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Abstract: Non-uniquely-decodable (non-UD) codes can be defined as the codes that cannot be
uniquely decoded without additional disambiguation information. These are mainly the class of
non–prefix–free codes, where a code-word can be a prefix of other(s), and thus, the code-word
boundary information is essential for correct decoding. Due to their inherent unique decodability
problem, such non-UD codes have not received much attention except a few studies, in which
using compressed data structures to represent the disambiguation information efficiently had
been previously proposed. It had been shown before that the compression ratio can get quite
close to Huffman/Arithmetic codes with an additional capability of providing direct access in
compressed data, which is a missing feature in the regular Huffman codes. In this study we
investigate non-UD codes in another dimension addressing the privacy of the high-entropy data.
We particularly focus on such massive volumes, where typical examples are encoded video or similar
multimedia files. Representation of such a volume with non–UD coding creates two elements as
the disambiguation information and the payload, where decoding the original data from these
elements becomes hard when one of them is missing. We make use of this observation for privacy
concerns. and study the space consumption as well as the hardness of that decoding. We conclude
that non-uniquely-decodable codes can be an alternative to selective encryption schemes that aim to
secure only part of the data when data is huge. We provide a freely available software implementation
of the proposed scheme as well.

Keywords: non-UD; non-prefix-free codes; selective encryption; massive data security; data coding;
data compression; privacy preserving text algorithms; big data delivery

1. Introduction

A coding scheme basically replaces the symbols of an input sequence with their corresponding
code-words. Such a scheme can be referred as ambiguous if it is not possible to uniquely decode
the code-words back into the original data without using a disambiguation information. In this
study, we study non–prefix–free (NPF) codes, where a code-word can be a prefix of other(s), and the
ambiguity arises since the code-word boundaries cannot be determined on the code-word stream
without explicit knowledge of the individual code-word lengths. Due to the lack of that unique
decodability feature, NPF codes has received limited attention [1–5] in the related literature.

The basic approach in dealing with the decodability problem of NPF schemes is to find an
efficient way of representing the code-word boundaries. That had been studied in [5] by maintaining
an additional compressed bit array supporting rank and select queries [6] to mark the code-word
boundaries on the code-word stream. Similar approaches were also independently mentioned in [7,8].
Yet another way is to create a wavelet tree [9] over the code-word lengths, which was studied in [5]
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as an alternative to maintaining a bit array. Empirical observations in [5] showed that actually NPF
codes can provide compression ratios quite close to and sometimes better than the Huffman codes,
while providing random access, which is a missing feature in ordinary Huffman codes, in constant or
logarithmic time.

Despite efforts to solve unique decodability of ambigious codes, in this study we focus on
the privacy and security opportunities provided by the NPF codes. Achieving the security of
massive data volumes with less encryption makes sense on platforms where the cost of encryption
becomes hefty according to some metrics, e.g., time, memory, energy, or bandwidth. For example,
in battery-constrained environments such as mobile devices [10], sensor networks [11], or unmanned
aerial vehicles [12], performing less encryption may help to increase the battery life. It had been shown
that symmetric security algorithms roughly doubles the energy consumption of normal operation
in those environments, and asymmetric security algorithms increase the energy usage per bit in
order of magnitudes (around 5 fold) [13]. Previously, selective encryption schemes [14] have been
proposed to reduce the encryption load, particularly on transmission of video/image files [15–17].
In selective encryption, segments of the data, which are assumed to include important information,
e.g., the I-frames in a video stream, are encrypted, while rest of the data is kept plain. We introduce an
alternative approach to reduce the amount of encryption required to secure a source data. As opposed
to the partial security provided by the selective encryption schemes, we observe that the intrinsic
ambiguity of non-prefix-free (NPF) codes gives us an interesting opportunity for the privacy of the
whole data.

The main idea of the proposed technique here is to process the n bit long input bit sequence,
which is assumed to be independently and identically distributed, in blocks of d bits according to a
predetermined d parameter that is typically between 6 and 20. We create 2d non-prefix code-words
by using a permutation of the numbers [1 . . . 2d], and then replace every d-bits long symbol in the
input with its corresponding NPF code-word of varying bit-length in between 1 to d. We call the
resulting bit stream the payload since it includes the actual content of the source. This sequence can not
be decoded properly without the code-word boundaries due to the inherent ambiguity of the NPF
codes. Therefore, we need to maintain an efficient representation of the code-word boundaries on the
payload. We refer to that second bit stream as the disambiguation information throughout the study.
In the proposed scheme, the total space consumed by the payload and the disambiguation information
introduces an overhead of 2(d− 1)/d · 2d ≈ 1

