
algorithms

Article

A Two-Phase Approach for Single Container Loading
with Weakly Heterogeneous Boxes

Rommel Dias Saraiva* , Napoleão Nepomuceno and Plácido Rogério Pinheiro

Graduate Program in Applied Informatics, University of Fortaleza, Fortaleza 60811-905, Brazil;
napoleaovn@unifor.br (N.N.); placido@unifor.br (P.R.P.)
* Correspondence: rommelds@unifor.br

Received: 30 January 2019; Accepted: 25 March 2019; Published: 30 March 2019
����������
�������

Abstract: We propose in this paper a two-phase approach that decomposes the process of solving the
three-dimensional single Container Loading Problem (CLP) into subsequent tasks: (i) the generation
of blocks of boxes and (ii) the loading of blocks into the container. The first phase is deterministic,
and it is performed by means of constructive algorithms from the literature. The second phase is
non-deterministic, and it is performed with the use of Generate-and-Solve (GS), a problem-independent
hybrid optimization framework based on problem instance reduction that combines a metaheuristic
with an exact solver. Computational experiments performed on benchmark instances indicate that
our approach presents competitive results compared to those found by state-of-the-art algorithms,
particularly for problem instances consisting of a few types of boxes. In fact, we present new best
solutions for classical instances from groups BR1 and BR2.

Keywords: single container loading; hybrid metaheuristics; generate-and-solve

1. Introduction

Cutting and Packing (C&P) problems are combinatorial optimization problems that focus on the
optimal use of existing resources (e.g., wood, glass, or even space), thus being often encountered in
manufacturing industries. In a nutshell, cutting problems consist of cutting one or more large objects
into small items, while packing problems consist of packing small items into one or more large objects.

In this paper, we investigate a particular C&P problem commonly referred to as the single
container loading problem, a three-dimensional single large object placement problem [1]. The CLP is
defined as follows: Consider a collection of boxes grouped into m types. Each box type t = 1, . . . , m
has a length lt, a width wt, a height ht, a volume vt, and a quantity qt of boxes available to be
loaded. Consider also a container with L, W, and H as its length, width, and height, respectively.
The objective is to load—orthogonally and without overlapping—boxes inside the container with the
aim of maximizing the volume utilization of the three-dimensional space. In this work, we consider
the following additional constraints:

1. Orientation constraint: In principle, a box can be loaded in up to six orientations. However,
in practice, some of them may be prohibited.

2. Stability constraint: Boxes that are not loaded directly on the container floor must be fully supported
by top surfaces of one or more boxes.

An example of container loading is presented in Figure 1. Some other requirements may appear
in real-world applications, such as load bearing strength, weight distribution/limit, and cargo priority.
See [2] for an extensive review on CLP constraints.
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Figure 1. A container loading pattern with orientation and stability constraints.

The CLP is strictly NP-Hard [3], and therefore, exact methods can effectively solve only small
size instances. To deal with larger ones, heuristics are the current alternative. In a recent paper [4],
CLP heuristics were categorized into three, not necessarily disjoint, groups:

1. Conventional heuristics, which take advantage of the specific problem structure. A classical
example is the wall-building procedure of George and Robinson [5], where the loading is made
layer-by-layer across the depth of the container. Other examples of problem-dependent techniques
applied to solve the CLP can be found in [6–8].

2. Metaheuristics, which have been extensively applied to the CLP. Parreño et al. [9], for instance,
conceived of a constructive procedure based on maximal-space representation. Insertion and
deletion shifts directly affecting the container layout were used in a variable neighborhood search
to improve partial solutions. Further studies include co-evolutionary computation techniques (e.g.,
Genetic Algorithms (GAs) [10,11]), trajectory-based methods (e.g., simulated annealing [12], the
greedy randomized adaptive search procedure [13], and tabu search [14]), and swarm intelligence
systems (e.g., bee colony algorithm [15]).

3. Tree search methods, which have produced good-quality solutions to the CLP. Fanslau and
Bortfeldt [4], for instance, proposed a tree search method that keeps a list of empty spaces
to be filled by blocks of boxes. Similar contributions can be found in [16–19].

Despite this general classification, it has been proven to be pertinent to combine distinct
optimization techniques to exploit their main advantages simultaneously (e.g., a metaheuristic with an
Integer Linear Programming (ILP) solver), which has been referred to as hybrid metaheuristics [20,21].
Some authors prefer to refer to heuristic algorithms particularly made by the interoperation of
metaheuristics and mathematic programming techniques as matheuristics [22]. In this paper, we propose
a two-phase approach to tackle the CLP, motivated by a general idea of decomposing the CLP into
two subproblems [11,23], namely a three-dimensional problem of generating blocks of boxes and
a two-dimensional problem of loading blocks on the floor of the container. In our proposal, the
three-dimensional problem is solved by means of constructive algorithms from the literature, and the
two-dimensional problem is solved by means of a hybrid metaheuristic. Computational experiments
performed on weakly-heterogeneous benchmark instances (with a few types of boxes) show that our
approach competes with state-of-the-art CLP algorithms.

