
algorithms

Article

PHEFT: Pessimistic Image Processing Workflow
Scheduling for DSP Clusters

Alexander Yu. Drozdov 1, Andrei Tchernykh 2,3,*, Sergey V. Novikov 1, Victor E. Vladislavlev 1

and Raul Rivera-Rodriguez 2

1 Moscow Institute of Physics and Technology, Moscow 141701, Russia;
alexander.y.drozdov@gmail.com (A.Y.D.); serg.v.novikov@gmail.com (S.V.N.);
victor.vladislavlev@gmail.com (V.E.V.)

2 Computer Science Department, CICESE Research Center, 22860 Ensenada, Baja California, Mexico;
rrivera@cicese.mx

3 School of Electrical Engineering and Computer Science, South Ural State University,
Chelyabinsk 454080, Russia

* Correspondence: chernykh@cicese.mx or chernykhan@susu.ru; Tel.: +52-646-178-6994

Received: 27 February 2018; Accepted: 9 April 2018; Published: 22 May 2018
����������
�������

Abstract: We address image processing workflow scheduling problems on a multicore digital signal
processor cluster. We present an experimental study of scheduling strategies that include task
labeling, prioritization, resource selection, and digital signal processor scheduling. We apply these
strategies in the context of executing the Ligo and Montage applications. To provide effective
guidance in choosing a good strategy, we present a joint analysis of three conflicting goals based
on performance degradation. A case study is given, and experimental results demonstrate that
a pessimistic scheduling approach provides the best optimization criteria trade-offs. The Pessimistic
Heterogeneous Earliest Finish Time scheduling algorithm performs well in different scenarios with
a variety of workloads and cluster configurations.

Keywords: DSP microprocessor; multicore; multiprocessors; scheduling; workflow; resource
management; job allocation

1. Introduction

In this paper, we address the multi-criteria analysis of image processing with communication
workflow scheduling algorithms and study the applicability of Digital Signal Processor (DSP)
cluster architectures.

The problem of scheduling jobs with precedence constraints is a fundamental problem in
scheduling theory [1,2]. It arises in many industrial and scientific applications, particularly, in image
and signal processing, and has been extensively studied. It has been shown to be NP-hard and
includes solving a complex task allocation problem that depends not only on workflow properties and
constraints, but also on the nature of the infrastructure.

In this paper, we consider a DSP compatible with TigerSHARC TS201S [3,4]. This processor was
designed in response to the growing demands of industrial signal processing systems for real-time
processing of real-world data, performing the high-speed numeric calculations necessary to enable
a broad range of applications. It is optimized for both floating point and fixed point operations.
It provides ultra-high performance; static superscalar processing optimized for memory-intensive
digital signal processing algorithms from fully implemented 5G stations; three-dimensional ultrasound
scanners and other medical imaging systems; radio and sonar; industrial measurement; and
control systems.

Algorithms 2018, 11, 76; doi:10.3390/a11050076 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/1999-4893/11/5/76?type=check_update&version=1
http://dx.doi.org/10.3390/a11050076
http://www.mdpi.com/journal/algorithms

Algorithms 2018, 11, 76 2 of 13

It supports low overhead DMA transfers between internal memory, external memory,
memory-mapped peripherals, link ports, host processors, and other DSPs, providing high performance
for I/O algorithms.

Flexible instruction sets and high-level language-friendly DSP support the ease of implementation
of digital signal processing with low communications overhead in scalable multiprocessing systems.
With software that is programmable for maximum flexibility and supported by easy-to-use, low-cost
development tools, DSPs enable designers to build innovative features with high efficiency.

The DSP combines very wide memory widths with execution six floating-point and 24 64-bit
fixed-point operations for digital signal processing. It maintains a system-on-chip scalable computing
design, including 24 M bit of on-chip DRAM, six 4 K word caches, integrated I/O peripherals, a host
processor interface, DMA controllers, LVDS link ports, and shared bus connectivity for Glueless
Multiprocessing without special bridges and chipsets.

It typically uses two methods to communicate between processor nodes. The first one is dedicated
point-to-point communication through link ports. Other method uses a single shared global memory
to communicate through a parallel bus.

For full performance of such a combined architecture, sophisticated resource management is
necessary. Specifically, multiple instructions must be dispatched to processing units simultaneously,
and functional parallelism must be calculated before runtime.

In this paper, we describe an approach for scheduling image processing workflows using the
networks of a DSP-cluster (Figure 1).

Algorithms 2018, 11, x 2 of 13

It supports low overhead DMA transfers between internal memory, external memory, memory-
mapped peripherals, link ports, host processors, and other DSPs, providing high performance for I/O
algorithms.

Flexible instruction sets and high-level language-friendly DSP support the ease of
implementation of digital signal processing with low communications overhead in scalable
multiprocessing systems. With software that is programmable for maximum flexibility and
supported by easy-to-use, low-cost development tools, DSPs enable designers to build innovative
features with high efficiency.

The DSP combines very wide memory widths with execution six floating-point and 24 64-bit
fixed-point operations for digital signal processing. It maintains a system-on-chip scalable computing
design, including 24 M bit of on-chip DRAM, six 4 K word caches, integrated I/O peripherals, a host
processor interface, DMA controllers, LVDS link ports, and shared bus connectivity for Glueless
Multiprocessing without special bridges and chipsets.

It typically uses two methods to communicate between processor nodes. The first one is
dedicated point-to-point communication through link ports. Other method uses a single shared
global memory to communicate through a parallel bus.

For full performance of such a combined architecture, sophisticated resource management is
necessary. Specifically, multiple instructions must be dispatched to processing units simultaneously,
and functional parallelism must be calculated before runtime.

In this paper, we describe an approach for scheduling image processing workflows using the
networks of a DSP-cluster (Figure 1).

Figure 1. Digital signal processor (DSP) cluster.

2. Model

2.1. Basic Definitions

We address an offline (deterministic) non-preemptive, clairvoyant workflow scheduling
problem on a parallel cluster of DSPs.

DSP-clusters consist of ݉ integrated modules (ܯܫ) ܯܫଵ, ܯܫଶ, …, ܯܫ௠. Let ݇௜ be the size of ܯܫ௜
(number of DSP-processors). Let n workflow jobs ܬଵ, ܬଶ, …, ܬ௡ be scheduled on the cluster.

