
algorithms

Article

A Novel Coupling Algorithm Based on Glowworm
Swarm Optimization and Bacterial Foraging
Algorithm for Solving Multi-Objective
Optimization Problems

Yechuang Wang 1, Zhihua Cui 1,* and Wuchao Li 2

1 Complex System and Computational Intelligent Laboratory, Taiyuan University of Science and Technology,
Taiyuan 030024, China; yechuangwang@gmail.com

2 Jiaxing Vocational Technical College, Jiaxing 314001, China; liwuchao95@gmail.com
* Correspondence: cuizhihua@tyust.edu.cn; Tel.: +86-138-3459-9274

Received: 28 December 2018; Accepted: 5 March 2019; Published: 11 March 2019
����������
�������

Abstract: In the real word, optimization problems in multi-objective optimization (MOP) and
dynamic optimization can be seen everywhere. During the last decade, among various swarm
intelligence algorithms for multi-objective optimization problems, glowworm swarm optimization
(GSO) and bacterial foraging algorithm (BFO) have attracted increasing attention from scholars.
Although many scholars have proposed improvement strategies for GSO and BFO to keep a good
balance between convergence and diversity, there are still many problems to be solved carefully. In
this paper, a new coupling algorithm based on GSO and BFO (MGSOBFO) is proposed for solving
dynamic multi-objective optimization problems (dMOP). MGSOBFO is proposed to achieve a good
balance between exploration and exploitation by dividing into two parts. Part I is in charge of
exploitation by GSO and Part II is in charge of exploration by BFO. At the same time, the simulation
binary crossover (SBX) and polynomial mutation are introduced into the MGSOBFO to enhance the
convergence and diversity ability of the algorithm. In order to show the excellent performance of the
algorithm, we experimentally compare MGSOBFO with three algorithms on the benchmark function.
The results suggests that such a coupling algorithm has good performance and outperforms other
algorithms which deal with dMOP.

Keywords: multi-objective optimization (MOP); coupling algorithm; glowworm swarm optimization
(GSO); bacterial foraging algorithm (BFO); dynamic multi-objective optimization problems (dMOP);
the simulation binary crossover (SBX); polynomial mutation

1. Introduction

With the development of society, more and more real optimization problems involving industrial
and scientific problems are common [1–3]. Usually, these optimization problems are noy independent,
but rather a set of objective functions. The optimization problems with a set of objective functions
are known as multi-objective optimization (MOP). In general, MOP requires a set of optimal tradeoff
solutions in the case of two or more conflicting objectives. Typical examples include scheduling
problems with available resources, vehicle routing in traffic networks of traffic flow, etc.

Generally speaking, Swarm intelligence optimization algorithms (SIOAs) are mostly inspired by
the behaviors of biological swarm systems (e.g., bird flocking, foraging and courtship).There are several
popular SIOAs, such as genetic algorithm (GA) [4], differential evolution algorithm (DE) [5], particle
swarm optimization (PSO) [6,7], ant colony optimization (ACO) [8], artificial bee colony (ABC) [9,10], bat
algorithm (BA) [11,12], bacteria foraging optimization algorithm (BFOA) [13], cuckoo search (CS) [14–16]

Algorithms 2019, 12, 61; doi:10.3390/a12030061 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://dx.doi.org/10.3390/a12030061
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/12/3/61?type=check_update&version=3

Algorithms 2019, 12, 61 2 of 15

and glowworm swarm optimization (GSO) [17,18], etc. In the past decades, these SIOAs have been
widely applied to various optimization problems [19,20]. When projects or systems in real-life become
large, some very complex optimization problems emerge, such as large-scale optimization problems
and multi-objective optimization problems (MOPs). However, for these problems, it is found that these
algorithms are originally designed to solve simple practical problems and the algorithms will not be
suitable for solving the complex practical problems. So, the performance of most SIOAs encounters
great challenges. Therefore, strong and effective SIOAs are required.

Up to now, most Swarm intelligence optimization algorithms have been proposed to solve
multi-objective optimization problems. For example, Deb et al. proposed NSGA [21]. The algorithm
is implemented hierarchically according to the dominance and non-dominance relations between
individuals. However, the algorithm’s performance is affected by the high computational complexity
of this algorithm, non-elitism strategy and relies heavily on Shared parameters. In 2000, Deb
suggests a non-dominated sorting based on muli-objective evolutionary algorithms (MOEAs), called
non-dominated sorting genetic algorithm II (NSGA-II) [22] to address these issues. Zhang et al.
proposed MOEA/D [23], which is to decompose MOPs into multiple scalar sub-problems, and then
the sub-problems are simultaneously optimized. Horn et al. proposed NPGA [24], which integrated
the concept of Pareto dominance into the selection operation of GA and applied the niche to the
entire population. Zitzler et al. proposed SPEA2 [25], which tried to mix adaptive value allocation,
archive truncation, and the density selection strategies. Gong et al. [26] use of the strength Pareto
genetic algorithm (GA) with immunity as a tool to solve multi-objective optimization problems in the
maintenance of aircraft equipment and propose the PNIA algorithm.

In this paper, we focus on improving SIOAs for solving MOPs. As can be seen from the above
review, most swarm intelligence algorithms have their own advantages and disadvantages. According
to the no free lunch theorem [27], it is difficult to use one algorithm to solve all kinds of optimization
problem. Recently, an ensemble strategy was proposed to benefit from both the availability of diverse
approaches and the need to tune the associated parameters. The research has shown the general
applicability of the ensemble strategy in solving diverse problems by using different populated
optimization algorithms [28]. What’s more, the coupling rules are different such as the parallel method,
serially method, and nested method, and so on. At present, there are many coupling algorithms in
the research and the method has become a new research hotspot. Therefore, a new idea is formed by
coupling two or more strategies of algorithms to make the algorithm inherit the advantages of different
algorithms and overcome the disadvantages of a single algorithm. In this paper, a coupling algorithm is
designed for many-objective optimization based on GSO and BFO to deal with the MOPs [29,30]. As we
all know, a good balance between exploration and exploitation is important for optimization algorithm.
MGSOBFO is proposed to achieve a good balance between exploration and exploitation by dividing
into two parts. Part I is in charge of exploitation by GSO and the Part II is in charge of exploration
by BFO. At the same time, the simulation binary crossover (SBX) [22] and polynomial mutation [22]
are introduced into the MGSOBFO to enhance the convergence and diversity ability of the algorithm.
Those methods not only have an effect on the convergence ability of the algorithm, but also have the
effect of extending the coverage of population to avoid being trapped into the local optimum.