The remainder of this work is organized as follows. In Section 2, we describe our algorithm.
In Section 3, we provide computational experiments on benchmark instances from the literature and
present a discussion of the results. Finally, in Section 4, we close the paper with some conclusions and
future perspectives.
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2. Block-Loading Hybrid Metaheuristic

Our Block-Loading Hybrid Metaheuristic (BLHM) algorithm is segmented into two subsequent
phases: block generation and block loading. On the one hand, the block generation phase is very
fast and completely deterministic. Constructive algorithms from the literature [7] perform this task.
On the other hand, the block loading phase is non-deterministic. It comprises the generate-and-solve
methodology [24–26], a problem-independent hybrid optimization framework characterized by the
interoperation of a metaheuristic with an ILP solver. In what follows, we describe how BLHM works
to address the CLP.

2.1. Block Generation

Some CLP algorithms [4,7,8] have received notoriety for loading cuboid blocks of boxes instead
of single boxes, thus being properly classified as block-building approaches. By definition, a block
is a set of boxes placed compactly inside its Minimum Bounding Cuboid (MBC) [7]. Existing research
classifies blocks into two types: simple blocks and guillotine blocks. Simple blocks consist of identical
boxes, in the same spatial orientation and occupying the total volume of their respective MBCs.
A pseudocode [7] to generate simple blocks is presented in Algorithm 1, which roughly produces valid
blocks with nx boxes in a row, ny boxes in a column, and nz boxes in a stack, all of them of the same
type, as illustrated in Figure 2.

Figure 2. A simple block with four boxes in a row, two boxes in a column, and three boxes in a stack.

Algorithm 1 Generating simple blocks (adapted from the original paper [7]).
Input: A container with dimensions L, W, and H and a collection of boxes grouped into types. Each
type t has a length lt, a width wt, a height ht, and a quantity qt of boxes available to be loaded.
Output: Set B of simple blocks.

1: B← ∅
2: for each box type t do
3: for each allowed orientation of (lt, wt, ht) do
4: for nx = 1 to qt do
5: for ny = 1 to qt

nx
do

6: for nz = 1 to qt
nx×ny

do
7: if nx × lt ≤ L & ny × wt ≤W & nz × ht ≤ H then
8: Create a block b with dimensions (nx × lt, ny × wt, nz × ht), and add it to B
9: return B
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Conversely, guillotine blocks consist of multiple types of boxes possibly placed in different spatial
orientations. A pseudocode to generate guillotine blocks, proposed by Zhu and Lim [7], is given in
Algorithm 2. B, PG, and NG denote, respectively, the set of blocks generated so far, the set of blocks
generated in the previous iteration, and the set of blocks generated in the current generation. Given one
block b1 from B and another block b2 from PG, guillotine blocks are generated by combining the two
blocks along the length, width, or height direction of the container, as illustrated in Figure 3.

Figure 3. A guillotine block obtained from the combination of two simple blocks.

Algorithm 2 Generating guillotine blocks (adapted from the original paper [7]).
Input: Set B of simple blocks (see Algorithm 1).
Output: Extended set B of guillotine blocks.

1: PG ← B
2: repeat
3: NG ← ∅
4: for each block b1 in PG do
5: for each block b2 in B do
6: for each direction dir in {L, W, H} do
7: Combine b1 and b2 along the direction dir to obtain block b
8: Add b to NG if b is feasible and no equivalent block exists in B
9: B← B ∪ NG