2d−1 bits per each original bit, which becomes negligible as
d increases, i.e., it is less than 7 bits per a thousand bit when d = 8. We prove that the payload occupies
≈ (d−2)

d , and the disambiguation information takes ≈ 2
d of the final representation, and the two partitions

consume in total almost the same space with the input data.
Following the space consumption analysis, we investigate how much information can be inferred

from disambiguation data for the payload and vice versa, which leads us to the conclusion that
encrypting one of the partitions and leaving the other one in plain can be considered for the privacy of
the data. Since disambiguation information consumes less space, it would be ideal to encrypt it while
leaving the payload in plain. However, the other way, encrypting the payload and leaving the the
disambiguation information plain can still reduce the to-be-encrypted amount. Yet, nested application
of the coding schemes on either partitions can also be considered a good strategy for privacy.

It might have captured the attention of the reader that the analysis assumes the input bit stream is
i.i.d., which seems a bit restrictive at a first glance. However, the target data types of the introduced
method are mainly the sources that have been previously entropy encoded with some data compression
scheme, where each symbol is represented by minimum number of bits close to its entropy according
to Shannon’s theorem [18]. Such typical sources are video files in mpeg4 format, sound files in mp3
format, images in JPEG format and similar others. The output of the compression tools squeezing data
down to its entropy is actually a quite nice input for our proposal. We support this observation by
the experiments performed on various compressed file types on which the results are observed to be
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very close to the theoretical bounds computed by the uniformly i.i.d. assumption. In that sense, the
proposed scheme can also be seen as a method of providing privacy of the compressed data as well.

The outline of the paper is as follows. In Section 2 we introduce the proposed non-UD coding
method based on the non–prefix–free codes, and analyze its basic properties mostly focusing on
the space consumption of the partitions. We provide verification of the theoretical claims based
on uniformly i.i.d. assumption on some files that are already entropy-encoded and investigate the
hardness of decoding in absence of the partitions in this section for privacy issues. The implementation
of the proposed technique is introduced here and currently available speed is presented as well.
Section 3 summarizes the results obtained. We discuss possible practical usage scenarios in Section 4
and then conclude with addressing further research avenues.

2. Materials and Methods

We start with defining the proposed non-UD coding scheme and analyze the space occupied by
the disambiguation information, the payload, and the overhead with respect to the original input,
which we will assume to be a uniformly and independently distributed bit sequence of length n.
We focus next on the complexities of inferring the disambiguation information or the payload in
absence of the other.

2.1. Non-Uniquely-Decodable Data Coding

Let A = a1a2 . . . an denotes an independently and identically distributed bit sequence, and d > 1
is a predetermined block length. Without loss of generality we assume n is divisible by d. Otherwise,
it is padded with random bits. A can be represented as B = b1b2 . . . br, for r = n

d such that each
d–bits long bi in B is from the alphabet Σ = {0, 1, 2, . . . 2d − 1}. We will first define the minimum binary
representation of an integer, and then use this definition to state our encoding scheme.

Definition 1. The minimum binary representation (MBR) of an integer i ≥ 2 is its binary representation
without the leftmost 1 bit. As an example, MBR(21) = 0101 by omitting the leftmost set bit in its binary
representation as 21 = (10101)2.

Definition 2. Let Σ′ = {ε1, ε2, . . . ε2d} be a permutation of the given alphabet Σ = {0, 1, 2, . . . , 2d − 1}, and
W = {w1, w2, . . . , w2d} is a code-word set such that

wi =


MBR(2 + εi) , if εi < 2d − 2

{MBR(2d + ζ) : ∀ζ ∈ {0, 1, . . . , 2d − 1},where ζ = {0, 3} mod 4} , if εi = 2d − 2

{MBR(2d + ζ) : ∀ζ ∈ {0, 1, . . . , 2d − 1},where ζ = {1, 2} mod 4} , if εi = 2d − 1

The representation of the input A = B = b1b2 . . . br with the non–prefix–free code-word set W is shown
by NPF(A) = c1c2 . . . cr such that ci = w1+bi

. When a code-word ci has multiple options, a randomly selected
one among the possibilities is used.

The NPF coding of a sample sequence according to the Definitions 1 and 2 with the parameter
d = 3 is shown in Figure 1. The code-words w1 and w5 are sets as their corresponding ε1 = 6 and
ε5 = 7 values are greater than or equal to 6 = 23 − 2. Thus, when ci = w1 or ci = w5, a randomly
selected code-word respectively from sets w1 or w5, is inserted.