The rest of the article is organized as follows. In Section 2, we give a brief introduction of
multi-objective optimization problems and standard GSO, BFO algorithm. In Section 3, we introduce the
detail of proposed approach. Section 4 gives out the comparison results and experimental analyses of
MGSOBFO algorithm. Finally, Section 5 gives some conclusions of the work and directions for future work.

2. Basic Concepts

2.1. The Multi-Objective Optimization Problems

In general, a multi-objective optimization problem can be defined as a vector function f that maps
a tuple of n decision variables to tuple of m objectives.

Algorithms 2019, 12, 61 3 of 15

Formally as follow:

Min y = f (x) = (f1(x), f2(x), · · · , fm(x))
subject to x = (x1, x2, · · · xn) ∈ Rn (1)

where x is called the decision vector, and fm(x) is the m-th sub-objective function. Rn is parameter
(decision variables) space.

As we all know that the objectives in multi-objective optimization problems are conflicting, no
single solution can be found to be best in all solutions. So, the best tradeoffs among the objectives
can be defined in terms of Pareto optimality. A solution vector xa = (xa

1, xa
2, · · · , xa

n)
T is said to

dominate another vector xb = (xb
1, xb

2, · · · , xb
n)

T
if and only if xa

i ≤ xb
i for ∀i ∈ {1, 2, · · · , n} and

∃i ∈ {1, 2, · · · , n}. The dominance relationship can be described like this: xa
i ≺ xb

i [31].

2.2. Standard Glowworm Swarm Optimization Algorithm (GSO)

Glowworm Swarm Optimization (GSO) [17,18] is a novel swarm intelligence search algorithm.
The idea of the algorithm is to simulate the social behaviors of fireflies in nature by using fluorescein
to make connections. The standard GSO algorithm consists of four stages, namely, the initialization,
the updating luciferin, the updating position and the updating perception range stage. The following
four stages of operation are described in detail.

(1) Initialization

In the initialization stage, fireflies are randomly distributed in the decision feasible region.
In addition, the initial luciferin and the sensing radius is the same for each firefly.

(2) Updating luciferin

The luciferin of firefly is directly related to its location in the search space. And the higher the
evaluation value of the position in the space, the higher the fitness of the individual, that is, the larger
the fluorescent of the individual. The specific equation of updating fluoresce in is as follows.

li(t + 1) = (1− ρ)li(t) + γJ(xi(t + 1)) (2)

where ρ denotes the luciferin volatility parameters of firefly; li(t) denotes the luciferin value of the
firefly i in the tth iteration; γ denotes the updating luciferin rate parameters of firefly; J(xi(t + 1))
denotes the evaluation value of firefly i at position xi(t + 1) in the t+1th iteration.

(3) Roulette selection

For each iteration, the fireflies need to find the firefly that the luciferin value is larger than
its own within the sensing range of the firefly. Then, the updating direction of the firefly position
should be determined according to the roulette method. In addition, the selection probability of the
neighboring firefly is also determined according to the luciferin value. The GSO algorithm will selects
the individuals that meet the following two conditions to form a group.

I. Glowworm j needs to be within the perceived radius of glowworm i;
II. The luciferin of glowworm j is brighter than that of glowworm i.

The specific equation for the selection probability of the neighboring firefly is as follows.

pij(t) =
lj(t)− li(t)

∑
k∈Ni(t)

lk(t)− li(t)
(3)

Algorithms 2019, 12, 61 4 of 15

Ni(t) =
{

j : di,j(t) < ri
d; li(t) < lj(t)

}
(4)

where, j ∈ Ni(t), and Ni(t) represents the neighborhood set of firefly i in the tth iteration; ri
d(t)

represents the decision radius of firefly i in the tth iteration; di,j(t) represents the space distance
between firefly i and j in the tth iteration; pij(t) represent sthe probability of firefly i to firefly j in the
tth iteration.

When the neighborhood firefly j of firefly i is selected, firefly i will update its position as the
following update equation.

xi(t + 1) = xi(t) + s ∗ (
xj(t)− xi(t)
‖xj(t)− xi(t)‖

) (5)

where, s represents the moving step size of firefly; ‖xj(t)− xi(t)‖ represents the Euclidean space
distance between firefly i and firefly j.

(4) Neighborhood range update rule

After the position of the firefly is updated, the range of perception will be dynamically adjusted.
The size of the perceived radius is determined by the number of firefly individuals within the perceived
radius. The specific equation of the updating perceptual range is as follows.

ri
d(t + 1) = min

{
rs, max

{
0, ri

d(t) + β ∗ (nt − |Ni(t)|)
}}

(6)

where, rs represents the perception radius; nt represents the threshold for firefly neighborhood set; β is
the parameter to adjust the size of firefly’s dynamic perception range.

2.3. Standard Bacterial Foraging Algorithm (BFO)

Passino proposed an algorithm BFO [13] to solve corresponding problems in 2001.Compared
with the well-known EAs DE, genetic algorithm, and PSO, BFO shows excellent performance. The
bacterial foraging optimization algorithm is inspired by the foraging strategies of the E. Coli bacterium
cells. The basic principle of the bacterial foraging algorithm is to regard each Escherichia coli as a
solution. BFO complete the search process of the optimal solution by the bacterial foraging behavior:
chemotaxis, swarming, reproduction and elimination. The four parts are as follows:

â The Chemotaxis

Chemotaxis is achieved by the following two operations: swimming and tumbling. When a
bacterium meets a favorable environment, it will continue swimming in the same direction. When it
meets an unfavorable environment, it will tumble. The process of movement can be defined as follow:

xi(j + 1, k, l) = xi(j, k, l) + C(i)
∆(i)√

∆T(i) • ∆(i)
(7)

where xi(j, k, l) represents the position of bacteria i when it approaches the jth reproduction and lth
elimination and dispersal; C(i) is the step of chemotaxis; ∆(i)√

∆T(i)•∆(i)
is a random forward direction

of movement.
Assuming that the objective function value of bacteria i at xi(j + 1, k, l) is f (xi(j + 1, k, l)), bacteria

i will continue to move in the same direction until the value of the objective function no longer
decreases or the maximum number of steps is reached when f (xi(j + 1, k, l)) < f (xi(j, k, l)). In a sense,
chemotaxis operation is a complex movement process interwoven with the operation of tumble and
swimming, in which tumble represents the direction of optimization and swimming represents the
degree of searching feasible solutions in a certain direction.

