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Abstract: This paper proposes an adaptive backstepping control algorithm for electric braking
systems with electromechanical actuators (EMAs). First, the ideal mathematical model of the EMA is
established, and the nonlinear factors are analyzed, such as the deformation of the reduction gear.
Subsequently, the actual mathematical model of the EMA is rebuilt by combining the ideal model and
the nonlinear factors. To realize high performance braking pressure control, the backstepping control
method is adopted to address the mismatched uncertainties in the electric braking system, and a
radial basis function (RBF) neural network is established to estimate the nonlinear functions in the
control system. The experimental results indicate that the proposed braking pressure control strategy
can improve the servo performance of the electric braking system. In addition, the hardware-in-loop
(HIL) experimental results show that the proposed EMA controller can satisfy the requirements of the
aircraft antilock braking systems.

Keywords: electric braking system; electromechanical actuator; brushless DC motor; backstepping
control; RBF neural network

1. Introduction

With the development of aviation technology, the performance of modern aircraft has also greatly
improved and the requirement of braking system performance is more stringent [1–5]. The electric
braking system is a new type of braking system that uses electromechanical actuators instead of
traditional hydraulic actuators. Compared with the hydraulic braking system, the electric braking
system has advantages of light weight, small volume, and high reliability which make it the development
direction of aircraft braking systems in the future [6–9].

As a new type of actuator, the electromechanical actuator (EMA) is composed of a motor, reduction
gear, and a ball screw. With the development of permanent magnet material technology, the brushless
DC motor (BLDCM) has been widely used in many industrial and automotive applications. The
BLDCM has the advantages of a high-power density, a compact structure, and high efficiency which
make it suitable for driving the EMA [10–12]. From the analysis above, it can be noted that the electric
braking system is a new kind of servo system with special applications. Therefore, an appropriate
control strategy is needed to satisfy the high-performance requirement of the aircraft braking system.

The EMA is a complex mechatronic transmission system that contains friction, backlash, hysteresis,
and other nonlinear factors. These characteristics make it difficult to accurately describe the dynamic
mathematical model of the EMA. In addition, aircrafts usually work in harsh environments, such
as large fluctuations in temperature, strenuous vibrations, and damp conditions. For these reasons,
it is impossible to obtain an accurate mathematical model of the EMA and is therefore difficult for
the EMA to achieve the high precision and fast response of the braking pressure control effect with
a traditional linear controller. To design an appropriate controller, the mathematical model of the
EMA must be reasonably simplified, and many studies have been working on this issue [13–15]. The
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compound disturbance in the EMA is a combination of the internal deformation, external disturbance,
time-varying parameters, and unmodeled dynamics, so an appropriate design idea is also essential to
design the control law of the electric braking system [16,17].

Peng et al. proposed a sliding mode control method for the electromechanical braking system
with a BLDCM, and the switching control law was adjusted by a fuzzy corrector [18]. Li et al. presented
a dynamic surface-based control algorithm for solving the stability problem of slip ratio control in an
electric braking system [19]. To improve the control ability and accuracy of the motor in a flexible-joint
robot, a fuzzy PID control method was proposed in [20]. To overcome the parameter variability and
unknown disturbance in the electric rudder servo system, Lv et al. proposed a backstepping power fast
terminal sliding mode control algorithm in [21]. Liang et al. [22] designed an RBF neural network-based
nonsingular fast terminal sliding mode control algorithm for braking systems with an EMA. The global
stability of the control law was proved by using the Lyapunov function. In [23], Chen et al. proposed a
sliding-mode extremum seeking controller for the all-electric active braking system in unmanned aerial
vehicles and validated the servo performance of the designed controller through HIL experiments.
Lin et al. [24] realized a non-mechanical antilock braking system (ABS) controller for the electric scooter,
and the braking performance for the ABS action was further addressed via experiments.