A workflow is a composition of tasks subject to precedence constraints. Workflows are modeled
as a Directed Acyclic Graph (DAG) ܩ௝ = ൫ ௝ܸ, ௝൯ܧ , where ௝ܸ is the set of tasks, and ܧ௝ =൛(݅, ݇)	|	݅, ݇ ∈ ௝ܸ, ݅ ് ݇ൟ, with no cycles.

Each arc	(݅, ݇) is associated with a communication time ݀௜,௞ representing the communication
delay, if ݅ and ݇ are executed on different processors. Task ݅ must be completed, and data must be
transmitted during ݀௜,௞ prior to when execution of task ݇ is initiated. If	݅ and	݇ are executed on the
same processor, no data transmission between them is needed; hence, communication delay is not
considered.

Each workflow task ݅ is a sequential application (thread) and described by the tuple (ݎ௜ᇱ, ,(௜ᇱ݌
with release date ݎ௜ᇱ, and execution time ݌௜ᇱ.

Figure 1. Digital signal processor (DSP) cluster.

2. Model

2.1. Basic Definitions

We address an offline (deterministic) non-preemptive, clairvoyant workflow scheduling problem
on a parallel cluster of DSPs.

DSP-clusters consist of m integrated modules (IM) IM1, IM2, . . . , IMm. Let ki be the size of IMi
(number of DSP-processors). Let n workflow jobs J1, J2, . . . , Jn be scheduled on the cluster.

A workflow is a composition of tasks subject to precedence constraints. Workflows are
modeled as a Directed Acyclic Graph (DAG) Gj =

(
Vj, Ej

)
, where Vj is the set of tasks, and

Ej =
{
(i, k)

∣∣ i, k ∈ Vj, i 6= k
}

, with no cycles.
Each arc (i, k) is associated with a communication time di,k representing the communication delay,

if i and k are executed on different processors. Task i must be completed, and data must be transmitted
during di,k prior to when execution of task k is initiated. If i and k are executed on the same processor,
no data transmission between them is needed; hence, communication delay is not considered.

Each workflow task i is a sequential application (thread) and described by the tuple
(
r′i , p′i

)
,

with release date r′i , and execution time p′i.

Algorithms 2018, 11, 76 3 of 13

Due to the offline scheduling model, the release date of a workflow rj = 0. However, the release
date of a task r′i is not available before the task is released. Tasks are released only after all dependencies
have been satisfied and data are available. At its release date, a task can be allocated to a DSP-processor
for an uninterrupted period of time p′i. cj is completion time of the job j.

Total workflow processing time pG
j and critical path execution cost pj are unknown until the job

has been scheduled. We allow multiprocessor workflow execution; hence, tasks of Jj can be run on
different DSPs.

2.2. Performance Metrics

Three criteria are used to evaluate scheduling algorithms: makespan, critical path waiting time,
and critical path slowdown. Makespan is used to qualify the efficiency of scheduling algorithms.
To estimate the quality of workflow executions, we apply two workflow metrics: critical path waiting
time and critical path slowdown.

Let Cmax = max
i=1..n
{Ci} be the maximum completion time (makespan) of all tasks in the schedule

C∗max(I). The waiting time of a task twi = c′i − p′i − r′i is the difference between the completion time
of the task, its execution time, and its release date. Note that a task is not preemptable and it is
immediately released when the input data it needs from predecessors are available. However, note that
we do not require that a job is allocated to processors immediately at its submission time as in some
online problems.

Waiting time of a critical path is the difference between the completion time of the workflow,
length of its critical path and data transmission time between all tasks in the critical path. It takes into
account waiting times of all tasks in the critical path and communication delay.

The critical path execution time pj depends on the schedule that allocates tasks on the processor.
The minimal value of pj includes only execution time of the tasks that belong to the critical path.
The maximal value includes maximal data transmission times between all tasks in the critical path.

The waiting time of a critical path is defined as cpwj = cj − pj. Critical path slowdown
cpsj = 1 + cpwj/pj is the relative critical path waiting time and evaluates the quality of the critical
path execution. A slowdown of one indicates zero waiting times for critical path tasks, while a value
greater than one indicates that the critical path completion is increased by increasing the waiting time
of critical path tasks. Mean critical path waiting time is cpw = 1/n ∑n

j=1 cpwj, and mean critical path
slowdown is cps = 1/n ∑n

j=1 cpsj.

2.3. DSP Cluster

DSP-clusters consist of m integrated modules (IM). Each IMi contains ki DPS-processors with
their own local memory. Data exchange between DPS-processors of the same IM is performed through
local ports. The exchange of data between DPS-processors from different IM is performed via external
memory, which needs a longer transmission time than through the local ports. The speed of data
transfer between processors depends on their mutual arrangement in the cluster.

Let fij be the data rate coefficient from the processor of the IMi to the processor of IMj. We neglect
the communication delay ε inside DSP; however, we take into account the communication delay
between DSP-processors of the same IM. Data rate coefficients of this communication are represented
as a matrix D of the size ki × ki. We assume that the transmission rates between different IM are equal
to α� ε. Table 1 shows a complete matrix of data rate coefficients for a DSP-cluster with four IMs.

Algorithms 2018, 11, 76 4 of 13

Table 1. Data rate coefficients of the cluster of DSP with four integrated modules (IMs).

IM 1 2 3 4

1 ε α α α
2 α ε α α
3 α α ε α
4 α α α ε

The values of the matrix D depend on the specific communication topology of the IMs.
In Figure 2, we consider three examples of the IMi communication topology for ki = 4.

Algorithms 2018, 11, x 4 of 13

 ε ߙ ߙ ߙ 4
The values of the matrix ܦ depend on the specific communication topology of the ܯܫs.
In Figure 2, we consider three examples of the ܯܫ௜ communication topology for ݇௜ = 4.

(a) (b) (c)

Figure 2. Examples of communication topology of DSP-processors: (а) uni-directional; (b) bi-
directional; (c) all to all.

Figure 2a shows uni-directional DSP communication. Let us assume that the transfer rate
between processors connected by an internal link port is equal to α = 1. The corresponding matrix
of data rate coefficients is presented in Table 2a. Figure 2b shows bi-directional DSP communication.
The corresponding matrix of data rate coefficients is presented in Table 2b. Figure 2c shows all-to-all
communication of DSP. Table 2c shows the corresponding data rate coefficients.