Algorithms 2019, 12, 61 5 of 15

â The Swarming

In the BFO algorithm, each of individual does not independently. They release two signals in the
process of foraging, one called the attractor signal, the other called the rejection signal. The attractive
signal is mainly used to attract other bacteria to get close to itself, while the repulsive signal is used
to limit the distance between other bacteria individuals and themselves. So, the swarming can be
expressed by (8), (9):

fcc(xi, P(j, k, l)) =
S
∑

r=1
fcc(xi, xr(j, k, l))

=
S
∑

r=1
[−dattractant exp (−wattrac tan t

n
∑

p=1
(xi

p − xr
p)

2
)]

+
S
∑

r=1
[hrepellent exp (−wrepellent

n
∑

p=1
(xi

p − xr
p)

2
)]

(8)

J(i, j + 1, k, l) = J(i, j, k, l) + fcc (9)

where fcc(xi, P(j, k, l)) represent a objective function that varies with the population distribution.
dattractant and wattractant represent the release quantity and diffusion rate of inducement signal,
respectively, and hrepellent and wrepellent represent the release quantity and diffusion rate of rejection
signal, respectively.

â The Reproduction

With the continuous absorption of nutrients, E. coli will gradually grow as nutrients continue to
be absorbed. Under appropriate conditions, each E. coli will asexually split into two bacteria. However,
the bacteria will be eliminated for those bacteria with poor nutrition. In the reproduction, Ji

health is
used to represent the energy value of the ith bacteria, which determines the foraging ability of bacteria.
And then the bacteria are sorted according to their health values. The bacteria with healthy values
ranked in the first half are used for reproduction and the other half of bacteria are eliminated. The
new reproduction has exactly the same foraging ability as the original bacteria. The value of Ji

health is
calculated by:

Ji
health =

Nc

∑
j=1

f (xi(j, k, l)) (10)

where Ji
health represents the energy value of the ith bacteria; Nc indicates the number of chemotaxis;

f (xi(j, k, l)) is the fitness value of the ith bacteria after the jth chemotaxis, the kth reproduction and the
lth elimination and dispersal operations.

â The Elimination and Dispersal Operation

After the reproduction, the bacteria will execute the elimination and dispersal operation with a certain
probability. The basic principle of elimination and dispersal operation is similar to the mutation
operation in genetic algorithm, which can continue to search in unexploited areas and prevent the
population from falling into local minima. The migration operation can be defined as follow:

x =

{
xnew, i f q < ped
x, otherwise

(11)

where xnew denotes the new position obtained through initialization, q, (0 < q < 1) is a uniformly
distributed random number.

Algorithms 2019, 12, 61 6 of 15

3. The MGSOBFO Algorithm

At the beginning, the GSO and BFO algorithm was proposed to solve the single objective
optimization problem rather than multi-objective optimization problems (MOPs). Therefore, it is
meaningful to improve the corresponding strategies so that these two algorithms can be used to solve
multi-objective optimization problems. In this paper, we proposed a new coupling algorithm based on
GSO and BFO (MGSOBFO). Next, we will introduce each process from a single target algorithm to
multi-target algorithm.

3.1. Fast Non-Dominated Sorting Approach and Crowding Distance

Before introducing the multi-objection firefly bacteria foraging algorithm, we first introduce the
following two basic concepts: fast non-dominant sorting and crowding distance [22].

(1) Fast Non-dominated Sorting Approach

First, we calculated two values for each solution. 1© domination count Np, the number of solutions
which dominate the solution q. 2© Sq, a set of solutions that the solution q dominates. The pseudo
code of the MaBFOA operator is listed in Algorithm 1:

Algorithm 1: Fast non-dominated sort approach

for each p ∈ P
Sp = 0, np = 0
for each q ∈ P
if p ≺ q // if p dominated q
then Sp = Sp ∪ {q}

else if q ≺ p
then np = np + 1
end
if np = 0
then prank = 1 // p belong to the first front
F1 = F1 ∪ {p}
end
i = 1 //Initialize the front counter
While F1 6= 0, Q = 0//Q represents the next front for store
For each q ∈ Sp

nq = nq − 1
if nq = 0//q belong to the next front
then qrank = i + 1,
Q = Q ∪ {q}
i=i+1
Fi = Q
end

(2) Crowding-distance calculation approach

The crowding distance sorting procedure is shown in Figure 1a. The crowding-distance computation
requires sorting the population according to each objective function value in ascending order of magnitude.
All populations’ members are assigned a distance metric; we can compare two solutions for their extent
of proximity with other solutions. The boundary solutions are assigned an infinite distance value. In
Figure 1b, the crowding-distance of the I-th solution in its front is the side length of the cuboids. The
crowded-comparison operator guides the selection process towards a uniformly spread-out Pareto-optimal
front. The crowding distance of each individual be computed by Equation (12).

di =
m

∑
k=1
| fk(i− 1)− fk(i + 1)| (12)

Algorithms 2019, 12, 61 7 of 15

Algorithms 2019, 12, x FOR PEER REVIEW 9 of 21

(2) Crowding-distance calculation approach

The crowding distance sorting procedure is shown in Figure 1a. The crowding-distance
computation requires sorting the population according to each objective function value in ascending
order of magnitude. All populations’ members are assigned a distance metric; we can compare two
solutions for their extent of proximity with other solutions. The boundary solutions are assigned an
infinite distance value. In Figure1b, the crowding-distance of the I-th solution in its front is the side
length of the cuboids. The crowded-comparison operator guides the selection process towards a
uniformly spread-out Pareto-optimal front. The crowding distance of each individual be computed
by Equation (12).

1
(1) (1)

m

i k k
k

d f i f i
=

= − − + (12)

In most situations, the last level is accepted partially. In such a case, these solutions with better
crowding distances are picked up.

(a) (b)

Figure 1. (a)Crowding distance procedure; (b) Crowding distance calculation.

3.2. The Self-Adaptive for Chemotaxis

As we all know, in the bacterial foraging algorithm of single objective, we know that the best
individual is chosen when the bacterial move one. However, in the multi-objective algorithm, the
advantages and disadvantages by comparison between individuals cannot be concluded by
comparing only one adaptive value as in the single-objective algorithm. Therefore, here we define a
new Pareto dominance relation to compare two individuals.

In the MGSO-BFO, assuming that 1x and 2x are any two individuals in the population. The
dominant relationship between 1x and 2x is defined as follows:

(a) if i jx x
−
 , that means ix is better than jx ;

(b) if j ix x
−
 , that means jx is better than ix ;

(c) If there is no dominant relationship between ix and jx , normalization is carried out for

different fitness values. The process is as follows:

Firstly, the proportion w of the two individuals in the objective value is calculated, respectively.

Figure 1. (a) Crowding distance procedure; (b) Crowding distance calculation.

In most situations, the last level is accepted partially. In such a case, these solutions with better
crowding distances are picked up.