Furthermore, most of the existing studies have focused on improving the performance of the
EMA controller, and the braking pressure-motor angle models in the literature are generally equivalent
to a first-order proportional linear model. However, as shown in Figure 2, the real curve of the EMA
is not the case. Therefore, the traditional first-order mathematical model is not accurate enough to
describe the actual EMA model. On the basis of [22], the deformation of the reduction gear under
braking pressure is analyzed and combined with the ideal EMA mathematical model, and subsequently,
the actual EMA mathematical model is rebuilt. The backstepping control method has shown its
effectiveness in dealing with systems with multiple dynamics and mismatched uncertainties, but a
major problem is that certain functions must be linear in the unknown parameters and tedious analysis
is needed to determine the regression matrices. The RBF neural network has strong input and output
mapping functions, which make it suitable to use a stable neural network controller to estimate certain
nonlinear functions. With the help of RBF neural networks, the linear-in-the-parameters assumption of
the nonlinear function and the determination of the regression matrices can be avoided. According to
the characteristics of the actual EMA model, an adaptive backstepping control method is proposed
and the RBF neural network is used to address the uncertain compound disturbance of the electric
braking system. Compared with the routine control strategies, the servo performance of the braking
pressure and the adaptive ability of the control system are improved significantly.

The remainder of this paper is organized as follows: Section 1 introduces the control problems of
the electric braking system in aircrafts. Section 2 presents the working principle of the electric braking
system and structure of the EMA. Then, the deformation of the reduction gear is analyzed in detail, the
actual EMA mathematical model is established, and the corresponding control target is put forward.
Section 3 presents the backstepping adaptive controller and the design method of the RBF neural
network, and the stability analysis of the proposed controller is carried out using Lyapunov functions.
Section 4 discusses the experimental results and the hardware in loop experiments. The conclusions
are summarized in Section 5.

The main contributions of this paper are summarized as follows: first, the paper analyzed the ideal
EMA mathematical model and the nonlinear factors, and then the actual EMA mathematical model is
rebuilt by considering the deformation of the reduction gear. Second, the proposed adaptive nonlinear
control method can overcome the nonlinear factors of the electric braking system and improve the
response speed and control precision of the EMA. Third, the control effect of the newly designed EMA
controller is fully validated through the HIL experiments.
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2. Mathematical Model of the EMA

The electric braking system is composed of a braking controller, an EMA, a brake wheel, and a
brake disc. The structure of the electric braking system in the aircraft is shown in Figure 1. The braking
controller is the control and drive unit of the braking system. Its functions include braking signal
receiving, data processing, and control algorithm implementation. Then, the corresponding motor
driving signal is generated and used to drive the EMA to realize the braking actions. The braking
pressure feedback, motor current feedback, and the rotor position feedback signals are also transformed
to the braking controller, which will be used to achieve the braking pressure closed-loop control.
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At the same time, the aircraft speed and wheel speed are used to calculate the slip ratio, which is
usually used in the antilock braking system to prevent wheels from locking. The slip ratio control
is also finished in the braking controller by controlling the output braking pressure signal. No more
expatiation is needed here as there are many studies.

2.1. Ideal EMA Mathematical Model

The brushless DC motor (BLDCM) is usually controlled through a variable armature voltage.
To simplify the mathematical model of the EMA, the following assumptions are made: the current
fluctuation caused by the commutations is ignored, the magnetic condition of the motor is unsaturated,
and the hysteresis losses and the eddy-current losses are ignored.

The voltage equation and torque equation of the BLDCM are expressed as:
L

.
i = −Ri− Ea + Ua

J
.
ωm = −Bvωm + Te − TL

Te = kTi, Ea = kem fωm

, (1)

where Ua is the armature voltage, R is the stator resistance, i is the armature current, L is the stator
inductance, Ea is the back electromotive force, kem f is the back electromotive force constant, J is the
inertia moment, ωm is the mechanical speed of the motor, Bv is the viscous damping coefficient, Te is
the electromagnetic torque, kT is the torque constant, and TL is the load torque.

