arcs together with the heuristic information
are used to guide the network construction process. The random rule that the ant k selects the arc aij
from the current optional arcs is

aij =

 arg max
e∈allowedk

{
[τe(t)][ηe(t)]

β
}

if q ≤ q0

Aij otherwise
(9)

where Aij are the arcs randomly selected according to the following probabilities:

pk
ij(t) =


[τij(t)][ηij(t)]

β

∑⇀
E uv∈allowedk

[τuv(t)][ηuv(t)]
β if aij ∈ allowedk

0 otherwise
(10)

where allowedk is the set composed of all candidate arcs that do not create a directed cycle and have the
positive heuristic information. q0 is the threshold value that is set by the user.
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Figure 1. The construction process of a BN.

The maximum objective function of ACO is the BIC scoring metric in (3). Thus, the heuristic
information ηij of the arc aij at time t is defined as

ηij = fBIC
(
Xi, πi ∪ Xj

)
− fBIC(Xi, πi) (11)

The pheromone level τij on the arc aij changes according to the local and global updating rules as
described in (7) and (8), while the increment is competed by

∆τij =

{
1

| fBIC(G+ ,D)| if aij ∈ G+

τij otherwise
(12)

where G+ is the best BN structure found by all ants so far. The basic ACO algorithm applied to learning
the BN structure is presented in Algorithm 2 [2].

Algorithm 2: Basic ACO based BN learning.

/* Initialization */
1 Set the iteration counter t = 0;
2 Generate Mant ants;
3 Initialize the pheromone matrix τ(0): for all arcs aij, set τij(0) = τ0;
4 Set G+ be an empty graph;

/* Iterative search */
5 while termination criteria are not satisfied do
6 iteration counter t = t + 1
7 for k = 1:Mant do
8 Generate an empty network Gk: for i = 1 to n, do πi = φ;
9 Calculate the heuristic information: for i, j = 1 to n (I 6= j) do ηij = f BIC(Xi, Xj) − f BIC(Xi, φ);
10 while ∃ηij > 0 do

/* Add an arc */
11 Select an arc aij from the feasible domain allowed according to (9) and (10);
12 if ηij > 0 then πi = πi∪{Xj} and construct the network Gk = Gk∪aji;
13 Set ηij = −∞;

/* Avoiding directed cycles */
14 for u, v = 1 to n do
15 if Gk∪auv includes a directed cycle, then ηuv = −∞;
16 end for

/* Calculation the heuristic information */
17 for u = 1 to n do
18 if ηiu > −∞ then ηiu = f BIC(Xi, πi∪{Xu}) − f BIC(Xi, πi);
19 end for

/* Local updating */
20 Update the pheromone: τij = (1 − ψ)·τij + ψ·τ0;

/* Local updating */
21 Update the pheromone: τij = (1 − ψ)·τij + ψ·τ0;
22 end while
23 end for
24 /* Pheromone update */
26 Select Gt = arg max fBIC(Gk, D)
27 if fBIC(Gt, D) ≥ fBIC(G+, D), then G+ = Gt

28 Update the pheromone matrix according to (8) and (12) using fBIC(G+, D)
29 end while
30 Return the best BN structure G+.
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3. Method

This paper introduces a new improved algorithm, coACO, to solve the BN structure-learning
problem. The coACO incorporates several coevolution operators to improve the performance of the
basic ACO. Firstly, the entire ant colony is divided into S independent ant groups, and the number of
groups is set as ns, s = 1, . . . , S, as shown in Figure 2. DE is one of the best evolutionary algorithms
for solving the real-valued test function suite of the First International Contest on Evolutionary
Optimization (1st ICEO) [22]. Therefore, the DE strategies [26,27] are used to guide the coevolution
process for all ant groups. As is mentioned in the above section, the pheromone plays an important
role in the exploration and exploitation of the ant colony for constructing the solution. A reasonable
distribution of the pheromone can directly affect ants to explore their solutions. Thereby, the pheromone
level is chosen as the cooperative object shared by all ant groups in the coACO.
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Figure 2. The grouping operation and cooperative framework of coevolution ACO (coACO).

For each ant group, the pheromone level is denoted as the matrix τs(t) = {τij
s(t)}, s = 1, . . . , S.

Each ant group communicates with other groups and coordinates its evolution process using the
pheromone as the cooperative variable. The coACO introduces coordination operations, which are
based on DE, to affect the pheromone, which leads to the achievement of a more reasonable distribution
of the pheromone for each ant group.