3.2. The Self-Adaptive for Chemotaxis

As we all know, in the bacterial foraging algorithm of single objective, we know that the best
individual is chosen when the bacterial move one. However, in the multi-objective algorithm, the
advantages and disadvantages by comparison between individuals cannot be concluded by comparing
only one adaptive value as in the single-objective algorithm. Therefore, here we define a new Pareto
dominance relation to compare two individuals.

In the MGSO-BFO, assuming that x1 and x2 are any two individuals in the population. The
dominant relationship between x1 and x2 is defined as follows:

(a) if xi ≺− xj, that means xi is better than xj;

(b) if xj ≺− xi, that means xj is better than xi;

(c) If there is no dominant relationship between xi and xj, normalization is carried out for different
fitness values. The process is as follows:

Firstly, the proportion w of the two individuals in the objective value is calculated, respectively.

Wi =
fi

fi + f j
(13)

Wj =
f j

fi + f j
(14)

Finally, the sum of weighted is given as follows:

F =
M

∑
k=1

δk ∗
∣∣Wj − Wi| (15)

where δk (0 < δk < 1, and
M
∑

k=1
δk = 1) represents the weight coefficient of each objective, M represents

the number of objective functions.
In the chemotaxis operation, each position of an individual is compared by above the Pareto

dominance relationship mentioned. However, in the original algorithm, the original fixed step size
cannot meet the requirements of convergence. So, there we make a new definition of the step size. The
calculation formula is shown as follow:

CD =
SD

j + k + l
(16)

Algorithms 2019, 12, 61 8 of 15

where CD represents the initialization step size in the D dimension, SD represents the step size in the
D dimension. j, k, l represents the chemotaxis, replication and dispersion, respectively.

It can be seen from the above formulas that CD is large, which is conducive to global search at
the beginning. With the iteration of the algorithm, it is conducive to local search in the later stage of
the algorithm.

3.3. The Replication Operations Based on Crossover

In the standard BFO algorithm, the replication operation is to sort individuals according to the
size of the function’s adaptive value, and then replace the poor half with the good half. However, in
the case of multi-objective, this operation will lead to a great decrease in the diversity of the population,
which is not conducive to the diversity distribution of the population. In this section, in order to
maintain the diversity of the population, we introduce the better individuals in GSO into it, and
perform crossover operations between the two. The simulated binary crossover is shown below:

X′1j(t) = 0.5 ∗ [(1 + γj) ∗ X1j(t) + (1− γj) ∗ X2j(t)] (17)

X′2j(t) = 0.5 ∗ [(1− γj) ∗ X1j(t) + (1 + γj) ∗ X2j(t)] (18)

where γj =

 (2uj)
1

η+1 if uj ≤ 0.5

(1
2(1−uj)

)
1

η+1 other
, uj ∈ U(0, 1), η = 1.

The improved for replication operation as shown in Figure 2.
Algorithms 2019, 12, x FOR PEER REVIEW 11 of 21

Figure 2.flow chart of the improved for replication operation.

3.4. The Elimination and Dispersal Operations Based on Mutation

Generally speaking, we only consider the speed and accuracy of convergence in the single-
objective optimization algorithm, but in the multi-objective optimization algorithm, we not only
consider the convergence of the algorithm but also the diversity of the population. In the elimination
and dispersal, they are randomly generated again for the individuals that meet certain conditions.
Although this method can improve the diversity of the population to a certain extent, it does not
make use of the convergence of the later algorithm in multi-objective optimization. In order to
improve the convergence of the algorithm, polynomial mutation is introduced in the paper. The
process of polynomial mutation is shown as fellow:

1 j

'
1j jX () X ()t t β= + (19)

where

1
1

j 1
1

(2) 1 0.5

(1 (2(1))

j j

j

u u

u other

η

η

β
+

+


− <

= 
 − −

, Uju ∈ （0,1）,η is the distribution exponent.

Figure 2. flow chart of the improved for replication operation.

Algorithms 2019, 12, 61 9 of 15

3.4. The Elimination and Dispersal Operations Based on Mutation

Generally speaking, we only consider the speed and accuracy of convergence in the
single-objective optimization algorithm, but in the multi-objective optimization algorithm, we not only
consider the convergence of the algorithm but also the diversity of the population. In the elimination
and dispersal, they are randomly generated again for the individuals that meet certain conditions.
Although this method can improve the diversity of the population to a certain extent, it does not make
use of the convergence of the later algorithm in multi-objective optimization. In order to improve
the convergence of the algorithm, polynomial mutation is introduced in the paper. The process of
polynomial mutation is shown as fellow:

X′1j(t) = X1j(t) + βj (19)

where βj =

 (2uj)
1

η+1 − 1 uj < 0.5

(1− (2(1− uj))
1

η+1 other
, uj ∈ U(0, 1), η is the distribution exponent.

Through the above dispersing operation, the entire algorithm no longer disperses individuals
randomly as before, but disperses individuals on a certain basis, which will be conducive to searching
for better solutions.

3.5. The Flow Chart of MGSO-BFO

The flow chart of MGSO-BFO as show in Algorithm 2.

Algorithm 2: The MGSO-BFO

Step 1: Create a random population N of size S, and initialize the required parameters;
Step 2: Randomly generate the initial population
Step 3: Elimination and Dispersal Operations loop: let j=0, j = j + 1, Ned (the number of Elimination and Dispersal Operations step);
Step 4: The replication operations loop: let k = 0, k = k + 1; Nre (the number of replication step)
Step 5: Chemotactic loop: let L = 0, L = L + 1; Nc (the number of chemotactic step)
Take the chemotactic step for the ith bacterium as follows:

I. Calculate fitness function θi for all objective functions.
II. let J = θi, (save a better fitness may be found so far)

III. Tumble: create a random vector ∆(i)√
∆T(i)•∆(i)

IV. Make movement with a self-adaption step(Specific see Formula (16)) for ith bacterium in direction.

θi(j + 1, k, l) = θi(j, k, l) + C(i) ∆(i)√
∆T(i)•∆(i)

V. Computer θi for all objective functions.
VI. Swim:

Let m = 0 (m respect the swim length counter)
While m < Ns

(1) Let m = m + 1
(2) If θi ≺ J (θi dominated J), let J = θi

(3) ues θi(j + 1, k, l) = θi(j + 1, k, l) + C(i) ∆(i)√
∆T(i)•∆(i)

to computer the new θi.