Table 2. Data rate coefficient matrix D for three communication topologies between DSP-processors.

(a) Uni-Directional (b) Bi-Directional (c) All to All
0 1 2 3 0 1 2 1 0 1 1 1
3 0 1 2 1 0 1 2 1 0 1 1
2 3 0 1 2 1 0 1 1 1 0 1
1 2 3 0 1 2 1 0 1 1 1 0

For the experiments, we take into account two models of the cluster (Figure 3). In the cluster A,
ports connect only neighboring DSPs, as shown in Figure 3a. In the cluster B, DSPs are connected to
each other, as shown in Figure 3b. ݏܯܫ are interconnected by a bus. In the current model, for each connection, different data
transmission coefficients are used. Data transfer within the same DSP has a coefficient of 0, between
adjacent DSPs in a single ܯܫ has a coefficient of 1, and between ܯܫs, has a data transmission
coefficient of 10.

(a) (b)

Figure 3. DSP cluster configuration. (a) Cluster A; (b) Cluster B.

3. Related Work

State of the art studies tackle different workflow scheduling problems by focusing on general
optimization issues; specific workflow applications; minimization of critical path execution time;

Figure 2. Examples of communication topology of DSP-processors: (a) uni-directional; (b) bi-directional;
(c) all to all.

Figure 2a shows uni-directional DSP communication. Let us assume that the transfer rate
between processors connected by an internal link port is equal to α = 1. The corresponding matrix
of data rate coefficients is presented in Table 2a. Figure 2b shows bi-directional DSP communication.
The corresponding matrix of data rate coefficients is presented in Table 2b. Figure 2c shows all-to-all
communication of DSP. Table 2c shows the corresponding data rate coefficients.

Table 2. Data rate coefficient matrix D for three communication topologies between DSP-processors.

(a) Uni-Directional (b) Bi-Directional (c) All to All

0 1 2 3 0 1 2 1 0 1 1 1
3 0 1 2 1 0 1 2 1 0 1 1
2 3 0 1 2 1 0 1 1 1 0 1
1 2 3 0 1 2 1 0 1 1 1 0

For the experiments, we take into account two models of the cluster (Figure 3). In the cluster A,
ports connect only neighboring DSPs, as shown in Figure 3a. In the cluster B, DSPs are connected to
each other, as shown in Figure 3b.

Algorithms 2018, 11, x 4 of 13

 ε ߙ ߙ ߙ 4
The values of the matrix ܦ depend on the specific communication topology of the ܯܫs.
In Figure 2, we consider three examples of the ܯܫ௜ communication topology for ݇௜ = 4.

(a) (b) (c)

Figure 2. Examples of communication topology of DSP-processors: (а) uni-directional; (b) bi-
directional; (c) all to all.

Figure 2a shows uni-directional DSP communication. Let us assume that the transfer rate
between processors connected by an internal link port is equal to α = 1. The corresponding matrix
of data rate coefficients is presented in Table 2a. Figure 2b shows bi-directional DSP communication.
The corresponding matrix of data rate coefficients is presented in Table 2b. Figure 2c shows all-to-all
communication of DSP. Table 2c shows the corresponding data rate coefficients.

Table 2. Data rate coefficient matrix D for three communication topologies between DSP-processors.

(a) Uni-Directional (b) Bi-Directional (c) All to All
0 1 2 3 0 1 2 1 0 1 1 1
3 0 1 2 1 0 1 2 1 0 1 1
2 3 0 1 2 1 0 1 1 1 0 1
1 2 3 0 1 2 1 0 1 1 1 0

For the experiments, we take into account two models of the cluster (Figure 3). In the cluster A,
ports connect only neighboring DSPs, as shown in Figure 3a. In the cluster B, DSPs are connected to
each other, as shown in Figure 3b. ݏܯܫ are interconnected by a bus. In the current model, for each connection, different data
transmission coefficients are used. Data transfer within the same DSP has a coefficient of 0, between
adjacent DSPs in a single ܯܫ has a coefficient of 1, and between ܯܫs, has a data transmission
coefficient of 10.

(a) (b)

Figure 3. DSP cluster configuration. (a) Cluster A; (b) Cluster B.

3. Related Work

State of the art studies tackle different workflow scheduling problems by focusing on general
optimization issues; specific workflow applications; minimization of critical path execution time;

Figure 3. DSP cluster configuration. (a) Cluster A; (b) Cluster B.

Algorithms 2018, 11, 76 5 of 13

IMs are interconnected by a bus. In the current model, for each connection, different data
transmission coefficients are used. Data transfer within the same DSP has a coefficient of 0, between
adjacent DSPs in a single IM has a coefficient of 1, and between IMs, has a data transmission coefficient
of 10.

3. Related Work

State of the art studies tackle different workflow scheduling problems by focusing on general
optimization issues; specific workflow applications; minimization of critical path execution time;
selection of admissible resources; allocation of suitable resources for data-intensive workflows;
Quality of Service (QoS) constraints; and performance analysis, among other factors. [5–17].

Many heuristics have been developed for scheduling DAG-based task graphs in multiprocessor
systems [18–20]. In [21], the authors discussed clustering DAG tasks into chains and allocating them
to single machines. In [22], two strategies were considered: Fairness Policy based on Finishing
Time (FPFT) and Fairness Policy based on Concurrent Time (FPCT). Both strategies arranged DAGs in
ascending order of their slowdown value, selected independent tasks from the DAG with the minimum
slowdown, and scheduled them using Heterogeneous Earliest Finishing Time first (HEFT) [23]
or Hybrid.BMCT [24]. FPFT recalculates the slowdown of a DAG each time the task of a DAG
completes execution, while FPCT recalculates the slowdown of all DAGs each time any task in a DAG
completes execution.

HEFT is considered as an extension of the classical list scheduling algorithm to cope with
heterogeneity and has been shown to produce good results more often than other comparable
algorithms. Many improvements and variations to HEFT have been proposed considering different
ranking methods, looking ahead algorithms, clustering, and processor selection, for example [25].

The multi-objective workflow allocation problem has rarely been considered so far. It is important,
especially in scenarios that contain aspects that are multi-objective by nature: Quality of Service (QoS)
parameters, costs, system performance, response time, and energy, for example [14].

4. Proposed DSP Workflow Scheduling Strategies

The scheduling algorithm assigns to each graph’s task start execution time. The time assigned to
the stop task is the main result metric of the algorithm. The lower the time, the better the scheduling of
the graph.