The relationship between the vertical motion of the ball screw and the rotary motion of the motor
is shown as:

.
xema = L0ωm/2πη, (2)

where xema is the axis displacement of the EMA, L0 is the lead of the ball screw, and η is the transmission
ratio of the reduction gear.
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By considering the essential characteristic of the electric braking system, the output braking
pressure of the EMA can be calculated as:

p = cb(xema − xb), (3)

where p is the braking pressure of the EMA, cb is the stiffness coefficient of the brake disc and xb is the
lateral displacement of the brake disc.

If the lateral displacement of the brake disc is assumed to be zero, Equation (3) can be simplified as:

p = cbxema. (4)

The load torque of the motor (TL) can be divided into two parts: part of it is used to overcome the
resistance torque of the ball screw, and the remainder is used to overcome the drive torque of the ball
screw. Then, the load torque can be calculated using the following equation:

TL = Trt + Tdt, (5)

where Trt is the resistance torque of the ball screw and Tdt is the drive torque of the ball screw.
In the EMA of the electric braking system, the resistance torque Trt is assumed to be a constant

value, and the drive torque Tdt is related to the output braking pressure p. In most studies, Tdt is
equivalent to a linear function of the braking pressure as:

Tdt = pL0/2πη. (6)

However, this simplification has a significant effect on the control performance of the electric
braking system. By analyzing the electric braking system, it can be found that when the changing rate
of the braking pressure

.
p is positive, the drive torque is a resistance to the motor. When the changing

rate of the braking pressure
.
p is negative, the drive torque is a motivation to the motor, as shown in

Equation (7):
Tdt = psgn(

.
p)L0/2πη (7)

To decrease the chattering of the braking pressure control effect, a saturation function is introduced
instead of the sign function. According to Equations (2) and (4), the load of the motor can be
expressed as:

TL = Trt + psat(ωm, τ)L0/2πη, (8)

where the saturation function is defined as:

sat(ωm, τ) =


1, ωm > τ
ωm/τ, |ωm| ≤ τ
−1, ωm < −τ

, (9)

where τ is the boundary coefficient of the saturation function.
By taking consideration of Equations (1)—(9), selecting the state variables as xi = [p,ωm, i], the

ideal mathematical model of the EMA can be expressed as:
.
p = cbL0ωm/2πη
.
ωm = J−1(−Bvωm + kTi− TL).
i = L−1(−Ri− kem fωm + Ua)

(10)

TL = Trt + psat(ωm, τ)L0/2πη (11)
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2.2. Deformation of the Reduction Gear

As seen from Equation (10), the relationship between the braking pressure p and the rotation
angle of motor θm is established by a linear function. However, the ideal EMA mathematical model
ignored many nonlinear factors, such as the deformation of the gear and gear clearance. As described
in the literature [25,26], the reduction gear will exhibit deformation under a heavy load which can
eventually affect the relationship between the braking pressure and the motor position, rendering it
different from the ideal model. After many experiments, the actual curves of the braking pressure and
the motor position are drawn and the comparison of the ideal and actual curves is shown in Figure 2.
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It was assumed that the deformation of the reduction gear under the braking pressure p is δg, and
δg is divided into two parts: the contact deformation δg1 and the bending deformation δg2.

When analyzing the contact deformation of the reduction gear δg1, it can be simplified as a contact
force model of two cylinders with parallel axes. If the contact force is small, then the two cylinders can
be thought of as touching along a line parallel to their axes. As the contact force increases, the contact
line deforms into a contact surface along with the elastic deformation of the material. The interface
width wg can be determined by the gear parameters, and the interface length lg can be determined
from the Hertz theory [27]:

lg = 1.596
√

fg cosαgρg(1− µ2
g)/Eg, (12)

where αg is the angle between the acting force fg and the y axis,ρg is the radius of curvature of the
contact surface,µg and Eg are the elastic constants of the reduction gear.