VII. If i ≤ S, go to process the next bacterium.
Step 6: if L < Nc, go to the Step5
Step 7: The replication operations:

I. Perform non-dominated sorting of BFO and GSO, and identify different front F1, F2, · · ·
II. Prepare composite population by combining the BFO (s/2) with GSO (s/2).
III. Performs simulated binary crossover operations
IV. Select a new population of size S from the composite population.
IV. if k < Nre, go to the Step4

Step 8: Elimination and Dispersal Operations
I. For each bacterium i, if rand < ρed, use the mutation process shown in Section 3.4.
II. if j < Ned, go to the Step 3, else go to Step 9.

Step 9: End.

Algorithms 2019, 12, 61 10 of 15

4. Experimental and Discussion

4.1. Test Set and Performance Measures

In the experiment, we use two benchmark sets ZDT [32] and SCH [33] test the performance of
MGSO-BFO. For the ZDT test sets, it consists of six test instances, and we use five of them in the
experiment. For more details about the test problems, please refer to Table 1.

Table 1. six test function for multi-objective optimization algorithm.

Function Dimension Range Objective Function Optimal
Solution Feature

SCH 1 [−103, 103]
f1(x) = x2

f2(x) = (x− 2)2 x ∈ [0, 2] convex

ZDT1 30 [0, 1]

f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x)]

g(x) = 1 + 9

n
∑

i=2
xi

n−1

x1 ∈ [0, 1]
xi = 0

i = 2 · · · n
convex

ZDT2 30 [0, 1]

f1(x) = x1

f2(x) = g(x)[1− (x1
g(x))

2]

g(x) = 1 + 9

n
∑

i=2
xi

n−1

x1 ∈ [0, 1]
xi = 0

i = 2 · · · n
Non-convex

ZDT3 30 [0, 1]

f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x) −

x1
g(x) sin(10πx1]

g(x) = 1 + 9

n
∑

i=2
xi

n−1

x1 ∈ [0, 1]
xi = 0

i = 2 · · · n

convex
discon-nected

ZDT4 10
x1 ∈ [0, 1]

xi ∈ [−5, 5]
i = 2 · · · n

f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x)]

g(x) = 1 + 10(n− 1) +
n
∑

i=2
[x2

i − 10 cos(4πxi)]

x1 ∈ [0, 1]
xi = 0

i = 2 · · · n
Non-convex

ZDT6 10 [0, 1]

f1(x) = 1− exp(−4x1) sin6(6πx1)

f2(x) = g(x)[1− (
f1(x)
g(x))

2
]

g(x) = 1 + 9(

n
∑

i=2
xi

n−1)

0.25

x1 ∈ [0, 1]
xi = 0

i = 2 · · · n

Non-convex
non-uniformly

As we all know, convergence and diversity are two important indices for multi-objective
optimization algorithms. These two indices cannot be measured adequately with one performance
metric as in single objective optimization. There are many performance metrics have been proposed.
In this section, we employed GD [34], SP [34] and IGD [35] to evaluate the MGSO-BFO.

The definition of GD, SP and IGD as follow:

GD =
1
n

√
n

∑
i=1

dist2
i (20)

SP =

√
1

n− 1

n

∑
i=1

(d− di)
2

(21)

IGD(x, p∗) = ∑ x∈P∗dist(x, p)
|P∗| (22)

where n is the number of Pareto optimal solution, di is the minimum distance from i solution to Pareto
front solution. d is the mean of di. d(v, Q) is the minimum Euclidean distance between v and all the
points in Q. p is the true Pareto front. Q is the optimal solution set by algorithm.

In the experiments, 30 independent runs are carried out on the machine with Intel Core i5-2400
3.10 GHz CPU, 6 GB memory, and windows 7 operating system with Matlab7.9. The stopping criterion
is a fixed number of o iteration (setting to 100), while population size n = 50 for all algorithms. The
external population of size is set as 100.

Algorithms 2019, 12, 61 11 of 15

4.2. Comparison with State-of-the-Art Algorithm

In this section, we compared the coupling algorithm with the state-of-the-art evolutionary
algorithms NSGA-II [22], SPEA2 [25], PNIA [26], MOEA/D [23]. The parameter values of these
algorithms are listed in Table 2. For more details about these algorithms, please refer to the
literature [25,26].

Table 2. Parameter settings of 4 different algorithms.

Algorithm Parameter (D Stands for Dimension)

NSGA-II [22] pc = 1, pm = 1
D

SPEA2 [25] pc = 1, pm = 1
D

PNIA [26] pc = 1, pm = 1
D

MOEA/D [23] T = 20, δ = 0.9, nr = 2

MGSO-BFO ped = 0.25,Ned = 4,Nc = 20,Ns = 3

In our research work, each work compares MGSO-BFO with NSGA-II, SPEA2 PNIA, and MOEAD
the typical simulation results are shown in Table A1. As we can be seen from Table A1, in terms of
convergence, the algorithm proposed in this paper is superior to the other three classical algorithms in
terms of SCH, ZDT1, ZDT2, ZDT3 and ZDT4, especially in terms of the convergence of ZDT1, ZDT2,
ZDT3 and ZDT4. For ZDT6, however, the convergence of the MGSO-BFO is not as good as that of
the other three algorithms. In terms of diversity, the MGSO-BFO algorithm in this paper shows good
diversity on SCH, ZDT2, ZDT4 and ZDT6.However, the diversity of MGSO-BFO on ZDT1 and ZDT3
was lost to PNIA. In order to further demonstrate the effectiveness of the algorithm proposed in this
paper, IGD indices of the four algorithms were tested. The experimental results are shown in Table A2.
The experimental results also show that the proposed algorithm is superior to other algorithms on
SCH, ZDT1, ZDT2, ZDT4 and ZDT6. For ZDT3, they are in the same order of magnitude and show
the same performance as other algorithms. From what has been discussed above, we can come to
the conclusion that the MGSO-BFO algorithm shows good performance whether for convergence
or diversity.

Figure 3 shows the dynamic performance of the MGSO-BFO, NSGA-II, SPEA2, PNIA and
MOEA/D. This figure demonstrates the abilities of those algorithms in converging to the true Pareto
front and in finding diverse solutions in the front. For SCH, ZDT1, ZDT2, ZDT3 test functions, NSGA_II,
SPEA2, PNIA, MOEA/D and MGSO-BFO show strong convergence and distribution, indicate the
similarity between algorithms. It can be seen from the performance diagram of ZDT4 and ZDT6
that our algorithm can well converge to its real front surface, especially in ZDT4, NSGA-II and PNIA
algorithms may be trapped in local optimization and cannot well converge to the real front.