10: PG ← NG
11: until PG = ∅
12: return B

Fully-Supported Blocks (FSBs) [7] are blocks complying with the stability constraint. They are
generated handling an attribute called packing area, which is the rectangular region on the top face of
the block that is fully covered by top faces of boxes belonging to its MBC. Obviously, simple blocks
are FSBs. Guillotine FSBs are generated according to some rules. For instance, let b1 and b2 be two
guillotine FSBs with packing area p1 and p2, respectively. Such blocks can be combined along the
length (resp. width) direction if and only if they have the same height (i.e., b1.h = b2.h) and the
sum of the lengths (resp. widths) of their packing areas spans the entire length (resp. width) of
their MBCs, i.e., p1.l + p2.l = b1.l1 + b2.l2 (resp. p1.w + p2.w = b1.w1 + b2.w2). When b1 and b2 are
combined along the length (resp. width) direction, the resultant packing area p3 of the new FSB
b3 is given by p3.l = p1.l + p2.l (resp. p3.l = min{p1.l, p2.l}) and p3.w = min{p1.w, p2.w} (resp.
p3.w = p1.w + p2.w). Another scenario arises when combining b1 and b2 along the height direction.
One can place b1 on the top face of block b2 if and only if the base area of b1 fits entirely into p2. Then,
the packing area of the resultant FSB b3 is equivalent to p1. See [4,7,27] for illustrations of the concepts
related to blocks of boxes.
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The first phase of our BLHM uses Algorithms 1 and 2 to generate FSBs. Let B be the set of FSBs
obtained after running such algorithms. We now resort to an evaluation function to identify promising
FSBs belonging to B. An FSB bi, 1 ≤ i ≤ |B|, is assumed to be promising if and only if:

f (bi) =
vi
Vi
≥ MinUtil

where vi is the volume of boxes in bi; Vi is the volume of the virtual space occupied by bi, calculated as
the product of the base area of its MBC by the height of the container (instead of the height of its MBC,
since in the next phase, we just place FSBs on the floor of the container); and MinUtil is a parameter in
the real interval [0, 1]. Note that when MinUtil is near one, only promising FSBs with small residual
spaces are considered to the next phase. In this way, we reject FSBs that present a considerable volume
not occupied by boxes and FSBs that are too low in relation to the height of the container, as illustrated
in Figure 4. In what follows, we refer to B ⊂ B as the set of promising FSBs.

Figure 4. A representation of a guillotine block, its MBC, and the residual space on top of it.

2.2. Block Loading

In the second phase of our BLHM algorithm, we use the GS hybrid framework. In the sequence,
we first present an ILP model to the problem of loading FSBs on the container floor and then propose
an application of the GS framework to the problem.

2.2.1. ILP Model

Loading FSBs on the container floor is a two-dimensional C&P problem. We implement
a well-known ILP model for orthogonal two-dimensional C&P problems [28]. Let uijk be a binary
decision variable standing for the decision of whether or not to load an FSB of type i at coordinate
(j, k) of the container floor.

uijk =


1, if an FSB of type i is placed at

coordinate (j, k),

0, otherwise.

The elements j and k belong, respectively, to the following discretization sets:

X = {x|x =
|B|

∑
i=1

αili, x ≤ L− min
1≤i≤|B|

{li}, αi ∈ Z+}

Y = {y|y =
|B|

∑
i=1

βiwi, y ≤W − min
1≤i≤|B|

{wi}, βi ∈ Z+}

To avoid overlapping of FSBs, the incidence matrix gijkpq is defined as:



Algorithms 2019, 12, 67 6 of 15

gijkpq =


1, if j ≤ p ≤ j + li − 1

and k ≤ q ≤ k + wi − 1,

0, otherwise.

which is computed a priori for each FSB of type i, for each coordinate (j, k), and for each coordinate
(p, q). Finally, the ILP model is defined as follows:

max
|B|

∑
i=1

∑
j∈X

∑
k∈Y

viuijk (1)

s.t.
|B|

∑
i=1

∑
j∈X

∑
k∈Y

gijkpquijk ≤ 1, ∀p ∈ X, ∀q ∈ Y (2)

|B|

∑
i=1

∑
j∈X

∑
k∈Y

qt
i uijk ≤ qt, t = 1, . . . , m (3)

uijk ∈ {0, 1}, i = 1, . . . , |B|, ∀j ∈ X, ∀k ∈ Y (4)

The objective function (1) maximizes the volume of loaded FSBs inside the container.
Constraints (2) avoid overlapping of FSBs in any feasible solution. Let qt

i represent the quantity
of boxes of type t in an FSB of type i. Constraints (3) impose that, for each box type t, the quantity of
loaded boxes of this type must not exceed the number of boxes available. Finally, Constraints (4) specify
the domain of variables. The ILP model (1)–(4) contains O(|B| × |X| × |Y|) variables and O(|X| × |Y|)
constraints. Since the product |X| × |Y|may be too large for practical instances of this problem, the
number of constraints and variables can easily reach the order of millions, which discourages the
straightforward use of classical ILP techniques.

2.2.2. Generate-and-Solve

ILP solvers are very effective at coping with combinatorial optimization problems up to a certain
problem-specific instance size. Recently, approaches based on problem instance reduction [29], such
as generate-and-solve [24,25,30], construct, merge, solve and adapt [31], and column reduction
methods [32], have shown that, when a problem instance is too large to be directly solved by an
ILP solver, it might be possible to reduce the problem instance in a way such that it can be effectively
solved by the ILP solver and it still contains high-quality solutions to the original problem instance.