Proposition 1. In a code-word set W that is generated for a block length d > 1 according to Definition 2,
the lengths of the code-words in bits range from 1 to d, where the number of `–bits long code-words for each
` ∈ {1, 2, . . . , d− 1} is 2`, and for ` = d there exist 2 sets of code-words each of which includes 2d−1 elements.
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Σ = 0 1 2 3 4 5 6 7
Σ′ = 6 0 5 1 7 2 4 3

ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8

w1 w2 w3 w4 w5 w6 w7 w8

W = {000,011,100,111} 0 11 1 {001,010,101,110} 00 10 01

A = 001 110 101 011 010 111 100 000
B = 1 6 5 3 2 7 4 0

NPF(A) = w2 w7 w6 w4 w3 w8 w5 w1

NPF(A) = 0 10 00 1 11 01 101 000
DisIn f o(A) = 01 1 1 01 1 1 00 00

Figure 1. A simple sketch of the non-prefix-free coding of an input bit sequence A, where B is the
representation of A with the block length d = 3. Σ′ is a random permutation of the corresponding
alphabet Σ, and W is the non-prefix-free code-word set generated for Σ′ according to Definition 2.
The disambiguation information DisIn f o(A) is computed according to Lemma 2.

Proof. According to Definition 2, the entities in W are minimum binary representations of numbers
{2, 3, . . . , 2d+1 − 1}. Since the MBR bit-lengths of those numbers range from 1 to d, there are d distinct
code-word lengths in W. Each code-word length ` ∈ {1, 2, . . . , d− 1} defines 2` distinct code-words,
and thus, total number of code-words defined by all possible ` < d values becomes ∑d−1

i=1 2i = 2d − 2.
The remaining 2 code-words out of the |W| = 2d items require d–bits long bit sequences. For example,
when d = 3, the W includes 2(= 21) code-words of 1-bit long, 4(= 22) code-words of length 2, and
2(= 23 − 6) code-word sets of length 3-bits as shown in Figure 1.

Lemma 1. The non-UD encoding NPF(A) of an i.i.d. bit sequence A of length n = r · d is expected to occupy
r ·
(
d− 2 + d+1

2d−1

)
= n ·

(
1− 2

d + 2(d+1)
d·2d

)
bits space.

Proof. The total bit length of the NPF code-words is simply ∑d
`=1 C` · `, where C` denotes the number

of occurrences of the bi values represented by `–bits long code-words in B. Assuming the uniform
distribution of B, each bi ∈ {0, 1, 2, . . . , 2d − 1} appears r

2d times. The number of distinct bi values
represented by a code-word of length ` is 2` for 1 ≤ ` < d, and two of the bi values require ` = d
bit long code-words as stated in Proposition 1. Thus, C` = r

2d · 2` for 1 ≤ ` < d, and Cd = r
2d · 2.

The length of the NPF(B) bit-stream can then be computed by

|NPF(A)| = r
2d ·

(
1 · 2 + 2 · 22 + . . . + (d− 1) · 2d−1 + d · 2

)
(1)

=
r

2d ·
(
2d +

d−1

∑
i=1

i · 2i) = r
2d ·

(
2d + 2d · (d− 2) + 2

)
(2)

=
r

2d ·
(
2d(d− 2) + 2(d + 1)

)
(3)

= r · d− r ·
(
2− d + 1

2d−1

)
(4)

= r ·
(
d− 2 +

d + 1
2d−1

)
(5)

=
n
d
·
(
d− 2 +

d + 1
2d−1

)
(6)

= n ·
(
1− 2

d
+

2(d + 1)
d · 2d

)
(7)
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While computing the summation term in Equation (2), we use the formula from basic algebra that
∑

p
i=1 i · 2i = 2p+1(p− 1) + 2, and substitute p = d− 1.

The NPF coding represents the n bits long input sequence A with n ·
( 2

d −
2(d+1)

2d

)
bits. However,

since non-prefix-free codes are not uniquely decodable, NPF(A) cannot be decoded back correctly in
absence of the code-word boundaries. Therefore, we need to represent these boundary positions on
NPF(A) as well. Lemma 2 states an efficient method to achieve this task.

Lemma 2. The expected number of bits to specify the code-word boundaries in the NPF(A) is n ·
( 2

d −
4

d·2d

)
,

where |A| = n = r · d.