The DE-based coordination operations contain mutation, crossover, and selection operators [21].
The first one is the mutation operator, which is implemented as follows:

us = τr1 + F× (τr2 − τr3) (13)

where us(t) = {uij
s(t)}, s = 1, . . . , S, is the donor pheromone matrix. τr1 , τr2 , and τr3 are three different

pheromone matrixes that are randomly selected from the ant groups, namely r1 6= r2 6= r3 6= s.
The real number F is a positive parameter between [0,2], called the mutation factor, which controls the
amplification of the differential variation (τr2 − τr3).

The second one is the crossover operator, which is performed as follows:

vs
ij =

{
us

ij if rij ≤ cr
τs

ij otherwise
(14)

where rij is a random value generated for each arc aij in accordance with a uniform distribution over
[0,1], cr is the given crossover rate within (0,1), and the obtained vs(t) = {vij

s(t)} is the trial pheromone
matrix. Figure 3 describes the crossover process of the pheromone matrixes.
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Figure 3. The crossover process of the pheromone matrix.

The third operator is the greedy selection, which is performed as follows:

τs(t + 1) =

{
vs(t) if f (vs(t)) ≥ f (τs(t))
τs(t) otherwise

(15)

where τs(t + 1) is the pheromone matrix of the s-th ant group in the (t + 1)-th iteration. Ants in each
group construct their networks according to the codes from Line 8 to Line 12 in Algorithm 2 using the
pheromone matrix τs(t) or vs(t). The fitness of the pheromone matrix f (τs(t)) or f (vs(t)) is defined as
the maximum BIC score of the BNs obtained by the ant group based on the corresponding pheromone
matrix τs(t) or vs(t). After the selection operation, all ant groups perform the pheromone global
updating procedure using the best BN G+ obtained up to the current iteration.

The detailed process of our proposed coACO algorithm in solving the BN structure-learning
problem can be described as follows:

Step 1. Initialization of parameters: the maximum number of iteration as Tmax, the initial iteration
counter t = 0, the number of ants Mant, the number of ant groups S, and other parameters α,
β, ρ, F, cr, q0.

Step 2. Initialization of ants: divide the whole ant colony into different ant groups; record the number
of ants in each groups as n1, n2, . . . and nS; set the initial pheromone matrix τij

s(0) = τ0,
s = 1,2, . . . , nS for all arcs aij; set G+ to be an empty graph.

Step 3. t = t + 1; s = 1.
Step 4. Perform the mutation and crossover operations to the initial pheromone matrix τs(t) of each

ant group using Equations (13) and (14), and generate the trial pheromone matrix vs(t).
Step 5. s = s + 1; if s ≤ S, return to Step 4.
Step 6. s = 1, k = 1.
Step 7. The k-th ant constructs the BN Gk(τs) using the pheromone matrix τs according to the codes

from Line 8 to Line 12 in Algorithm 2.
Step 8. The k-th ant constructs the BN Gk(vs) using the pheromone matrix vs according to the codes

from Line 8 to Line 12 in Algorithm 2.
Step 9. k = k + 1; if k ≤ ns, return to Step 7.
Step 10. Compute the BIC score for Gk(τs), k = 1, 2, . . . , ns, choose the best BN with the maximum

score and set the maximum score as the fitness f (τs(t)) for τs.
Step 11. Compute the BIC score for Gk(vs), k = 1, 2, . . . , ns, choose the best BN with the maximum

score and set the maximum score as the fitness f (vs(t)) for vs.
Step 12. Compare f (τs(t)) and f (vs(t)), select the better pheromone matrix according to (15), and select

the corresponding BN for the ant group.
Step 13. s = s + 1; if s ≤ S, k = k + 1 and return to Step 7.
Step 14. Select the BN with maximum score from all ant groups, which is recorded as Gt.
Step 15. If Gt has the larger BIC score than G+, then G+ = Gt.
Step 16. Update the pheromone matrix τs, s = 1, 2, . . . , S, for each ant group according to (8) and (12)

based on G+.
Step 17. Return to Step 3 until t > Tmax.
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Step 18. Terminate and output the best BN structure, namely G+.

The above steps of the coACO algorithm applied to learning BN structure can also be presented
as the pseudocode in Algorithm 3.

Algorithm 3: coACO algorithm to learn BN.

/* Initialization */
1 Set the iteration counter t = 0;
2 Generate Mant ants and divide them to nS groups;
3 Initialize the pheromone matrix τs(0), s = 1,2, . . . , nS: for all arcs aij, set τij(0) = τ0;
4 Set G+ be an empty graph;

/* Iterative search */
5 while termination criteria are not satisfied do
6 iteration counter t = t + 1
7 for s = 1:S do

/* Mutation */
8 Choose r1, r2, r3 from [1, 2, . . . , S] s.t. r1 6= r2 6= r3 6= s, and generate the donor pheromone matrix us via (13).