The algorithm uses a list of ready for scheduling tasks and a waiting list of scheduling tasks.
If all predecessors of the task are scheduled, then it is inserted into the waiting list. If all incoming
data are ready, then the task is inserted into the ready list, otherwise, into the waiting list. Available
DPS-processors are placed into the appropriate list.

The list of tasks that are ready to be started is maintained. Independent tasks with no predecessors
and with predecessors that completed their execution and available input data are entered into the list.
Allocation policies are responsible for selecting a suitable DSP for task allocation.

We introduce five task allocation strategies: PESS (Pessimistic), OPTI (Optimistic), OHEFT
(Optimistic Heterogeneous Earliest Finishing Time), PHEFT (Pessimistic Heterogeneous Earliest
Finishing Time), and BC (Best Core). Table 3 briefly describes the strategies.

OHEFT and PHEFT are based on HEFT, a workflow scheduling strategy used in many
performance evaluation studies.

HEFT schedules DAGs in two phases: job labeling and processor selection. In the job labeling
phase, a rank value (upward rank) based on mean computation and communication costs is assigned
to each task of a DAG. The upward rank of a task i is recursively computed by traversing the graph
upward, starting from the exit task, as follows: ranku(i) = wi + maxj∈succ(i)

(
di,j + ranku(i)

)
, where

succ(i) is the set of immediate successors of task i; di,j is the average communication cost of arc(i, j)
over all processor pairs; and wi is the average of the set of computation costs of task i.

Algorithms 2018, 11, 76 6 of 13

Although HEFT is well-known, the study of different possibilities for computing rank values
in a heterogeneous environment is limited. In some cases, the use of the mean computation and
communication as the rank value in the graph may not produce a good schedule [26].

In this paper, we consider two methods of calculating the rank: best and worst. The best version
assumes that tasks are allocated to the same DSP. Hence, no data transmission is needed. Alternatively,
the worst version assumes that tasks are allocated to the DSP from different nodes, so data transmission
is maximal. To determine the critical path, we need to know the execution time of each task of the
graph and the data transfer time, considering every combination of DSPs, where the two given tasks
may be executed taking into account the data transfer rate between the two connected nodes.

Tasks labeling prioritizes workflow tasks. Labels are not changed nor recomputed on completion
of predecessor tasks. This also distinguishes our model from previous research (see, for instance [22]).
Task labels are used to identify properties of a given workflow. We distinguish four labeling approaches:
Best Downward Rank (BDR), Worst Downward Rank (WDR), Best Upward Rank (BUR), and Worst
Upward Rank (WUR).

BDR estimates the length of the path from considered task to a root passing a set of immediate
predecessors in a workflow without communication costs. WDR estimates the length of the path
from considered task to a root passing a set of immediate predecessors in a workflow with worst
communications. The descending order of BDR and WDR supports scheduling tasks by the
depth-first approach.

BUR estimates the length of the path from the considered task to a terminal start task passing
a set of the immediate successors in a workflow without communication costs.

Table 3. Task allocation strategies.

Description

Rand Allocates task Tk to a DSP with the number randomly generated from
a uniform distribution in the range [1,m]

BC (best core) Allocates task Tk to the DSP that can start the task as early as possible
considering communication delay of all input data

PESS (pessimistic) Allocates task Tk from the ordered list to the DSP according to Worst
Downward Rank (WDR).

OPTI (optimistic) Allocates task Tk from the ordered list to the DSP according to Best
Downward Rank (BDR).

PHEFT (pessimistic HEFT) Allocates task Tk from the ordered list to the DSP according to Worst
Upward Rank (WUR)

OHEFT (optimistic HEFT) Allocates task Tk from the ordered list to the DSP according to Best
Upward Rank (BUR)

WUR estimates the length of the path from the considered task to a terminal task passing a set
of immediate successors in a workflow with the worst communication costs. The descending order
of BUR and WUR supports scheduling tasks on the critical path first. The upward rank represents
the expected distance of any task to the end of the computation. The downward rank represents the
expected distance of any task from the start of the computation.

5. Experimental Setup

This section presents the experimental setup, including workload and scenarios, and describes
the methodology used for the analysis.

Algorithms 2018, 11, 76 7 of 13

5.1. Parameters

To provide a performance comparison, we used workloads from a parametric workload generator
that produces workflows such as Ligo and Montage [27,28]. They are a complex workflow of
parallelized computations to process larger-scale images.

We considered three clusters with different numbers of DSPs and two architectures of individual
DSPs (Table 4). Their clock frequency was considered to be equal.

Table 4. Experimental settings.

Description Settings

Workload type 220 Montage workflows, 98 Ligo workflows

DSP clusters 3

Cluster 1 5 IMs in a cluster B, 4 DSP per module

Cluster 2 2 IMs in a cluster A, 4 DSP per module

Cluster 3 5 IMs in a cluster A, 4 DSP per module

Data transmission coefficient K
0—within the same DSP

1—between connected DSPs in a IM;
20—between DSP of different IMs

Metrics Cmax, cpw, cps

Number of experiments 318

5.2. Methodology of Analysis

Workflow scheduling involves multiple objectives and may use multi-criteria decision support.
The classical approach is to use a concept of Pareto optimality. However, it is very difficult to achieve
the fast solutions needed for DSP resource management by using the Pareto dominance.

In this paper, we converted the problem to a single objective optimization problem by
multiple-criteria aggregation. First, we made criteria comparable by normalizing them to the best
values found during each experiment. To this end, we evaluated the performance degradation of
each strategy under each metric. This was done relative to the best performing strategy for the metric,
as follows:

(γ− 1)·100, with γ =
strategy metric value

best f ound metric value
.

To provide effective guidance in choosing the best strategy, we performed a joint analysis of
several metrics according to the methodology used in [14,29]. We aggregated the various objectives
to a single one by averaging their values and ranking. The best strategy with the lowest average
performance degradation had a rank of 1.

Note that we tried to identify strategies that performed reliably well in different scenarios; that
is, we tried to find a compromise that considered all of our test cases with the expectation that it
also performed well under other conditions, for example, with different DSP-cluster configurations
and workloads. For example, the rank of the strategy could not be the same for any of the metrics
individually or any of the scenarios individually.