The GS hybrid optimization framework has been introduced to cope with hard combinatorial
optimization problems, such as those of the C&P family. The framework prescribes the integration of
two distinct conceptual components: the Generator of Reduced Instances (GRI) and the Solver of Reduced
Instances (SRI), as depicted in Figure 5.

Figure 5. The generate-and-solve hybrid framework.
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An exact method (e.g., ILP solver) encapsulated in the SRI component is in charge of solving
reduced instances (i.e., subproblems) of the original problem that still preserve its conceptual structure.
Thus, a feasible solution to a given subproblem will also be a feasible solution to the original problem.
At a higher level, a metaheuristic (e.g., GA) works on the complementary optimization problem of
generating reduced instances, which, when submitted to the SRI, produce feasible solutions whose
objective function values can be used as a figure of merit (fitness) of the associated subproblems, thus
guiding the search process. The interaction between GRI and SRI proceeds until a given stopping
condition is satisfied. The best solution obtained by the solver to any of the subproblems generated by
the metaheuristic is deemed to be the final solution.

2.2.3. Random Key Genetic Algorithm

One can generate reduced instances of the block loading problem by removing some of the types
of FSBs and/or some of the elements of the discretization sets from the ILP model (1)–(4). In our
implementation, the GRI runs a Random Key Genetic Algorithm (RKGA) [33]. Individuals are represented
by chromosomes (of random keys) with a size equal to |B|+ |X|+ |Y|, as shown in Figure 6.

Figure 6. Chromosome of random keys.

In this representation, each allele of the encoding scheme denotes the decision of counting (or
not) on the presence of an element in the reduced instance. Let pB, pX, and pY be the probability of
acceptance related to B, X, and Y, respectively. If an allele rk(bi) ≤ pB, with 1 ≤ i ≤ |B|, then the
corresponding FSB will be a candidate FSB to be loaded on the container floor by the SRI. This insight is
also applied to the discretization sets, i.e., if an allele rk(xj) ≤ pX , with 1 ≤ j ≤ |X| (resp. rk(yk) ≤ pY,
with 1 ≤ k ≤ |Y|), then the corresponding element of X (resp. Y) will take part of the reduced
instance. As an example in Figure 6, FSBs b1 and b3 take part in the subproblem to be solved by the
SRI, since their alleles (or random keys) are less than the acceptance probability of 0.5. Regarding the
discretization sets, elements x2, x4, y1, and y3 take part of the reduced instance. Therefore, b1 and b3
may be possibly loaded at coordinates (x2, y1), (x2, y3), (x4, y1), and (x4, y3).

The initial population contains p chromosomes, whose alleles are randomly generated in the real
interval [0, 1]. After an individual is translated to its ILP formulation and solved by means of an ILP
solver, its fitness value is computed. Note that, if a chromosome includes all FSBs and coordinates, the
original problem will be generated. However, it is very likely that the corresponding ILP model cannot
be handled by the ILP solver. The population is then partitioned into two groups: a small group of pe

elite individuals whose corresponding reduced instances present the best fitness values (i.e., objective
function values) and the remaining set of p− pe non-elite individuals.

To evolve the population, a new generation must be produced. First, all elite individuals are
carried over from generation g to generation g + 1. Then, RKGA implements mutation by introducing
pm mutants into the population. Mutants are vectors of random keys generated as elements of the
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initial population. Finally, discounting pe elite individuals and pm mutants, p− pe − pm offspring
individuals are produced through mating to complete p individuals that will make up the population
of generation g + 1. Mating (crossover) is performed as in [34]. Given two parents A and B randomly
selected from the current population and a user-chosen probability pA > 0.5 that an offspring inherits
the allele of A, for each allele a = 1, . . . , n (where n is the number of genes), the child either takes the
value of the ath allele of A with probability pA or the corresponding allele of B with probability 1− pA.

3. Computational Experiments

Experiments were performed on a PC Intel Pentium i7, 8 × 3.60 GHz, 16 GB DDR3 RAM under
Linux Ubuntu 14.05 LTS. We used CPLEX 12.7 and Java concert technology as underlying solver of the
SRI. The time limit for each instance was set to 3600 seconds. The GRI ran an RKGA implemented
in Java.