5. Conclusions

In this paper, we have proposed a novel coupling algorithm named MGSO-BFO. Our proposed
algorithm divided the population into two parts to achieve good balance between exploration and
exploitation. Part I is in charge of exploitation by GSO and part II is in charge of exploration by
BFO. What’s more, we introduced the simulation binary crossover (SBX) and polynomial mutation
into the MGSOBFO to enhance the convergence and diversity ability of the algorithm. In order to
demonstrate the effectiveness of the proposed algorithm in this paper, we experimentally compare
MGSOBFO with NSGA-II, SPEA2, PNIA and MOEA/D on the benchmark function. The study shows
that the non-dominated solution obtained by MGSO-BFA is better than those obtained by NSGA-II,
SPEA2, PNIA and MOEA/D in terms of both convergence and diversity. However, we did not
consider the expense of computational time in the whole experiment. Future research should include
further modifications and take steps to analyze its impact on the convergence of MGSO-BFO. The

Algorithms 2019, 12, 61 12 of 15

fitness calculation-based selection process can be improved to reduce the computational complexity
of MGSO-BFO.

Algorithms 2019, 12, x FOR PEER REVIEW 16 of 21

magnitude and show the same performance as other algorithms. From what has been discussed
above, we can come to the conclusion that the MGSO-BFO algorithm shows good performance
whether for convergence or diversity.

Figure 3 shows the dynamic performance of the MGSO-BFO, NSGA-II, SPEA2, PNIA and
MOEA/D. This figure demonstrates the abilities of those algorithms in converging to the true Pareto
front and in finding diverse solutions in the front. For SCH, ZDT1, ZDT2, ZDT3 test functions,
NSGA_II, SPEA2, PNIA, MOEA/D and MGSO-BFO show strong convergence and distribution,
indicate the similarity between algorithms. It can be seen from the performance diagram of ZDT4
and ZDT6 that our algorithm can well converge to its real front surface, especially in ZDT4, NSGA-
II and PNIA algorithms may be trapped in local optimization and cannot well converge to the real
front.

Algorithms 2019, 12, x FOR PEER REVIEW 17 of 21

Figure 3.The results of dynamic performance comparison.

5. Conclusions

In this paper, we have proposed a novel coupling algorithm named MGSO-BFO. Our proposed
algorithm divided the population into two parts to achieve good balance between exploration and
exploitation. Part I is in charge of exploitation by GSO and part II is in charge of exploration by BFO.
What’s more, we introduced the simulation binary crossover (SBX) and polynomial mutation into the
MGSOBFO to enhance the convergence and diversity ability of the algorithm. In order to demonstrate
the effectiveness of the proposed algorithm in this paper, we experimentally compare MGSOBFO
with NSGA-II, SPEA2, PNIA and MOEA/D on the benchmark function. The study shows that the
non-dominated solution obtained by MGSO-BFA is better than those obtained by NSGA-II, SPEA2,
PNIA and MOEA/D in terms of both convergence and diversity. However, we did not consider the
expense of computational time in the whole experiment. Future research should include further
modifications and take steps to analyze its impact on the convergence of MGSO-BFO. The fitness
calculation-based selection process can be improved to reduce the computational complexity of
MGSO-BFO.

Author Contributions: Writing—original draft preparation, Y.W.; writing—review and editing, Z.C.;
visualization,W.L.

Funding: This work is supported by the National Natural Science Foundation of China under Grant No.
61806138, No. U1636220 and No. 61663028, Natural Science Foundation of Shanxi Province under Grant No.
201801D121127, PhD Research Startup Foundation of Taiyuan University of Science and Technology under
Grant No. 20182002, Zhejiang Provincial Natural Science Foundation of China under Grant No. 201601D011045.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Comparison results of GD and SP values of four different algorithms.

Problems Metrics MOEA/D SPEA2 PNIA NSGA-II
MGSO-

BFO

SCH
Mean(GD) 4.83×10−2 4.41×10−2 4.81×10−2 6.17×10−2 4.75×10−2

std(GD) 4.51×10−2 1.14×10−2 1.93×10−3 2.96×10−3 3.41×10−2

Figure 3. The results of dynamic performance comparison.

Algorithms 2019, 12, 61 13 of 15

Author Contributions: Writing—original draft preparation, Y.W.; writing—review and editing, Z.C.;
visualization, W.L.

Funding: This work is supported by the National Natural Science Foundation of China under Grant No. 61806138,
No. U1636220 and No. 61663028, Natural Science Foundation of Shanxi Province under Grant No. 201801D121127,
PhD Research Startup Foundation of Taiyuan University of Science and Technology under Grant No. 20182002,
Zhejiang Provincial Natural Science Foundation of China under Grant No. Y18F030036.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Comparison results of GD and SP values of four different algorithms.