/* Crossover */
9 for i, j = 1:n do
10 Generate the trial vector vs = {vs

ij} according to (14)
11 end for
12 end for
13 for s = 1:S do

/* Evaluation the fitness of pheromone matrixes */
14 for each ant k in the s-th group do

15
Construct a BN structure Gk(vs) using the pheromone matrix vs according to the codes from Line 8 to Line 12

in Algorithm 1;

16
Construct a BN structure Gk(τs) using the pheromone matrix τs according to the codes from Line 8 to Line 12

in Algorithm 1;
17 end for

18
Calculate the BIC score for each BN structure Gk(vs), choose the best structure and assign the maximum score to

f (vs);

19
Calculate the BIC score for each BN structure Gk(τs), choose the best structure and assign the maximum score to

f (τs);
/* Selection */

20 Compare f (τs) and f (vs), select the better one to be the new pheromone matrix according to (14);
21 end for

/* Pheromone update */
22 Select the best structure Gt obtained by all ants in various groups;
23 if f BIC(Gt, D) ≥ fBIC(G+, D), then G+ = Gt

24 Update each pheromone matrix τs according to (8) and (12) using fBIC(G+, D)
25 end while
26 Return the best BN structure G+.

4. Results and Discussion

In order to evaluate the performance of the coACO algorithm in solving the BN structure-learning
problem, a series of test experiments is performed and a comparison of the proposed coACO with
the basic ACO is carried out. All the tested algorithms are implemented using the Matlab-2009a,
and the Bayes Net Toolbox (BNT) developed by Murphy [28] is used to evaluate the BIC score.
The experimental platform is a personal computer with an Intel(R) Core(TM) i3, 3.07GHz CPU, 4 GB
memory, and Windows 7. The parameters of the two ACO algorithms are set as α = 1, β = 2, q0 = 0.8,
ρ = ψ = 0.4, Mant = 10, ns = 5, cr = 0.9, F is set as a random value that is uniformly distributed in [0.2,0.9],
and the maximum number of iterations is set as Tmax = 100. The initial pheromone level placed on
each arc is τ0 = 1

n| fBIC(GK2,D)| , where n is the number of variables and GK2 is the network obtained
by the K2 algorithm using the BNT. Moreover, two traditional algorithms, based on the score+search
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framework, K2 and B [2], are also tested for comparison. Different from the ACO-based methods,
both the K2 and B algorithms are not population-based.

The learning datasets are generated from the well-known benchmarks of BNs, including the ASIA
and the ALARM networks. The ASIA network consists of 8 nodes and 8 arcs, while the ALARM
network consists of 37 nodes and 46 arcs. Using the BNT, we generated a dataset of 10,000 cases
for the ASIA network and 5000 cases for the ALARM network. For the ASIA network, the subsets
consisting of the first 1000, 3000, 5000, 8000, and 10,000 cases are considered. For the ALARM network,
the subsets consisting of the first 1000 and 5000 cases are considered. Table 1 lists the summary of the
datasets used herein.

Table 1. A summary of the datasets used in the experiments.

Network Number of Cases Nodes Arcs BIC Score

ASIA

1000 8 8 −2261.37
3000 8 8 −6733.48
5000 8 8 −11,194.67
8000 8 8 −17,823.01

10,000 8 8 −22,290.78

ALARM
1000 37 46 −11,156.05
5000 37 46 −48,593.10

We run the stochastic algorithms, including ACO, coACO, and K2, 20 times independently for
each dataset. The statistical results of the multiple independent experiments are listed in Table 2
for comparison, where six indicators are used to estimate the performances of the four algorithms,
including the maximum/best, mean, median values, and the standard deviation of the BIC scores of
the best networks obtained in each run. The last column, success rate (SR), is defined to represent the
percentage of all 20 runs to obtain the BIC score that is not less than the corresponding original score
listed in Table 1. It can be seen from Table 2 that coACO can always find the better BIC score for each
dataset. It means that coACO can achieve a more efficient and robust performance than the basic ACO
algorithm in learning the BN structure. The average evolution curves of the 20 independent tests on
each dataset are illustrated in Figures 4–10, which show the validity and rapid convergence of the
proposed coACO algorithm.
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Figure 4. Evolution curves of the average Bayesian information criterion (BIC) score achieved by ACO
and coACO on the ASIA dataset with n = 1000.
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Table 2. Statistical results of the BIC score for various methods.