Then, the stress in the reduction gear can be expressed as:

σg =
fg

lgwg
. (13)

The contact deformation of the reduction gear can be calculated using Hooke’s law:

δg1 =
fgpg

lgwgEg
(14)

For a fixed reduction gear, all of the parameters are constants except for the acting force fg. Then,
Equation (14) can be simplified as:

δg1 = cg1

√
fg, (15)

where cg1 is a constant, which is determined by the reduction gear parameters.
When analyzing the bending deformation of the reduction gear δg2, the research should focus on

the deformation of the meshing point so the distributed force along the tooth surface is simplified into
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a concentrated force, and the reduction gear is regarded as a cantilever of the elastic material. The
force component in the y axis of the acting force fg is represented as fgy:

fgy = fg cosαg. (16)

The bending deformation of the reduction gear under fgy in the y axis is expressed as:

δgy =
rg fg cos2 αg

EgIg

t∫
0

∆x2
gt cos tdt, (17)

where rg is the radius of the gear base,αg is the angle between fg and the y axis, Eg is the elasticity
modulus of the gear, Ig is the section modulus of the gear and ∆xg is the arm length of the equivalent
bending moment.

Then, the bending deformation of the gear is generated as:

δg2 = δgy cosαg. (18)

Similarly, all of the parameters are constants except for the acting force fg. Equations (17) and (18)
can be simplified as:

δg2 = cg2 fg, (19)

where cg2 is a constant, which is determined by the reduction gear parameters.
After the deformation analysis, the relationship between the braking pressure p and the acting

force fg is needed. It is expressed as:
fg = pl0/2πη (20)

Then, the deformation of the reduction gear under the braking pressure is generated as:{
δg1 = cg1

√
pl0/2πη

δg2 = cg2pl0/2πη
(21)

2.3. Actual EMA Mathematical Model and the Control Target

If there is no deformation in the reduction gear, then it can be generated from Equations (2) and
(4) that the ideal relationship between the braking pressure p and the motor position ∆θm is:

p = cbL0∆θm/2πη. (22)

Considering the deformation in the reduction gear by combining Equations (21) and (22), the
relationship between the braking pressure and the motor angle can be expressed by a second order
equation [28–30]. Then, it can be obtained by using on a least square fit in Figure 2 as:

p = c1∆θm + c2(∆θm)
2, (23)

where c1 and c2 are constants, and they are determined by the EMA parameters.
Finally, in the EMA mathematical model, the quadratic item in Equation (23) is treated as a

disturbance item. By taking the state variables xi = [p,ωm, i] into the equations, the actual state space
model of the EMA is expressed as: 

.
x1 = a1x2 + f1(x)
.
x2 = a2x3 + f2(x)
.
x3 = a3Ua + f3(x)
y = x1

, (24)
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where a1 = cbL0/2πη, a2 = J−1kT, a3 = L−1. f1(x), f2(x) and f3(x) are unknown continuous functions
of the variables xi = [p,ωm, i].

The corresponding control target is proposed as follows: design a braking pressure controller of
the EMA mathematical model described in Equation (24) so that the braking pressure p can track the
desired braking pressure p∗ without errors in finite time.

It can be found that the electric braking system is essentially a high-performance pressure servo
system which is driven by a BLDCM, and the controller design needs to consider the model uncertainty
and the disturbance from the system. The unknown function comes from the deformation of the EMA
and the nonlinear load torque of the motor, where the disturbance is mainly caused by parameter
perturbation and the unmodeled dynamics of frictions. Therefore, the control algorithm to be designed
needs to overcome these unknown disturbances to achieve high performance pressure control.

3. Control Strategy

The backstepping control method can decompose the complex nonlinear system into several
sub systems, and the corresponding Lyapunov function of the whole system can be derived step
by step [31,32]. According to the characteristics of the actual EMA mathematical model, this paper
proposes an adaptive backstepping control method that uses an RBF neural network to approximate
and adaptively cancel the unknown parts of the system.