6. Experimental Results

6.1. Performance Degradation Analysis

Figure 4 and Table 5 show the performance degradation of all strategies for Cmax, cpw, and cps.
Table 5 also shows the mean degradation of the strategies and ranking when considering all averages
and all test cases.

Algorithms 2018, 11, 76 8 of 13

A small percentage of degradation indicates that the performance of a strategy for a given
metric is close to the performance of the best performing strategy for the same metric. Therefore,
small degradations represent better results.

We observed that Rand was the strategy with the worst makespan, with up to 318 percent
performance degradation compared with the best-obtained result. PHEFT strategy had a small percent
of degradation, almost in all metrics and test cases. We saw that cps had less variation compared with
Cmax and cpw. It yielded to lesser impact on the overall score. The makespan of PHEFT and OHEFT
were near the lower values.

Because our model is a simplified representation of a system, we can conclude that these strategies
might have similar efficiency in real DSP-cluster environments when considering the above metrics.
However, there exist differences between PESS and OPTI, comparing cpw. In PESS strategy, the critical
path completion time did not grow significantly. Therefore, tasks in the critical path experienced
small waiting times. Results also showed that for all strategies, small mean critical path waiting time
degradation corresponded to small mean critical path slowdown.

BC and Rand strategies had rankings of 5 and 6. Their average degradations were within 67%
and 18% of the best results. While PESS and OPTI had rankings of 3 and 4, with average degradations
within 8% and 11%.

PHEFT and OHEFT showed the best results. Their degradations were within 6% and 7%, with
rankings of 1 and 2.

Algorithms 2018, 11, x 8 of 13 ܿ0.002 0.002 0.013 0.012 0.040 0.040 ݏ݌
Mean 0.221 0.208 0.028 0.028 0.002 0.005
Rank 6 5 3 4 1 2

All test cases

 0.154 0.152 0.180 0.166 0.173 0.020 ݏ݌ܿ 0.053 0.026 0.128 0.079 0.357 0.394 ݓ݌ܿ ௠௔௫ 1.616 0.027 0.011 0.025 0.003 0.006ܥ
Mean 0.677 0.186 0.085 0.111 0.060 0.071
Rank 6 5 3 4 1 2

Because our model is a simplified representation of a system, we can conclude that these
strategies might have similar efficiency in real DSP-cluster environments when considering the above
metrics. However, there exist differences between PESS and OPTI, comparing ܿݓ݌. In PESS strategy,
the critical path completion time did not grow significantly. Therefore, tasks in the critical path
experienced small waiting times. Results also showed that for all strategies, small mean critical path
waiting time degradation corresponded to small mean critical path slowdown.

BC and Rand strategies had rankings of 5 and 6. Their average degradations were within 67%
and 18% of the best results. While PESS and OPTI had rankings of 3 and 4, with average degradations
within 8% and 11%.

PHEFT and OHEFT showed the best results. Their degradations were within 6% and 7%, with
rankings of 1 and 2.

(a) ௠௔௫ܥ (b) ݓ݌ܿ

(c) ݏ݌ܿ
Figure 4. Performance degradation.

0%
1%
1%
2%
2%
3%
3%
4%
4%
5%
5%

M
O

N
T

A
G

E

L
IG

O

M
O

N
T

A
G

E

L
IG

O

M
O

N
T

A
G

E

L
IG

O

Cluster1 Cluster2 Cluster3
Rand BC PESS OPTI PHEFT OHEFT

0%

5%

10%

15%

20%

25%

M
O

N
T

A
G

E

L
IG

O

M
O

N
T

A
G

E

L
IG

O

M
O

N
T

A
G

E

L
IG

O

Cluster1 Cluster2 Cluster3
Rand BC PESS OPTI PHEFT OHEFT

0%

5%

10%

15%

20%

25%

M
O

N
T

A
G

E

L
IG

O

M
O

N
T

A
G

E

L
IG

O

M
O

N
T

A
G

E

L
IG

O

Cluster1 Cluster2 Cluster3
Rand BC PESS OPTI PHEFT OHEFT

Figure 4. Performance degradation.

Algorithms 2018, 11, 76 9 of 13

Table 5. Rounded performance degradation and ranking.

Criteria
Strategy

Rand BC PESS OPTI PHEFT OHEFT

Montage

Cmax 3.189 0.010 0.009 0.039 0.005 0.011
cpw 0.209 0.173 0.100 0.196 0.050 0.093
cps 0.001 0.305 0.320 0.348 0.302 0.306

Mean 1.133 0.163 0.143 0.194 0.119 0.137
Rank 6 4 3 5 1 2

Ligo

Cmax 0.044 0.043 0.012 0.012 0.001 0.002
cpw 0.580 0.542 0.059 0.059 0.002 0.013
cps 0.040 0.040 0.012 0.013 0.002 0.002

Mean 0.221 0.208 0.028 0.028 0.002 0.005
Rank 6 5 3 4 1 2

All test cases

Cmax 1.616 0.027 0.011 0.025 0.003 0.006
cpw 0.394 0.357 0.079 0.128 0.026 0.053
cps 0.020 0.173 0.166 0.180 0.152 0.154

Mean 0.677 0.186 0.085 0.111 0.060 0.071
Rank 6 5 3 4 1 2

6.2. Performance Profile

In the previous section, we presented the average performance degradations of the strategies
over three metrics and test cases. Now, we analyze results in more detail. Our sampling data were
averaged over a large scale. However, the contribution of each experiment varied depending on its
variability or uncertainty [30–32]. To analyze the probability of obtaining results with a certain quality
and their contributors on average, we present the performance profiles of the strategies. Measures
of result deviations provide useful information for strategies analysis and interpretation of the data
generated by the benchmarking process.

The performance profile δ(τ)pτ is a non-decreasing, piecewise constant function that presents the
probability that a ratio γ is within a factor τ of the best ratio [33]. The function δ(τ) is the cumulative
distribution function. Strategies with larger probabilities δ(τ) for smaller τ will be preferred.

Figure 5 shows the performance profiles of the strategies according to total completion time, in the
interval τ = [1 . . . 1.2], to provide objective information for analysis of a test set.

Algorithms 2018, 11, x 9 of 13

6.2. Performance Profile

In the previous section, we presented the average performance degradations of the strategies
over three metrics and test cases. Now, we analyze results in more detail. Our sampling data were
averaged over a large scale. However, the contribution of each experiment varied depending on its
variability or uncertainty [30–32]. To analyze the probability of obtaining results with a certain quality
and their contributors on average, we present the performance profiles of the strategies. Measures of
result deviations provide useful information for strategies analysis and interpretation of the data
generated by the benchmarking process.