3.1. Control Parameters and Calibration

We conducted preliminary experiments to figure out the best input values for BLHM. To identify
promising FSBs, we set MinUtil = 0.90. Concerning the RKGA, we set p = 200 individuals, pe = pm =

0.20× p, and pA = 0.7. To control the duration of the optimization process, the maximum number of
generations was set to 400, while the total time to stop was set to 3600 seconds. If the best fitness value
did not change in 15 consecutive generations, a new population consisting of the two best individuals
and p− 2 random ones was generated. The acceptance probabilities were set to pB = L×W

min{lt×wt} ×
1
|B| ,

pX = L
min{lt} ×

1
|X| , and pY = 1

|Y| , for t = 1, . . . , m. The CPLEX time limit of 60 seconds was set to solve
each subproblem.

3.2. Numerical Results

To evaluate the potentialities behind our BLHM algorithm, computational experiments were
performed over difficult benchmark instances proposed by Bischoff and Ratcliff [6], which can be
accessed via OR-Library [35]. Instances can be either weakly heterogeneous (few types of boxes, each
one with many units available) or strongly heterogeneous (many types of boxes, each one with few
units available). We decided to conduct our analysis only on weakly-heterogeneous datasets BR1 and
BR2, which contain three and five types of boxes, respectively, after preliminary tests showed that the
required computation time would be considerably high to compete with alternative approaches for
strongly-heterogeneous instances.

We present results in Tables 1 and 2 (BR1) and Tables 3 and 4 (BR2). In these tables, for each
instance, we present the volume utilization achieved by well-known state-of-the-art approaches
enforcing orientation and stability constraints: the Container Loading by TRee Search (CLTRS) of Fanslau
and Bortfeldt [4], the Iterative-Doubling-Greedy Lookahead Tree Search (ID-GLTS) of Zhu and Lim [7],
and the Beam Search (BSG-VCS) of Araya, Guerrero, and Nuñes [36] with a new heuristic function for
selecting boxes. To the best of our knowledge, BSG-VCS has reported the best results to date. It is
important to stress that CLTRS, ID-GLTS, and BSG-VCS have a maximum runtime of 500 s for each
instance. The columns related to BLHM show, for each instance, the average (avg.) and the best (best)
solution values found by our algorithm over 10 runs. We indicate by bold font the best solution found
among the four CLP algorithms. To compare the algorithms, since BLHM is non-deterministic, we
consider its average value (and denote by * in the case that the best solution of BLHM is better than
the solutions found by the other algorithms).

We begin the discussions on experimental analysis by stating that there is not a particular
algorithm that stands out from the others for all instances. Taking as the reference group BR1,
for instance, BLHM found new best solutions for 24 (out of 100) instances. The average solution
obtained by CLTRS, ID-GLTS, BSG-VCS, and BLHM was 94.51, 94.40, 94.74, and 92.97 (considering the
average column), respectively. For BR1-043, the result of 83.98 obtained by BLHM was very small when
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compared to the best one, namely 96.18. We believe this is due to the small number of FSBs generated
in the first phase of BLHM.

Table 1. Results for group BR1.