To facilitate the design of the controller, the assumption that the reference braking pressure signal
p∗ is continuous and its derivative exists is made.

3.1. Controller Design

Based on the backstepping theory, the high order system is divided into three sub systems, and
the Lyapunov function of the system is built [33,34]. The error variables of system are defined as:

e1 = x1 − p∗

e2 = x2 − α1

e3 = x3 − α2

, (25)

where e1, e2, e3 are the errors,α1 and α2 are the virtual control variables of the sub system.
Step 1:
For the first sub system, the Lyapunov function is selected as:

V1 =
e2

1

2
. (26)

Obtain the derivative of Equation (26) as:

.
V1 = e1

.
e1 = e1

(
a1e2 + a1α1 + f1(x) −

.
p∗

)
. (27)

The virtual control variable α1 is designed as:

α1 =
1
a1

(
−µ1e1 − f̂1(x) +

.
p∗

)
. (28)

Take Equation (28) into Equation (27) as:

.
V1 = a1e1e2 + e1∆1(x) − µ1e2

1, (29)

where f̂1(x) is the designed neural network function, which will be used to approximate the unknown
continuous function f1(x), and ∆1(x) = f1(x) − f̂1(x) is the estimated error.

Step 2:



Algorithms 2019, 12, 215 8 of 16

For the second sub system, the item e1e2 in (29) needs to be offset, and the Lyapunov function is
selected as:

V2 = V1 +
e2

2

2
. (30)

Obtain the derivative of Equation (30) as:

.
V2 =

.
V1 + e2

.
e2 =

.
V1 + e2

(
a2e3 + a2α2 + f2(x) −

.
α1

)
. (31)

The virtual control variable α2 is designed as:

α2 =
1
a2

(
−a1e1 − µ2e2 − f̂2(x) +

.
α1

)
. (32)

Take Equation (32) into Equation (31) as:

.
V2 =

2∑
i=1

(
−µie2

i + ei∆i(x)
)
+ a2e2e3, (33)

where f̂2(x) is the designed neural network function, which will be used to approximate the unknown
continuous function f2(x), and ∆2(x) = f2(x) − f̂2(x) is the estimated error.

Step 3:
For the third sub system, the Lyapunov function is selected as:

V3 = V2 +
e2

3

2
. (34)

Obtain the derivative of Equation (34) as:

.
V3 =

.
V2 + e3

.
e3 =

.
V2 + e3

(
a3Ua + f3(x) −

.
α2

)
. (35)

The control law of Ua is designed as:

Ua =
1
a3

(
−a2e2 − µ3e3 − f̂3(x) +

.
α2

)
. (36)

Take Equation (36) into Equation (35) as:

.
V3 =

3∑
i=1

(
−µie2

i +
ei
ai

∆i(x)
)
, (37)

where f̂3(x) is the designed neural network function, which will be used to approximate the unknown
continuous function f3(x), and ∆3(x) = f3(x) − f̂3(x) is the estimated error.

After the control variable Ua is designed, we need to design the neural network function f̂i(x)
i = 1, 2, 3 and keep the control system stable.

3.2. The RBF Neural Network

The structure of an RBF neural network is shown in Figure 3.
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In Figure 3, the RBF neural network consists of the input layer, the basis function layer (hidden
layer), and the output layer [35,36]. The input layer is used to complete the information transfer, the
basis function layer is the respective field, and the output layer is the outputs of the RBF neural network.
The numbers of the input layer and the output layer are usually determined by the characteristics of
the control system. In this paper, there are three neurons in the input layer and one neuron in the
output layer. A k-means clustering algorithm is used on selecting the number of the hidden layer and
the corresponding control parameters of the neural network [37], and the number of neurons in the
hidden layer is eventually determined to be five.