Problems Metrics MOEA/D SPEA2 PNIA NSGA-II MGSO-BFO

SCH

Mean (GD) 4.83 × 10−2 4.41 × 10−2 4.81 × 10−2 6.17 × 10−2 4.75 × 10−2

std (GD) 4.51 × 10−2 1.14 × 10−2 1.93 × 10−3 2.96 × 10−3 3.41 × 10−2

Mean (SP) 1.71 × 10−2 7.01 × 10−3 4.96 × 10−3 1.75 × 10−2 1.63 × 10−2

std (SP) 1.64 × 10−2 1.61 × 10−3 3.66 × 10−3 1.02 × 10−2 2.14 × 10−2

ZDT1

mean (GD) 3.67 × 10−8 2.80 × 10−5 6.56 × 10−4 2.58 × 10−4 3.97 × 10−15

std (GD) 1.81 × 10−6 1.34 × 10−5 1.64 × 10−4 1.17 × 10−4 1.17 × 10−14

mean (SP) 3.22 × 10−3 1.94 × 10−3 1.04 × 10−3 5.09 × 10−3 4.40 × 10−3

std (SP) 4.21 × 10−3 3.38 × 10−4 1.06 × 10−3 3.92 × 10−3 7.30 × 10−3

ZDT2

mean (GD) 1.78 × 10−6 1.27 × 10−5 8.76 × 10−4 8.42 × 10−5 2.31 × 10−14

std (GD) 2.61 × 10−4 1.21 × 10−5 1.17 × 10−3 1.32 × 10−4 4.10 × 10−14

mean (SP) 8.25 × 10−4 2.13 × 10−11 2.36 × 10−3 2.81 × 10−3 8.35 × 10−4

std (SP) 1.30 × 10−3 8.83 × 10−4 3.17 × 10−3 4.36 × 10−3 1.30 × 10−3

ZDT3

mean (GD) 3.20 × 10−8 4.43 × 10−6 1.88 × 10−4 1.40 × 10−4 1.71 × 10−14

std (GD) 2.04 × 10−6 1.71 × 10−6 1.01 × 10−4 9.98 × 10−5 2.90 × 10−14

mean (SP) 1.65 × 10−4 1.89 × 10−3 4.08 × 10−4 5.56 × 10−3 1.00 × 10−3

std (SP) 4.34 × 10−3 5.99 × 10−4 5.47 × 10−4 3.81 × 10−3 1.70 × 10−3

ZDT4

mean (GD) 4.23 × 10−3 6.95 × 10−2 1.25 × 10−2 2.68 × 10−1 1.18 × 10−4

std (GD) 2.21 × 10−2 4.19 × 10−2 1.03 × 10−2 1.30 × 10−1 2.39 × 10−2

mean (SP) 2.10 × 10−2 4.37 × 10−3 1.46 × 10−3 5.09 × 10−3 1.70 × 10−3

std (SP) 3.12 × 10−3 4.64 × 10−3 3.20 × 10−3 1.11 × 10−2 1.00 × 10−3

ZDT6

mean (GD) 6.22 × 10−3 1.33 × 10−3 1.78 × 10−3 5.49 × 10−3 7.5 × 10−3

std (GD) 2.78 × 10−3 1.84 × 10−4 2.31 × 10−4 1.27 × 10−3 2.43 × 10−3

mean (SP) 4.20 × 10−3 1.45 × 10−3 1.35 × 10−3 4.43 × 10−3 4.89 × 10−4

std (SP) 2.44 × 10−4 5.74 × 10−4 9.87 × 10−4 2.05 × 10−3 2.30 × 10−3

Appendix B

Table A2. Comparison results of IGD values of four different algorithms.

Problems Metrics MOEA/D SPEA2 PNIA NSGA-II MGSO-BFO

SCH
mean (IGD) 1.6237 2.7448 1.5049 2.7305 1.4388
Std (IGD) 7.2145 12.2751 8.2428 12.2112 7.8809

ZDT1
mean (IGD) 0.4378 0.6175 0.5368 0.5861 0.4331
Std (IGD) 2.7503 2.7615 2.9403 2.6210 2.3720

ZDT2
mean (IGD) 0.6734 0.7002 0.5396 0.7706 0.4595
Std (IGD) 2.9145 3.1314 2.9515 3.4461 2.3168

ZDT3
mean (IGD) 0.2165 0.2384 0.5388 0.2445 0.3068
Std (IGD) 1.1362 1.0661 2.9512 1.0981 2.7706

ZDT4
mean (IGD) 1.1436 2.1738 1.2983 3.4946 0.4898
Std (IGD) 4.2264 9.7216 7.1113 15.6284 2.6827

ZDT6
mean (IGD) 0.4360 0.6646 0.5026 0.6357 0.4014
Std (IGD) 2.1065 2.9720 2.7527 2.8431 2.1985

Algorithms 2019, 12, 61 14 of 15

Appendix C

Table A3. The computation time of four different algorithms.

Problems MOEA/D SPEA2 PNIA NSGA-II MGSO-BFO

SCH 1.14 × 102 2.74 × 102 1.50 × 102 2.73 × 102 1.13 × 102

ZDT1 2.23 × 102 3.56 × 102 3.74 × 102 2.40 × 102 1.12 × 102

ZDT2 2.74 × 102 2.24 × 102 2.02 × 102 2.14 × 102 1.44 × 101

ZDT3 2.45 × 102 2.52 × 102 3.88 × 102 2.38 × 102 2.55 × 102

ZDT4 3.02 × 103 3.45 × 103 2.96 × 102 3.10 × 103 2.68 × 102

ZDT6 2.74 × 102 2.97 × 102 2.75 × 103 2.82 × 103 2.19 × 102

References

1. Heller, L.; Sack, A. Unexpected failure of a Greedy choice Algorithm Proposed by Hoffman. Int. J. Math.
Comput. Sci. 2017, 12, 117–126.

2. Pisut, P.; Voratas, K. A two-level particle swarm optimization algorithm for open-shop scheduling problem.
Int. J. Comput. Sci. Math. 2016, 7, 575–585.

3. Zhu, H.; He, Y.; Wang, X.; Tsang, E.C. Discrete differential evolutions for the discounted {0-1} knapsack
problem. Int. J. Bio-Inspir. Comput. 2017, 10, 219–238. [CrossRef]

4. Fourman, M.P. Compaction of Symbolic Layout using Genetic Algorithms. In Genetic Algorithms and Their
Applications. In Proceedings of the First Internation Conference on Genetic Algorithms, Pittsburg, PA, USA,
24–26 July 1985; pp. 141–153.

5. Das, D.; Suganthan, P.N. Differential Evolution: A Survey of the State-of-the-Art. IEEE Trans. Evolut. Comput.
2011, 15, 4–31. [CrossRef]

6. Figueiredo, E.M.N.; Carvalho, D.F.; BastosFilho, C.J.A. Many Objective Particle Swarm Optimization. Inf.
Sci. 2016, 374, 115–134. [CrossRef]

7. Cortés, P.; Muñuzuri, J.; Onieva, L.; Guadix, J. A discrete particle swarm optimisation algorithm to operate
distributed energy generation networks efficiently. Int. J. Bio-Inspir. Comput. 2018, 12, 226–235. [CrossRef]

8. Ning, J.; Zhang, Q.; Zhang, C.; Zhang, B. A best-path-updating information-guided ant colony optimization
algorithm. Inf. Sci. 2018, 433–434, 142–162. [CrossRef]

9. Wang, H.; Wu, Z.; Rahnamayan, S.; Sun, H.; Liu, Y.; Pan, J.S. Multi-strategy ensemble artificial bee colony
algorithm. Inf. Sci. 2014, 279, 587–603. [CrossRef]

10. Cui, Z.; Zhang, J.; Wang, Y.; Cao, Y.; Cai, X.; Zhang, W.; Chen, J. A pigeon-inspired optimization algorithm
for many-objective optimization problems. Sci. China Inf. Sci. 2019. [CrossRef]

11. Cai, X.; Gao, X.; Xue, Y. Improved bat algorithm with optimal forage strategy and random disturbance
strategy. Int. J. Bio-Inspir. Comput. 2016, 8, 205–214. [CrossRef]

12. Cui, Z.; Li, F.; Zhang, W. Bat algorithm with principal component analysis. Int. J. Mach. Learn. Cybern. 2018.
[CrossRef]

13. Yang, C.; Ji, J.; Liu, J.; Yin, B. Bacterial foraging optimization using novel chemotaxis and conjugation
strategies. Inf. Sci. 2016, 363, 72–95. [CrossRef]