Instance CLTRS [4] ID-GLTS [7] BSG-VCS [36]
BLHM

Avg Best*

BR1-001 93.83 93.80 93.53 95.12 95.83 *
BR1-002 95.45 94.94 96.01 95.24 97.67 *
BR1-003 91.03 91.03 91.03 92.11 92.67 *
BR1-004 91.84 91.84 91.84 94.55 95.26 *
BR1-005 95.14 95.14 95.14 93.85 94.63
BR1-006 95.72 94.63 96.02 93.20 93.49
BR1-007 94.14 93.57 94.03 93.74 94.60 *
BR1-008 97.05 97.05 97.18 93.88 94.53
BR1-009 91.57 90.62 91.87 87.61 87.61
BR1-010 94.81 94.67 94.81 93.10 93.20
BR1-011 91.49 91.84 92.54 90.37 91.11
BR1-012 94.08 93.67 93.67 91.45 91.95
BR1-013 97.14 97.43 97.60 95.34 95.58
BR1-014 94.37 94.63 94.70 91.30 91.68
BR1-015 95.38 96.74 96.96 92.84 93.29
BR1-016 95.75 95.55 96.20 93.14 94.21
BR1-017 97.80 97.29 97.97 96.21 96.40
BR1-018 88.49 88.49 88.49 88.95 89.57 *
BR1-019 94.73 94.73 95.13 94.40 94.81
BR1-020 94.20 95.23 94.30 91.53 92.46
BR1-021 94.69 93.77 94.69 93.47 93.48
BR1-022 95.34 94.46 94.73 92.58 93.89
BR1-023 94.15 94.67 94.69 96.53 96.54 *
BR1-024 90.75 91.18 91.42 91.51 91.63 *
BR1-025 94.83 95.25 95.17 93.27 94.26
BR1-026 93.81 93.81 93.81 93.17 93.67
BR1-027 91.67 91.95 92.54 93.60 93.60 *
BR1-028 93.84 93.46 94.73 91.46 92.53
BR1-029 93.95 93.92 94.45 93.52 94.45 *
BR1-030 97.54 97.13 98.09 94.43 95.08
BR1-031 95.54 94.65 95.67 92.84 93.32
BR1-032 97.01 97.01 97.01 94.84 95.07
BR1-033 97.63 97.55 97.75 94.17 94.88
BR1-034 94.62 94.62 95.47 92.66 92.87
BR1-035 93.60 94.05 94.14 91.74 92.30
BR1-036 95.47 95.36 94.68 94.05 94.51
BR1-037 95.16 94.97 95.42 92.65 93.16
BR1-038 90.64 90.11 90.71 90.92 91.30 *
BR1-039 96.40 96.48 96.48 94.07 94.19
BR1-040 94.52 93.96 93.98 92.96 93.53
BR1-041 94.55 94.97 95.39 93.89 94.55
BR1-042 94.24 94.86 95.29 93.47 94.37
BR1-043 95.61 95.75 96.18 83.98 86.02
BR1-044 87.97 88.21 88.21 83.97 84.03
BR1-045 96.38 96.23 96.38 93.76 94.12
BR1-046 94.13 94.13 94.13 90.80 91.27
BR1-047 95.39 96.16 96.29 92.83 93.56
BR1-048 95.95 95.45 95.45 94.93 95.65
BR1-049 95.03 94.29 94.77 92.61 94.10
BR1-050 97.55 97.76 98.16 94.45 95.56
* The best solution of BLHM over 10 runs is better than the solutions found by the

other algorithms.
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Table 2. Results for group BR1 (cont.).

Instance CLTRS [4] ID-GLTS [7] BSG-VCS [36]
BLHM

Avg Best*

BR1-051 97.11 97.11 97.08 95.12 95.87
BR1-052 94.73 94.60 94.73 95.78 95.81 *
BR1-053 89.59 89.59 91.65 93.03 93.70 *
BR1-054 92.37 92.54 93.05 93.05 93.33 *
BR1-055 90.62 90.62 90.62 87.64 87.64
BR1-056 97.26 96.14 97.32 95.71 96.68
BR1-057 95.60 95.48 96.22 94.24 95.49
BR1-058 94.45 92.61 93.94 94.17 94.68 *
BR1-059 97.57 96.76 96.38 95.99 97.16
BR1-060 95.86 95.86 95.96 93.61 94.88
BR1-061 95.90 95.90 95.97 91.67 93.69
BR1-062 93.07 92.96 94.20 92.16 92.76
BR1-063 91.76 93.15 93.05 92.30 93.66 *
BR1-064 94.59 94.24 95.44 91.49 91.83
BR1-065 97.71 97.87 97.87 95.63 96.78
BR1-066 96.16 95.39 96.20 94.92 95.81
BR1-067 95.92 95.72 96.06 92.96 93.50
BR1-068 97.06 96.81 97.06 94.82 95.23
BR1-069 92.93 91.37 92.38 91.48 92.65
BR1-070 91.35 91.35 90.71 94.94 95.19 *
BR1-071 92.98 91.97 93.14 93.36 93.57 *
BR1-072 92.43 92.72 92.52 93.12 93.60 *
BR1-073 91.71 91.67 91.66 93.53 94.52 *
BR1-074 94.43 94.68 94.98 91.33 92.57
BR1-075 93.66 94.55 94.55 93.13 93.13
BR1-076 96.56 96.59 96.67 95.47 96.30
BR1-077 97.26 97.26 97.26 93.80 94.84
BR1-078 93.84 93.95 94.67 93.22 93.29
BR1-079 94.82 94.82 94.82 94.88 95.40 *
BR1-080 95.91 96.36 96.65 95.11 95.11
BR1-081 92.77 92.44 92.44 91.16 92.30
BR1-082 93.74 93.83 94.39 91.75 93.17
BR1-083 95.83 95.83 95.83 92.72 94.57
BR1-084 93.84 94.15 94.40 93.47 94.51 *
BR1-085 97.99 97.55 98.03 95.50 95.80
BR1-086 96.14 95.11 95.11 94.15 94.81
BR1-087 93.76 93.38 93.76 89.49 91.12
BR1-088 94.29 93.19 94.54 90.20 91.40
BR1-089 88.21 88.21 88.21 93.17 94.24 *
BR1-090 92.82 92.52 92.82 88.96 89.46
BR1-091 97.09 97.14 97.14 95.17 95.52
BR1-092 93.10 90.88 92.71 92.80 93.27 *
BR1-093 95.91 95.90 95.67 93.12 94.17
BR1-094 95.44 95.97 95.97 93.39 95.08
BR1-095 95.20 95.92 95.70 92.90 92.90
BR1-096 95.79 95.79 95.79 93.28 94.22
BR1-097 94.87 93.78 94.87 93.90 94.41
BR1-098 96.14 96.69 96.69 93.96 94.87
BR1-099 93.82 94.16 94.48 89.16 90.39
BR1-100 96.62 98.16 98.16 94.04 94.68
* The best solution of BLHM over 10 runs is better than the solutions found by the