The performance profile ߜ(߬)pτ is a non-decreasing, piecewise constant function that presents
the probability that a ratio ߛ is within a factor ߬ τof the best ratio [33]. The function ߜ(߬) is the
cumulative distribution function. Strategies with larger probabilities ߜ(߬) for smaller ߬ will be
preferred.

Figure 5 shows the performance profiles of the strategies according to total completion time, in
the interval ߬ = [1…1.2], to provide objective information for analysis of a test set.

(a) (b)

Figure 5. ܥ௠௔௫ performance profile, ߬ = [1…1.2]. (a) Montage; (b) Ligo.

Figure 5a displays results for Montage workflows. PHEFT had the highest probability of being
the better strategy. The probability that it was the winner on a given problem within factors of 1.02
of the best solution was close to 0.9. If we chose to be within a factor of 1.1 as the scope of our interest,
then strategies except Rand and OPTI would have sufficed with a probability of 1. Figure 5b displays
results for Ligo workflows. Here, PHEFT and OHEFT were the best strategies, followed by OPTI and
PESS.

Figure 6 shows ܿݓ݌ performance profiles of six strategies for Montage and Ligo workflows
considering ߬ = [1…1.2] . In both cases, PHEFT had the highest probability of being the better
strategy for ܿݓ݌ optimization. The probability that it was the winner on a given problem within
factors of 1.1 of the best solution was close to 0.85 and 1 for Montage and Ligo, respectively.

Figure 7 shows the mean performance profiles of all metrics, scenarios and test cases,
considering ߬ = [1…1.2]. There were discrepancies in performance quality. If we want to obtain
results within a factor of 1.02 of the best solution, then PHEFT generated them with probability 0.8,
while Rand with a probability of 0.47. If we chose ߬ = 1.2, then PHEFT produced results with a
probability of 0.9, and Rand with a probability of 0.76.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

(߬)ߜ

߬

Rand
BC
PESS
OPTI
PHEFT
OHEFT

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

(߬)ߜ

߬

Rand
BC
PESS
OPTI
PHEFT
OHEFT

Figure 5. Cmax performance profile, τ = [1 . . . 1.2]. (a) Montage; (b) Ligo.

Figure 5a displays results for Montage workflows. PHEFT had the highest probability of being
the better strategy. The probability that it was the winner on a given problem within factors of 1.02 of
the best solution was close to 0.9. If we chose to be within a factor of 1.1 as the scope of our interest,

Algorithms 2018, 11, 76 10 of 13

then strategies except Rand and OPTI would have sufficed with a probability of 1. Figure 5b displays
results for Ligo workflows. Here, PHEFT and OHEFT were the best strategies, followed by OPTI
and PESS.

Figure 6 shows cpw performance profiles of six strategies for Montage and Ligo workflows
considering τ = [1 . . . 1.2]. In both cases, PHEFT had the highest probability of being the better
strategy for cpw optimization. The probability that it was the winner on a given problem within factors
of 1.1 of the best solution was close to 0.85 and 1 for Montage and Ligo, respectively.
Algorithms 2018, 11, x 10 of 13

(a) (b)

Figure 6. ܿݓ݌ performance profile, ߬ = [1…1.2]. (a) Montage; (b) Ligo.

Figure 7. Mean performance profile over all metrics and test cases, ߬ = [1…1.2].
7. Conclusions

Effective image and signal processing workflow management requires the efficient allocation of
tasks to limited resources. In this paper, we presented allocation strategies that took into account both
infrastructure information and workflow properties. We conducted a comprehensive performance
evaluation study of six workflow scheduling strategies using simulation. We analyzed strategies that
included task labeling, prioritization, resource selection, and DSP-cluster scheduling.

To provide effective guidance in choosing the best strategy, we performed a joint analysis of
three metrics (makespan, mean critical path waiting time, and critical path slowdown) according to
a degradation methodology and multi-criteria analysis, assuming the equal importance of each
metric.

Our goal was to find a robust and well-performing strategy under all test cases, with the
expectation that it would also perform well under other conditions, for example, with different
cluster configurations and workloads.

Our study resulted in several contributions:

(1) We examined overall DSP-cluster performance based on real image and signal processing data,
considering Ligo and Montage applications;

(2) We took into account communication latency, which is a major factor in DSP scheduling
performance;

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

(߬)ߜ

τ

Rand
BC
PESS
OPTI
PHEFT
OHEFT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

(߬)ߜ
τ

Rand
BC
PESS
OPTI
PHEFT
OHEFT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

(߬)ߜ

τ

Rand

BC

PESS

OPTI

PHEFT

OHEFT

Figure 6. cpw performance profile, τ = [1 . . . 1.2]. (a) Montage; (b) Ligo.

Figure 7 shows the mean performance profiles of all metrics, scenarios and test cases, considering
τ = [1 . . . 1.2]. There were discrepancies in performance quality. If we want to obtain results within
a factor of 1.02 of the best solution, then PHEFT generated them with probability 0.8, while Rand with
a probability of 0.47. If we chose τ = 1.2, then PHEFT produced results with a probability of 0.9, and
Rand with a probability of 0.76.

Algorithms 2018, 11, x 10 of 13

(a) (b)

Figure 6. ܿݓ݌ performance profile, ߬ = [1…1.2]. (a) Montage; (b) Ligo.

Figure 7. Mean performance profile over all metrics and test cases, ߬ = [1…1.2].
7. Conclusions

Effective image and signal processing workflow management requires the efficient allocation of
tasks to limited resources. In this paper, we presented allocation strategies that took into account both
infrastructure information and workflow properties. We conducted a comprehensive performance
evaluation study of six workflow scheduling strategies using simulation. We analyzed strategies that
included task labeling, prioritization, resource selection, and DSP-cluster scheduling.

To provide effective guidance in choosing the best strategy, we performed a joint analysis of
three metrics (makespan, mean critical path waiting time, and critical path slowdown) according to
a degradation methodology and multi-criteria analysis, assuming the equal importance of each
metric.

Our goal was to find a robust and well-performing strategy under all test cases, with the
expectation that it would also perform well under other conditions, for example, with different
cluster configurations and workloads.