14. Zhang, M.; Wang, H.; Cui, Z.; Chen, J. Hybrid multi-objective cuckoo search with dynamical local search.
Memet. Comput. 2018, 10, 199–208. [CrossRef]

15. Cui, Z.; Sun, B.; Wang, G.; Xue, Y.; Chen, J. A novel oriented cuckoo search algorithm to improve DV-Hop
performance for cyber-physical systems. J. Parallel Distrib. Comput. 2017, 103, 42–52. [CrossRef]

16. Abdel-Baset, M.; Zhou, Y.; Ismail, M. An improved cuckoo search algorithm for integer programming
problems. Int. J. Comput. Sci. Math. 2018, 9, 66–81. [CrossRef]

17. Zhou, J.; Dong, S. Hybrid glowworm swarm optimization for task scheduling in the cloud environment.
Eng. Optim. 2018, 50, 949–964. [CrossRef]

18. Yu, G.; Feng, Y. Improving firefly algorithm using hybrid strategies. Int. J. Comput. Sci. Math. 2018, 9,
163–170. [CrossRef]

19. Cui, Z.; Cao, Y.; Cai, X.; Cai, J.; Chen, J. Optimal LEACH protocol with modified bat algorithm for big data
sensing systems in Internet of Things. J. Parallel Distrib. Comput. 2017. [CrossRef]

http://dx.doi.org/10.1504/IJBIC.2017.087924
http://dx.doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1016/j.ins.2016.09.026
http://dx.doi.org/10.1504/IJBIC.2018.096484
http://dx.doi.org/10.1016/j.ins.2017.12.047
http://dx.doi.org/10.1016/j.ins.2014.04.013
http://dx.doi.org/10.1007/s11432-018-9729-5
http://dx.doi.org/10.1504/IJBIC.2016.078666
http://dx.doi.org/10.1007/s13042-018-0888-4
http://dx.doi.org/10.1016/j.ins.2016.04.046
http://dx.doi.org/10.1007/s12293-017-0237-2
http://dx.doi.org/10.1016/j.jpdc.2016.10.011
http://dx.doi.org/10.1504/IJCSM.2018.090710
http://dx.doi.org/10.1080/0305215X.2017.1361418
http://dx.doi.org/10.1504/IJCSM.2018.091749
http://dx.doi.org/10.1016/j.jpdc.2017.12.014

Algorithms 2019, 12, 61 15 of 15

20. Cai, X.; Wang, H.; Cui, Z.; Cai, J.; Xue, Y.; Wang, L. Bat algorithm with triangle-flipping strategy for numerical
optimization. Int. J. Mach. Learn. Cybern. 2018, 9, 199–215. [CrossRef]

21. Srinivas, N.; Deb, K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms.
Evolut. Comput. 1994, 2, 221–248. [CrossRef]

22. Deb, K.; Agrawal, S.; Pratap, A.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Trans. Evolut. Comput. 2002, 6, 182–197. [CrossRef]

23. Zhang, Q.; Li, H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Trans.
Evolut. Comput. 2007, 11, 712–731. [CrossRef]

24. Horn, J.; Nafpliotis, N.; Goldberg, D.E. A niched Pareto genetic algorithm for multiobjective optimization. In
Proceedings of the IEEE Conference on Evolutionary Computation IEEE World Congress on Computational
Intelligence, Honolulu, HI, USA, 12–17 May 2002.

25. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm for
Multiobjective Optimization. In Evolutionary Methods for Design, Optimization and Control with Applications To
Industrial Problems, Proceedings of the Eurogen 2001, Athens, Greece, 19–21 September2001; International Center
for Numerical Methods in Engineering: Barcelona, Spain, 2002.

26. Yuan, J.; Gang, X.; Zhen, Z.; Chen, B. The pareto optimal control of inverter based on multi-objective immune
algorithm. In Proceedings of theInternational Conference on Power Electronics & Ecce Asia, Seoul, Korea,
1–5 June2015.

27. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1997, 1,
67–82. [CrossRef]

28. Qu, B.Y.; Suganthan, P.N. Constrained Multi-Objective Optimization Algorithm with Ensemble of Constraint
Handling Methods. Eng. Optim. 2011, 43, 403. [CrossRef]

29. Jin, Y.; Branke, J. Evolutionary optimization in uncertain environments-a survey. IEEE Trans. Evolut. Comput.
2005, 9, 303–317. [CrossRef]

30. Yu, X.; Tang, K.; Chen, T.; Yao, X. Empirical analysis of evolutionary algorithms with immigrants schemes
for dynamic optimization. Memet. Comput. 2009, 1, 3–24. [CrossRef]

31. Zhang, M.; Zhu, Z.; Cui, Z.; Cai, X. NSGA-II with local perturbation. In Proceedings of the Control &
Decision Conference, Chongqing, China, 28–30 May 2017.

32. Zitzle, E.; Deb, K.; Thiele, L. Comparison of Multiobjective Evolutionary Algorithm: Empirical Results.
Evolut. Comput. 2000, 8, 173. [CrossRef] [PubMed]

33. Schaffer, J.D. Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of
the First International Conference on Genetic Algorithms and Their Applications; L. Erlbaum Associates
Inc.: Mahwah, NJ, USA, 1985; pp. 93–100.

34. Schott, J.R. Fault tolerant design using single and multicriteria genetic algorithm optimization. Cell. Immunol.
1995, 37, 1–13.

35. Mohammadi, A.; Omidvar, M.N.; Li, X. A new performance metric for user-preference based on
multi-objective evolutionary algorithms. In Proceedings of the 2013 IEEE Congress on Evolutionary
Computation (CEC), Cancun, Mexico, 20–23 June 2013; pp. 2825–2832.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s13042-017-0739-8
http://dx.doi.org/10.1162/evco.1994.2.3.221
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1080/0305215X.2010.493937
http://dx.doi.org/10.1109/TEVC.2005.846356
http://dx.doi.org/10.1007/s12293-008-0003-6
http://dx.doi.org/10.1162/106365600568202
http://www.ncbi.nlm.nih.gov/pubmed/10843520
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Concepts
	The Multi-Objective Optimization Problems
	Standard Glowworm Swarm Optimization Algorithm (GSO)
	Standard Bacterial Foraging Algorithm (BFO)

	The MGSOBFO Algorithm
	Fast Non-Dominated Sorting Approach and Crowding Distance
	The Self-Adaptive for Chemotaxis
	The Replication Operations Based on Crossover
	The Elimination and Dispersal Operations Based on Mutation
	The Flow Chart of MGSO-BFO

	Experimental and Discussion
	Test Set and Performance Measures
	Comparison with State-of-the-Art Algorithm

	Conclusions
	
	
	
	References