Network N Method Best Median Mean Worst Std. SR (%) CPU Time (s)

ASIA

1000

coACO −2259.70 −2259.70 −2259.70 −2259.70 0 100 116.826
ACO −2259.73 −2259.73 −2260.94 −2262.76 1.564 60 74.335

K2 −2267.64 −2275.90 −2276.53 −2288.06 8.376 0 0.118
B −2304.07 - - - - 0 0.213

3000

coACO −6733.48 −6733.48 −6733.48 −6733.48 0 100 173.060
ACO −6733.48 −6733.47 −6736.14 −6744.19 4.376 60 103.114

K2 −6739.60 −6755.06 −6755.95 −6797.71 16.688 0 0.142
B −6873.20 - - - - 0 0.276

5000

coACO −11,193.42−11,193.42−11,193.42−11,193.42 1.92 × 10−12 100 163.858
ACO −11,193.42−11,197.08−11,197.23−11,205.13 4.512 40 100.373

K2 −11,197.08−11,218.39−11,224.51−11,300.65 28.867 0 0.174
B −11,450.81 - - - - 0 0.288

8000

coACO −17,823.01−17,823.01−17,823.01−17,823.01 0 100 203.835
ACO −17,823.01−17,823.01−17,826.72−17,837.12 5.774 60 127.463

K2 −17,834.80−17,844.42−17,863.88−17,951.13 38.805 0 0.187
B −18,100.86 - - - - 0 0.345

10,000

coACO −22,290.78−22,290.78−22,290.78−22,290.78 3.83 × 10−12 100 246.144
ACO −22,290.78−22,294.73−22,293.15−22,294.73 2.043 40 153.925

K2 −22,303.21−22,324.18−22,342.28−22,442.17 42.487 0 0.226s
B −22,572.73 - - - - 0 0.459

ALARM

1000

coACO −10,818.45−10,852.26−10,852.26−10,950.47 41.256 100 6481.540
ACO −10,957.50−11,002.89−11,012.03−11,138.50 52.234 100 3687.500

K2 −11,443.44−11,694.90−11699.26 −11,993.50 189.450 0 3.285
B −3,425,441.5 - - - - 0 7.913

5000

coACO −48,501.03−48,517.21−48,525.78−48579.64 28.656 100 10,800.721
ACO −49,341.99−49,661.63−49,701.69−50,329.43 279.589 0 6921.368

K2 −50,968.63−51,949.21−51,858.65−52,867.42 595.86 0 4.867
B −5,425,441.5 - - - - 0 25.681

SR, success rate.
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Figure 5. Evolution curves of the average BIC score achieved by ACO and coACO on the ASIA dataset
with n = 3000.
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Figure 6. Evolution curves of the average BIC score achieved by ACO and coACO on the ASIA dataset
with n = 5000.
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Figure 7. Evolution curves of the average BIC score achieved by ACO and coACO on the ASIA dataset
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Figure 8. Evolution curves of the average BIC score achieved by ACO and coACO on the ASIA dataset
with n = 10,000.
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Figure 9. Evolution curves of the average BIC score achieved by ACO and coACO on the ALARM
dataset with n = 1000
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Figure 10. Evolution curves of the average BIC score achieved by ACO and coACO on the ALARM
dataset with n = 5000.

Table 3 also shows the summary of the statistical results for various methods tested in the
experiment, where µ ± σ denotes the mean and the standard deviation over the independent runs
and the value inside (best) is the corresponding best value. The indicator It. is the smallest number of
iterations when the algorithm finds the optimal network structure. The indicators A., D., and I. are used
to denote the structure differences between the learned and the original network, namely, the number
of arcs accidentally added (A.), deleted (D.), and inverted (I.), compared with the original network.

From the experimental results, it can be seen that, using the cooperative evolution strategies
based on DE, the proposed coACO can greatly improve the performance of ACO in solving the BN
structure-learning problem. As to the accuracy of the algorithms, coACO is superior to ACO for
all test cases. This improvement is valid for not only BIC scores (see Table 2) but also the iteration
number and the structural differences (see Table 3). As to the efficiency, the evolution curves shown
in Figures 4–10 show that coACO requires fewer computing iterations than the basic ACO. As to
the robustness, coACO is also superior to the basic ACO, which can be deduced from the standard
deviations of the independent runs shown in Tables 2 and 3. The pheromone plays an important role
in the solution-constructing process. The DE operations improve the capability of ants to accumulate
the level of pheromone on arcs in the best structure. Due to the cooperative evolution characteristics,
coACO can adjust the distribution of the pheromone trail to the best state in just a few iterations,
and thus, yield the optimal network structure much faster. Though coACO employs some extra
operators, it converged much faster. Therefore, coACO can obtain the best solution in a given small
number of iterations.
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Table 3. Statistical results for various methods (µ ± σ (best)).