other algorithms.

Concerning group BR2, BLHM obtained the best solutions for seven (out of 100) instances.
The average solution of CLTRS, ID-GLTS, BSG-VCS, and BLHM was 94.73, 94.85, 95.38, and 92.52
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(considering the average column), respectively. It is important to note that the efficiency of BLHM
decreased as the heterogeneity of the instances increased.

Table 3. Results for group BR2.

Instance CLTRS [4] ID-GLTS [7] BSG-VCS [36]
BLHM

Avg Best*

BR2-001 95.50 95.55 95.98 91.85 92.71
BR2-002 95.50 95.22 95.11 93.40 93.74
BR2-003 94.14 95.52 95.42 89.91 91.63
BR2-004 93.68 93.39 94.23 93.91 95.16 *
BR2-005 95.89 96.24 96.24 92.13 93.77
BR2-006 96.33 96.24 96.65 91.40 93.27
BR2-007 96.19 95.70 96.70 93.13 94.18
BR2-008 94.12 94.14 94.20 91.39 91.63
BR2-009 95.23 94.39 95.00 91.34 92.12
BR2-010 96.69 96.15 96.33 94.30 95.25
BR2-011 93.34 94.02 95.21 90.24 91.69
BR2-012 93.75 94.56 94.85 91.12 92.00
BR2-013 95.75 96.58 96.71 92.88 94.64
BR2-014 94.11 94.18 94.60 92.67 93.88
BR2-015 95.85 96.00 96.16 91.80 93.68
BR2-016 94.21 94.88 95.79 92.47 93.05
BR2-017 96.07 95.88 95.93 91.68 92.85
BR2-018 92.74 93.49 94.70 90.37 91.44
BR2-019 95.07 95.73 95.60 91.94 93.55
BR2-020 94.36 94.77 94.42 91.92 93.48
BR2-021 93.36 93.68 95.41 91.87 93.05
BR2-022 93.76 93.98 94.81 90.23 91.32
BR2-023 91.01 90.43 90.98 92.48 92.68 *
BR2-024 92.28 92.46 92.55 91.13 92.34
BR2-025 95.60 95.24 96.34 91.87 92.86
BR2-026 95.19 95.09 95.38 92.55 93.73
BR2-027 93.34 93.24 93.95 92.31 92.90
BR2-028 93.74 93.82 94.52 91.85 93.17
BR2-029 96.67 96.04 97.02 96.62 97.02 *
BR2-030 97.33 97.59 97.94 94.22 94.35
BR2-031 95.75 94.74 96.28 90.66 92.26
BR2-032 95.72 95.61 96.45 92.63 93.39
BR2-033 96.04 96.14 95.87 93.95 94.31
BR2-034 95.83 95.10 95.43 92.78 93.86
BR2-035 95.46 95.76 95.74 91.98 92.41
BR2-036 95.27 95.47 95.29 93.92 94.44
BR2-037 94.45 94.41 95.79 92.14 93.32
BR2-038 93.82 94.67 94.67 90.45 91.16
BR2-039 95.79 96.64 97.25 94.75 95.47
BR2-040 93.06 93.31 94.07 91.05 92.19
BR2-041 94.14 94.14 93.83 93.01 93.45
BR2-042 95.20 95.10 95.56 92.88 94.06
BR2-043 94.00 94.44 94.44 90.33 90.77
BR2-044 90.14 90.70 92.33 89.38 89.38
BR2-045 95.10 95.43 95.59 92.76 93.84
BR2-046 93.61 93.67 94.12 93.07 93.57
BR2-047 95.76 95.96 96.03 93.51 93.88
BR2-048 96.18 96.87 97.35 94.06 94.94
BR2-049 95.99 95.94 96.03 94.35 94.41
BR2-050 97.03 97.04 97.58 93.85 94.68
* The best solution of BLHM over 10 runs is better than the solutions found by the

other algorithms.