Our study resulted in several contributions:

(1) We examined overall DSP-cluster performance based on real image and signal processing data,
considering Ligo and Montage applications;

(2) We took into account communication latency, which is a major factor in DSP scheduling
performance;

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

(߬)ߜ

τ

Rand
BC
PESS
OPTI
PHEFT
OHEFT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

(߬)ߜ

τ

Rand
BC
PESS
OPTI
PHEFT
OHEFT

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16 1.18 1.2

(߬)ߜ

τ

Rand

BC

PESS

OPTI

PHEFT

OHEFT

Figure 7. Mean performance profile over all metrics and test cases, τ = [1 . . . 1.2].

7. Conclusions

Effective image and signal processing workflow management requires the efficient allocation of
tasks to limited resources. In this paper, we presented allocation strategies that took into account both

Algorithms 2018, 11, 76 11 of 13

infrastructure information and workflow properties. We conducted a comprehensive performance
evaluation study of six workflow scheduling strategies using simulation. We analyzed strategies that
included task labeling, prioritization, resource selection, and DSP-cluster scheduling.

To provide effective guidance in choosing the best strategy, we performed a joint analysis of
three metrics (makespan, mean critical path waiting time, and critical path slowdown) according to
a degradation methodology and multi-criteria analysis, assuming the equal importance of each metric.

Our goal was to find a robust and well-performing strategy under all test cases, with the
expectation that it would also perform well under other conditions, for example, with different
cluster configurations and workloads.

Our study resulted in several contributions:

(1) We examined overall DSP-cluster performance based on real image and signal processing data,
considering Ligo and Montage applications;

(2) We took into account communication latency, which is a major factor in DSP scheduling
performance;

(3) We showed that efficient job allocation depends not only on application properties and constraints
but also on the nature of the infrastructure. To this end, we examined three configurations
of DSP-clusters.

We found that an appropriate distribution of jobs over the clusters using a pessimistic approach
had a higher performance than an allocation of jobs based on an optimistic one.

There were two differences to PHEFT strategy, compared to its original HEFT version. First,
the data transfer cost within a workflow was set to maximal values for a given infrastructure to support
pessimistic scenarios. All data transmissions were assumed to be made between different integrated
modules and different DSPs to obtain the worst data transmission scenario with the maximal data
rate coefficient.

Second, PHEFT had reduced time complexity compared to HEFT. It did not need to consider
every combination of DSPs, where the two given tasks were executed, and did not need to take into
account the data transfer rate between the two nodes to calculate a rank value (upward rank) based
on mean computation and communication costs. Low complexity is important for industrial signal
processing systems and real-time processing.

We conclude that for practical purposes, the scheduler PHEFT can improve the performance of
workflow scheduling on DSP clusters. Although, more comprehensive algorithms can be adopted.

Author Contributions: All authors contributed to the analysis of the problem, designing algorithms, performing
the experiments, analysis of data, and writing the paper.

Acknowledgments: This work was partially supported by RFBR, project No. 18-07-01224-a.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Conway, R.W.; Maxwell, W.L.; Miller, L.W. Theory of Scheduling; Addison-Wesley: Reading, MA, USA, 1967.
2. Błażewicz, J.; Ecker, K.H.; Pesch, E.; Schmidt, G.; Weglarz, J. Handbook on Scheduling: From Theory to

Applications; Springer: Berlin, Germany, 2007.
3. Myakochkin, Y. 32-bit superscalar DSP-processor with floating point arithmetic. Compon. Technol. 2013, 7,

98–100.
4. TigerSHARC Embedded Processor ADSP-TS201S. Available online: http://www.analog.com/en/products/

processors-dsp/dsp/tigersharc-processors/adsp-ts201s.html#product-overview (accessed on 15 May 2018).
5. Muchnick, S.S. Advanced Compiler Design and Implementation; Morgan Kauffman: San Francisco, CA,

USA, 1997.
6. Novikov, S.V. Global Scheduling Methods for Architectures with Explicit Instruction Level Parallelism.

Ph.D. Thesis, Institute of Microprocessor Computer Systems RAS (NIISI), Moscow, Russia, 2005.

http://www.analog.com/en/products/processors-dsp/dsp/tigersharc-processors/adsp-ts201s.html#product-overview
http://www.analog.com/en/products/processors-dsp/dsp/tigersharc-processors/adsp-ts201s.html#product-overview

Algorithms 2018, 11, 76 12 of 13

7. Wieczorek, M.; Prodan, R.; Fahringer, T. Scheduling of scientific workflows in the askalon grid environment.
ACM Sigmod Rec. 2005, 34, 56–62. [CrossRef]

8. Bittencourt, L.F.; Madeira, E.R.M. A dynamic approach for scheduling dependent tasks on the xavantes
grid middleware. In Proceedings of the 4th International Workshop on Middleware for Grid Computing,
Melbourne, Australia, 27 November–1 December 2006.

9. Jia, Y.; Rajkumar, B. Scheduling scientific workflow applications with deadline and budget constraints using
genetic algorithms. Sci. Program. 2006, 14, 217–230.

10. Ramakrishnan, A.; Singh, G.; Zhao, H.; Deelman, E.; Sakellariou, R.; Vahi, K.; Blackburn, K.;
Meyers, D.; Samidi, M. Scheduling data-intensive workflows onto storage-constrained distributed resources.
In Proceedings of the 7th IEEE Symposium on Cluster Computing and the Grid, Rio De Janeiro, Brazil,
14–17 May 2007.

11. Szepieniec, T.; Bubak, M. Investigation of the dag eligible jobs maximization algorithm in a grid.
In Proceedings of the 2008 9th IEEE/ACM International Conference on Grid Computing, Tsukuba, Japan,
29 September–1 October 2008.

12. Singh, G.; Su, M.-H.; Vahi, K.; Deelman, E.; Berriman, B.; Good, J.; Katz, D.S.; Mehta, G. Workflow task
clustering for best effort systems with Pegasus. In Proceedings of the 15th ACM Mardi Gras conference,
Baton Rouge, LA, USA, 29 January–3 February 2008.