The Gaussian function is chosen as the radial basis function, as shown in Equation (38):

hi(x) = exp

−‖x− ci‖
2

2d2
i

i = 1, 2, · · ·M, (38)

where ci is the center of the basis function,di is the scaling factor of the basis function, and hi(·) is the
base Gaussian function.

From Equation (37), it can be found that there are three unknown functions f1, f2 and f3, so we
use three RBFs to approximate them as follows (39):

f1 = WT
1 H1 + ε1

f2 = WT
2 H2 + ε2

f3 = WT
3 H3 + ε3

, (39)

where Wi is the ideal neural network weight vector and Wi = [w1i w2i w3i w4i w5i]
T, wMi(M = 1, 2, 3, 4, 5)

is the weight value, Hi is the radial basis vector, and Hi = [h1i h2i h3i h4i h5i]
T, hMi(M = 1, 2, 3, 4, 5) is the

Gaussian function, εi is the approximation error,i = 1, 2, 3, and ‖ε‖ = ‖[ε1ε2ε3]
T
‖ ≤ εN, ‖Wi‖F ≤ WM

(‖ε‖ is the Euclidean norm of ε, ‖Wi‖F is the Forbenius norm of Wi).
Define f̂1, f̂2 and f̂3 as follows (40): 

f̂1 = ŴT
1 H1

f̂2 = ŴT
2 H2

f̂3 = ŴT
3 H3

, (40)

where Ŵi is the weight vector estimation.
Similarly, define Z, Ẑ and Z̃ as follows (41):

Z =


W1

W2

W3

, ‖Z‖F ≤M, Ẑ =


Ŵ1

Ŵ2

Ŵ3

, Z̃ = Z− Ẑ. (41)
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Design the Lyapunov function as:

V =
1
2
ξTξ+

1
2

tr
(
Z̃TΓ−1Z̃

)
, (42)

where V3 = 1
2ξ

Tξ, ‖Z‖F is the Forbenius norm of Z, Γ is a positive definite matrix with proper

dimensions, Γ =


Γ1

Γ2

Γ3

, ξ = [e1e2e3]
T.

Design the RBF neural network weights adaptive law as follows:

.
Ẑ = ΓHξT

− nΓ‖ξ‖Ẑ, (43)

where H = [H1H2H3]
T, ‖ξ‖ is the Euclidean norm of ξ, and n > 0.

From Equation (42), we have

.
V = ξT

.
ξ+ tr

(
Z̃TΓ−1

.

Z̃
)
=

3∑
i=1

(
−µie2

i

)
+

3∑
i=1

(
W̃T

i Hi + εi
)
ei + tr

(
Z̃TΓ−1

.

Z̃
)
, (44)

where W̃T
i = WT

i − ŴT
i and i = 1, 2, 3.

Then we can obtain:

.
V = −ξTKξ+ ξTE + ξTZ̃H + tr

(
Z̃TΓ−1

.

Z̃
)
= −ξTKξ+ ξTE + tr

(
Z̃TΓ−1

.

Z̃ + Z̃THξT
)
, (45)

where K = [µ1µ2µ3]
T, and E = [ε1ε2ε3]

T.

Since
.

Z̃ = −
.
Ẑ, by using the RBF network weights adaptive law in (43),

.
V is expressed as:

.
V = −ξTKξ+ ξTE + n‖ξ‖tr

(
Z̃T

(
Z− Z̃

))
. (46)

If Kmin is the minimum eigenvalue of K, then we can know that Kmin‖ξ‖
2
≤ ξTKξ, according to

the Schwarz inequality, it can be found that

tr
(
Z̃T

(
Z− Z̃

))
≤ ‖Z̃‖F‖Z‖F − ‖Z̃‖

2
F. (47)

Take (47) into (46), we can obtain:

.
V ≤ −Kmin‖ξ‖

2 + εN‖ξ‖+ n‖ξ‖
(
‖Z̃‖F‖Z‖F − ‖Z̃‖

2
F

)
≤ −‖ξ‖

(
Kmin‖ξ‖ − εN + n‖Z̃‖F

(
‖Z̃‖F −ZM

)) . (48)

Since Kmin‖ξ‖− εN + n‖Z̃‖F
(
‖Z̃‖F −ZM

)
= Kmin‖ξ‖− εN + n

(
‖Z̃‖F − 1

2 ZM
)2
−

n
4 Z2

M, if we can ensure

that ‖ξ‖ >
4εN+nZ2

M
4Kmin

, then
.