Algorithms 2019, 12, 67 12 of 15

Table 4. Results for group BR2 (cont.).

Instance CLTRS [4] ID-GLTS [7] BSG-VCS [36]
BLHM

Avg Best*

BR2-051 96.47 96.17 96.56 94.37 95.11
BR2-052 95.30 95.76 95.31 93.89 94.31
BR2-053 92.27 93.18 94.06 93.71 94.06 *
BR2-054 94.38 94.90 95.31 90.77 91.81
BR2-055 93.03 93.60 94.33 90.92 91.55
BR2-056 96.26 96.26 96.84 93.05 93.87
BR2-057 96.46 96.41 97.14 92.09 93.28
BR2-058 94.97 94.11 94.97 93.86 94.58
BR2-059 96.63 97.13 96.72 94.60 95.86
BR2-060 95.64 94.62 95.64 92.03 92.35
BR2-061 93.03 94.80 94.80 90.51 91.77
BR2-062 95.81 95.77 96.15 90.74 91.31
BR2-063 93.80 92.84 93.54 91.43 92.99
BR2-064 94.74 93.11 93.60 91.71 92.17
BR2-065 94.78 95.39 96.17 93.90 94.00
BR2-066 95.07 95.61 96.62 92.88 93.70
BR2-067 96.04 95.67 96.84 92.41 93.50
BR2-068 93.78 93.78 95.06 93.35 93.78
BR2-069 91.13 91.72 92.34 92.50 93.01 *
BR2-070 93.24 92.21 94.32 91.76 92.75
BR2-071 95.17 95.37 96.04 93.71 94.71
BR2-072 92.12 92.82 93.31 91.56 92.72
BR2-073 93.42 93.25 94.44 92.57 93.68
BR2-074 94.03 94.18 95.31 91.22 92.53
BR2-075 94.87 95.16 95.47 92.60 93.71
BR2-076 96.64 96.00 97.05 94.38 95.58
BR2-077 95.18 96.13 96.58 94.25 95.04
BR2-078 95.22 95.17 95.94 92.69 93.78
BR2-079 96.46 96.24 96.98 94.14 94.53
BR2-080 93.33 94.10 94.34 92.82 93.99
BR2-081 92.68 93.70 93.67 92.72 93.28
BR2-082 94.50 94.41 95.11 91.96 92.80
BR2-083 96.45 95.83 96.61 93.11 93.87
BR2-084 92.77 92.27 93.26 92.82 93.98 *
BR2-085 96.85 96.90 97.24 95.21 95.61
BR2-086 94.75 95.29 95.83 93.13 94.27
BR2-087 93.76 94.23 94.84 90.57 91.18
BR2-088 92.34 92.99 93.64 92.12 93.62
BR2-089 89.58 89.96 90.57 92.58 93.04 *
BR2-090 94.55 95.04 95.04 91.68 92.17
BR2-091 94.53 95.16 95.64 92.89 94.10
BR2-092 93.96 93.79 94.30 91.80 92.25
BR2-093 95.35 95.35 95.35 93.38 94.88
BR2-094 97.11 96.66 97.42 93.75 94.36
BR2-095 94.98 95.84 95.85 94.00 94.00
BR2-096 96.83 97.04 98.27 92.56 93.27
BR2-097 95.53 94.64 95.01 92.78 93.92
BR2-098 96.38 96.58 97.31 92.92 93.74
BR2-099 96.84 96.83 97.33 93.56 95.08
BR2-100 95.17 95.66 95.57 91.51 95.23
* The best solution of BLHM over 10 runs is better than the solutions found by the

other algorithms.

4. Conclusions

In this work, we presented a two-phase approach to tackle the container loading problem. The idea
behind our algorithm is to decompose the CLP into two subproblems, namely a three-dimensional
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problem of generating a set of blocks of boxes and a two-dimensional problem of loading a subset
of blocks on the container floor. Constructive algorithms conducted the former task, while the
generate-and-solve hybrid framework dealt with the latter one. Computational experiments performed
on weakly-heterogeneous datasets showed that our algorithm found new best solutions for 31
(out of 200) instances of groups BR1 and BR2. Its performance however deteriorated as the number
of types of boxes increases. As future work, we intend to explore other CLP constraints, e.g., load
bearing strength and weight distribution, and to investigate other strategies to compare eventually
our results to methods more advantageous in solving strongly-heterogeneous problems [37]. Future
studies might cover solving the multi-container loading problem [38] and ship loading problem [39]
by modifying our suggested method. Another perspective is to study the application of the GS hybrid
framework to classical combinatorial optimization problems.
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