13. Singh, G.; Kesselman, C.; Deelman, E. Optimizing grid-based workflow execution. J. Grid Comput. 2005, 3,
201–219. [CrossRef]

14. Tchernykh, A.; Lozano, L.; Schwiegelshohn, U.; Bouvry, P.; Pecero, J.-E.; Nesmachnow, S.; Drozdov, A. Online
Bi-Objective Scheduling for IaaS Clouds with Ensuring Quality of Service. J. Grid Comput. 2016, 14, 5–22.
[CrossRef]

15. Tchernykh, A.; Ecker, K. Worst Case Behavior of List Algorithms for Dynamic Scheduling of Non-Unit
Execution Time Tasks with Arbitrary Precedence Constrains. IEICE-Tran Fund Elec. Commun. Comput. Sci.
2008, 8, 2277–2280.

16. Rodriguez, A.; Tchernykh, A.; Ecker, K. Algorithms for Dynamic Scheduling of Unit Execution Time Tasks.
Eur. J. Oper. Res. 2003, 146, 403–416. [CrossRef]

17. Tchernykh, A.; Trystram, D.; Brizuela, C.; Scherson, I. Idle Regulation in Non-Clairvoyant Scheduling of
Parallel Jobs. Disc. Appl. Math. 2009, 157, 364–376. [CrossRef]

18. Deelman, E.; Singh, G.; Su, M.H.; Blythe, J.; Gil, Y.; Kesselman, C.; Katz, D.S. Pegasus: A framework for
mapping complex scientific workflows onto distributed systems. Sci. Program. 2005, 13, 219–237. [CrossRef]

19. Blythe, J.; Jain, S.; Deelman, E.; Vahi, K.; Gil, Y.; Mandal, A.; Kennedy, K. Task Scheduling Strategies for
Workflow-based Applications in Grids. In Proceedings of the IEEE International Symposium on Cluster
Computing and the Grid, Cardiff, Wales, UK, 9–12 May 2005.

20. Kliazovich, D.; Pecero, J.; Tchernykh, A.; Bouvry, P.; Khan, S.; Zomaya, A. CA-DAG: Modeling
Communication-Aware Applications for Scheduling in Cloud Computing. J. Grid Comput. 2016, 14, 23–39.
[CrossRef]

21. Bittencourt, L.F.; Madeira, E.R.M. Towards the scheduling of multiple workflows on computational grids.
J. Grid Comput. 2010, 8, 419–441. [CrossRef]

22. Zhao, H.; Sakellariou, R. Scheduling multiple dags onto heterogeneous systems. In Proceedings of the 20th
International Parallel and Distributed Processing Symposium, Rhodes Island, Greece, 25–29 April 2006.

23. Topcuouglu, H.; Hariri, S.; Wu, M.-Y. Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 2002, 13, 260–274. [CrossRef]

24. Sakellariou, R.; Zhao, H. A hybrid heuristic for dag scheduling on heterogeneous systems. In Proceedings of
the 13th IEEE Heterogeneous Computing Workshop, Santa Fe, NM, USA, 26 April 2004.

25. Bittencourt, L.F.; Sakellariou, R.; Madeira, E.R. DAG Scheduling Using a Lookahead Variant of the
Heterogeneous Earliest Finish Time Algorithm. In Proceedings of the 18th Euromicro Conference on
Parallel, Distributed and Network-Based Processing, Pisa, Italy, 17–19 February 2010.

26. Zhao, H.; Sakellariou, R. An Experimental Investigation into the Rank Function of the Heterogeneous Earliest Finish
Time Scheduling Algorithm; Springer: Berlin/Heidelberg, Germany, 2003.

27. Pegasus. Available online: http://pegasus.isi.edu/workflow_gallery/index.php (accessed on 15 May 2018).

http://dx.doi.org/10.1145/1084805.1084816
http://dx.doi.org/10.1007/s10723-005-9011-7
http://dx.doi.org/10.1007/s10723-015-9340-0
http://dx.doi.org/10.1016/S0377-2217(02)00236-9
http://dx.doi.org/10.1016/j.dam.2008.03.005
http://dx.doi.org/10.1155/2005/128026
http://dx.doi.org/10.1007/s10723-015-9337-8
http://dx.doi.org/10.1007/s10723-009-9144-1
http://dx.doi.org/10.1109/71.993206
http://pegasus.isi.edu/workflow_gallery/index.php

Algorithms 2018, 11, 76 13 of 13

28. Hirales-Carbajal, A.; Tchernykh, A.; Roblitz, T.; Yahyapour, R. A grid simulation framework to study advance
scheduling strategies for complex workflow applications. In Proceedings of the 2010 IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), Atlanta, GA, USA,
19–23 April 2010.

29. Hirales-Carbajal, A.; Tchernykh, A.; Yahyapour, R.; Röblitz, T.; Ramírez-Alcaraz, J.-M.; González-García, J.-L.
Multiple Workflow Scheduling Strategies with User Run Time Estimates on a Grid. J. Grid Comput. 2012, 10,
325–346. [CrossRef]

30. Ramírez-Velarde, R.; Tchernykh, A.; Barba-Jimenez, C.; Hirales-Carbajal, A.; Nolazco, J. Adaptive Resource
Allocation in Computational Grids with Runtime Uncertainty. J. Grid Comput. 2017, 15, 415–434. [CrossRef]

31. Tchernykh, A.; Schwiegelsohn, U.; Talbi, E.-G.; Babenko, M. Towards understanding uncertainty in cloud
computing with risks of confidentiality, integrity, and availability. J. Comput. Sci. 2016. [CrossRef]

32. Tchernykh, A.; Schwiegelsohn, U.; Alexandrov, V.; Talbi, E.-G. Towards Understanding Uncertainty in Cloud
Computing Resource Provisioning. Proced. Comput. Sci. 2015, 51, 1772–1781. [CrossRef]

33. Dolan, E.D.; Moré, J.J.; Munson, T.S. Optimality measures for performance profiles. Siam. J. Optim. 2006, 16,
891–909. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10723-012-9215-6
http://dx.doi.org/10.1007/s10723-017-9410-6
http://dx.doi.org/10.1016/j.jocs.2016.11.011
http://dx.doi.org/10.1016/j.procs.2015.05.387
http://dx.doi.org/10.1137/040608015
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Model
	Basic Definitions
	Performance Metrics
	DSP Cluster

	Related Work
	Proposed DSP Workflow Scheduling Strategies
	Experimental Setup
	Parameters
	Methodology of Analysis

	Experimental Results
	Performance Degradation Analysis
	Performance Profile

	Conclusions
	References