V ≤ 0 will be true, and the control system will be stable. By adjusting the
parameters εN, n and Kmin properly, the dynamic performance of the controller will be improved.

Compared to the traditional backstepping control method, the RBF backstepping control method
in this paper has strong robustness, benefiting from the universal approximation character of the RBF
neural network.

4. Results and Analysis

To verify the servo performance of the proposed control method, the signal generator is taken as
the braking pressure reference signal source, and a scope is used to record the braking pressure signals.
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For practical purposes, the EMA is installed in the aircraft wheel as shown in Figure 4a, and the HIL
test bench is shown in Figure 4b.
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First, we need to design the control parameters of the neural networks, including the cluster
centers of the basis function, the scaling factors of the basis function, and the weight value vectors of the
output layer. As mentioned above, a k-means clustering algorithm is adopted to calculate the cluster
centers and the scaling factors, and the weight value vectors can be obtained by a pseudo-inverse
method. The workflow of the k-means is shown as follows:

(1) Selecting M different vectors as the initial cluster center c1(0), c2(0), . . . , cM(0), where M is the
number of the hidden nodes.

(2) Calculating the Euclidean distance between each input sample point and the clustering center
point, as shown Equation (49), and Xp is the sample data.

‖Xp
− c j(k)‖, p = 1, 2, . . . , P; j = 1, 2, . . . , M. (49)

(3) Classifying the similar sample points into a class. When Equation (50) is satisfied, Xp is
classified as the j∗ class. Then, all of the samples are divided into M subsets as U1(k), U2(k), . . . , UM(k),
and each of them is a clustering domain, which can be represented by the corresponding cluster center.

j∗(Xp) = min
j
‖Xp
− c j(k)‖, p = 1, 2, . . . , P. (50)

(4) Modifying the cluster centers by calculating the average values of the samples in each subset.
It is calculated as Equation (51):

c j(k + 1) =
1

Ni

∑
X∈U j(k)

XU j(k), (51)

where U j(k) is the j-th cluster domain, and Ni is the samples number of U j(k).
(5) Let k = k + 1, and turns to step (2). Then repeat the process until the change in c j(k) is less

than the preset threshold.
After the cluster centers are determined, the scaling factors can be obtained as:

d j = γmin‖c j − ci‖. (52)



Algorithms 2019, 12, 215 12 of 16

4.1. RBF Neural Networks Appropximate Performance

Then, the approximate performance of the designed RBF neural networks is verified by real-time
experiments. As the neural networks proposed in this paper is used to approximate the unknown
functions in the EMA model, we took a set of actual braking pressure data to verify it. The braking
pressure ranges from 20 kg to 190 kg, the actual braking pressure and the ideal braking pressure are as
shown in Figure 5a. It can be found that there are some differences between the actual pressure and
the ideal model, due to the nonlinear factors such as the gear deformation. So, the proposed neural
networks are used to approximate the unknown functions in the EMA model and its approximate
performance of the braking pressure error is shown in Figure 5b. The experiments results indicate that
the neural networks can approximate the braking pressure error effectively. This is also the basis of the
high-performance pressure control.
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4.2. EMA Servo Performance

Subsequently, the servo performance of the EMA is verified by experiments. The sine wave and
square wave are taken as the pressure reference signals respectively, and the reference signal and
actual pressure signal are both recorded by the scope. To provide a sufficient comparison, a traditional
proportional integral derivative (PID) controller is designed according to the requirements of the
electric braking system, and the transfer function is:

C(s) = Kp + Ki/s + Kds. (53)

Due to the particularity of the electric braking system, the parameters of the PID controller is
designed in two stages: when the braking pressure is increasing, the parameters is Kp = 18, Ki = 0.02,
Kd = 0.5, and when the braking pressure is decreasing, the parameters is Kp = 12, Ki = 0.13, Kd = 0.2.