Network n Method It. A. D. I.

ASIA

1000

coACO 6.4 ± 4.76 (1) 0 ± 0 (0) 1 ± 0 (1) 1 ± 0 (1)
ACO 43.8 ± 26.17 (4) 0 ± 0 (0) 1 ± 0 (1) 1.9 ± 2.33 (0)

K2 - 0 ± 0 (0) 2.5 ± 0.85 (1) 4.40 ± 1.90 (2)
B - 0 1 3

3000

coACO 2.7 ± 1.83 (1) 0 ± 0 (0) 0 ± 0 (0) 1 ± 0 (1)
ACO 47.9 ± 39.02 (2) 0 ± 0 (0) 0 ± 0 (0) 3.3 ± 2.95 (1)

K2 - 0 ± 0 (0) 1.3 ± 0.68 (0) 4.6 ± 0.84 (3)
B - 0 0 7

5000

coACO 4.9 ± 3.87 (1) 0 ± 0 (0) 1 ± 0 (1) 0 ± 0 (0)
ACO 42.2 ± 22.58 (11) 0 ± 0 (0) 1 ± 0 (1) 2.9 ± 2.88 (0)

K2 - 0 ± 0 (0) 2.2 ± 0.79 (1) 4.8 ± 1.48 (3)
B - 0 1 3

8000

coACO 6.2 ± 4.00 (2) 0 ± 0 (0) 0 ± 0 (0) 1 ± 0 (1)
ACO 52.1 ± 31.88 (5) 0 ± 0 (0) 0 ± 0 (0) 3.5 ± 3.27 (1)

K2 - 0 ± 0 (0) 0.9 ± 0.57 (0) 5.3 ± 2.11 (2)
B - 0 0 4

10,000

coACO 4.6 ± 3.60 (1) 0 ± 0 (0) 0 ± 0 (0) 0 ± 0 (0)
ACO 20.5 ± 21.74 (1) 0 ± 0 (0) 0 ± 0 (0) 3.2 ± 2.15 (0)

K2 - 0 ± 0 (0) 0.9 ± 0.57 (0) 5.5 ± 2.64 (2)
B - 0 0 8

ALARM

1000

coACO 64.7 ± 13.12 (17) 0 ± 0 (0) 5.2 ±1.62 (4) 12.7 ± 3.53 (9)
ACO 81.8 ± 25.02 (57) 0 ± 0 (0) 9.2 ±1.69 (6) 20.8 ± 5.03 (14)

K2 - 0 ± 0 (0) 15.6 ± 2.55 (13) 22.6 ± 4.25 (17)
B - 0 6 42

5000

coACO 81.1 ± 15.82 (46) 0 ± 0 (0) 1.2 ± 0.42 (1) 14.6 ± 2.99 (10)
ACO 58.5 ± 22.27 (20) 0 ± 0 (0) 5.4 ± 1.429 (3) 58.5 ± 22.27 (20)

K2 - 0 ± 0 (0) 10.1 ± 1.969 (7) 33.4 ± 3.84 (26)
B - 0 1 97

5. Conclusions

This paper proposes coACO to improve the performance of the basic ACO in solving the BN
structure-learning problem. The coACO divides the entire ant colony into several small ant groups
and uses the pheromone as shared information and the cooperative factor. The cooperative evolution
process of ant groups via collaborative interaction, which includes communicating pheromone
information and sharing optimal networks between groups, can greatly improve the efficiency and
accuracy. The coevolution mechanism based on DE is performed to lead the cooperative evolution
process for all ant groups. DE operators can effectively adjust the cooperation information and lead
all ant groups to evolve toward the optimum in a cooperative manner. Different from the widely
used methodologies that combine ACO with constraint-based techniques, our work mainly focuses on
improving the inherent search capability of ACO. Our algorithm employs the BIC metric as the scoring
function; however, it is also applicable to other score metrics, such as K2 and MDL. Comparison test
results show that our proposed coACO algorithm outperforms the ACO, K2, and B algorithms in terms
of quality of the reconstructed BNs. Due to the coevolution characteristic, the coACO can adjust the
pheromone distribution to the best state in just a few iterations, and thus yield the optimal network
structure much faster. In a word, our developed coACO-based BN structure-learning algorithm is
effective, accurate, efficient, and easy to implement. Our future work will apply the coACO to a more
complex BN structure-learning problem in a real project with incomplete data.
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