In the proposed braking controller, three RBFs are designed. For each Gaussian function, the
parameters of ci and di are designed as [−8, 3, 0, 3, 8] and 20. The initial weight value of each
neural net in the hidden layer is selected as 0.90. The parameters in the adaptive law is designed as
µ1 = µ2 = µ3 = 8, Γ1 = diag{80, 80, 80}, Γ2 = diag{15, 15, 15}, Γ3 = diag{0.9, 0.9, 0.9}, and n = 0.2.

Figure 6a,b shows that the frequency of the pressure signal is 3 Hz, the amplitude is 300 kg and
the offset is 30 kg. It can be found that the proposed control algorithm in this paper has better tracking
accuracy and smaller signal phase lag than the PID control algorithm. In Figure 6c,d, the reference
signal is a square wave, which requires a more precise control algorithm. The frequency is 2 Hz, the
amplitude is 300 kg, and the offset is 30 kg. Compared with the traditional PID control, the proposed
method can increase the braking pressure much more quickly without overshot and the static error is
much smaller than that in the PID control.
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4.3. HIL Experimental Results

In practical work, the braking pressure signal is more irregular which requires higher control
performance of the EMA. To verify the control effects of the proposed EMA controller in an actual
working environment of the aircraft, an aircraft electric braking system HIL test bench was built
as shown in Figure 4b. The aircraft landing model and the antilock controller were established by
MATLAB-Simulink and downloaded to the target board. Then, the reference pressure signal was
output to the EMA controller and the corresponding braking pressure is realized by EMA. The main
structure of the HIL test bench was analyzed in research [14] and no more detail is provided here. The
control target of the HIL experiment is to control the slip ratio around the optimal value to maintain
the maximum adhesive coefficient between the aircraft wheel and the runway. The slip ratio λ and
adhesive coefficient µ are defined as:

λ = (Vx −Vw)/Vx, (54)

µ(λ) = c1(1− e−c2λ) − c3λ, (55)

where Vx is the aircraft speed,Vw is the wheel speed, and c1, c2, c3 are constants.
The initial conditions of the aircraft speed and the wheel speed are Vx = 72 m/s and Vw = 72 m/s,

respectively. The limitation of the maximum braking pressure in the EMA controller is set at 225 kg.
In the u-y function, the optimal wheel slip ratio is λ = 0.16 and the maximum adhesive coefficient is
µ = 0.75. All of the experimental data are saved by the upper computer and drawn by MATLAB.
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The HIL experimental results are shown in Figure 7a–d. It can be clearly observed that the aircraft
speed and wheel speed descend steadily under the action of the braking pressure. After a short time
transient, the optimal slip ratio is well tracked and the corresponding adhesive coefficient remains
stable around its maximum value without significant overshoots, which means that the proposed EMA
controller can meet the requirements of the aircraft braking system.
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5. Conclusions

Based on the analysis of the electric braking system, the ideal mathematical model of the EMA is
established and the deformation of the reduction gear is analyzed. Then, the actual mathematical model
is obtained by reasonably simplifying the nonlinear factors. A new RBF neural network-based adaptive
backstepping design principle is adopted to address the multiple dynamics in the electric braking
system. The Lyapunov function analysis indicates that the proposed control strategy guaranteed that
the tracking error of braking pressure is uniformly ultimately bounded. The experimental results show
that the servo performance of the EMA is improved significantly with the proposed control strategy
compared with the traditional controller. Furthermore, the experimental results of the HIL test show
that the performance of the proposed EMA controller can meet the requirements of the aircraft antilock
braking system.
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