Proof. Due to Proposition 1 there are 2` distinct code-words with length ` for ` ∈ {1, 2, . . . , d− 1} and
2 code-words (sets) are generated for ` = d. Since each d-bits block has equal probability of appearance
on A, the number of occurrences of code-words having length ` ∈ {1, 2, . . . , d− 1} is r

2d · 2`. The most
frequent code-word length is (d− 1), which appears at half of the r code-words as r

2d · 2d−1 = r
2 . It is

followed by the code-word length (d− 2) that is observed r
4 times. When we examine the number of

code-words with length ` ∈ {1, 2, . . . , d− 1}, we see that this distribution is geometric, as depicted in
Figure 2. The optimal prefix-free codes for the code-word lengths are then {1, 01, 001, . . . , 0d−21, 0d−1},
which correspond to code-word lengths {d− 1, d− 2, d− 3, . . . , 1, d} respectively. Thus, code-word
length ` = (d − i) ∈ {1, 2, . . . , d − 1}, which appears r

2d · 2d−i times on A, can be shown by i bits.
We use (d− 1) consecutive zeros to represent the code-word length ` = 2 as the number of occurrences
of d–bits long code-words is equal to the number of 1 bit long code-words on A. Notice that the
representation of the code-word lengths are prefix-free that can be uniquely decoded. Total number of
bits required to represent the individual lengths of the code-words can be computed by

r
2d

(
2(d− 1) +

d−1

∑
i=1

i · 2d−i) = r ·
(2(d− 1)

2d +
d−1

∑
i=1

i · 2−i) (8)

= r
(d− 1

2d−1 +
2d − d− 1

2d−1

)
(9)

= r
(
2− 1

2d−2

)
(10)

=
n
d
·
(
2− 1

2d−2

)
(11)

= n
(2

d
− 4

d · 2d

)
(12)

Codelength # of occurrences represented by space consumption

d− 1 r
2 = r

2d · 2d−1 1 1 · r
2

d− 2 r
4 = r

2d · 2d−2 01 2 · r
4

d− 3 r
8 = r

2d · 2d−3 001 3 · r
8

. . . . . . . . . . . .

1 r
2d−1 = r

2d · 2 00 . . . 1 (d− 1) · r
2d−1

d r
2d−1 = r

2d · 2 00 . . . 0 (d− 1) · r
2d−1

Total space occupied: r
(
2− 1

2d−2

)
Figure 2. The representation of the code-word lengths to specify the code-word boundaries on the
NPF stream.

Theorem 1. The non-UD encoding of n bit long i.i.d. input A sequence can be achieved with 2(d−1)
d·2d bits

overhead per each original bit.
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Proof. Total overhead can be computed by subtracting the original length n from the sum of the space
consumption described in Lemmas 1 and 2. Dividing this value by the n returns the overhead per bit
as shown below.

1
n
·
[
n ·
(
1− 2

d
+

2(d + 1)
d · 2d

)
+ n ·

(2
d
− 4

d · 2d

)
− n

]
=

d− 1
d · 2d−1 =

2(d− 1)
d · 2d (13)

Table 1 summarizes the amount of extra bits introduced by the proposed encoding per each
original bit in A. A large overhead, which seems significant for small d, e.g., d < 8, may inhibit the
usage of the method. However, thanks to the to the exponentially increasing denominator (2d) in the
overhead amount that the extra space consumption quickly becomes very small, and even negligible.
For instance, when d = 8, the method produces only 6.8 extra bits per a thousand bit. Similarly,
the overhead becomes less than 3 bits per 100K bits, and less than 2 bits per a million bits for the values
of d = 16 and d = 20, respectively. Thus, for d ≥ 8, an input uniformly i.i.d. bit sequence can be
represented with a negligible space overhead by the proposed non-UD encoding scheme.

Table 1. The payload, disambiguation information, and overhead bits per each original bit introduced
by the proposed non-UD coding for some selected d values.

d = 4 6 8 10 12 14 16 20

Overhead per bit
d−1

d·2d−1 ≈ 0.094 0.026 0.007 0.002 1.1× 10−4 4.4× 10−4 2.8× 10−5 1.8× 10−6

Payload per bit
1− 2

d + 2(d+1)
d·2d ≈ 0.656 0.703 0.759 0.802 0.834 0.857 0.875 0.900

Dis.Info. per bit
2
d −

4
d·2d ≈ 0.438 0.323 0.248 0.200 0.167 0.143 0.125 0.100

Experimental Verification of the Space Usage Results

During the calculations of the payload and disambiguation information sizes as well as the
overhead, the input data has been assumed to be independently and identically distributed. In practice,
the input to the proposed method is supposed to be the output of an entropy coder, where the
distribution of d–bits long items in such a file may deviate from the perfect assumptions. We would
like to evaluate whether such entropy-encoded files still provide enough good uniformity close to the
theoretical claims based on uniformly i.i.d. assumption. Therefore, we have conducted experiments on
different compressed files to observe how much these theoretical values are caught in practice.

We have selected 16 publicly available files.The first ten files are available from http://corpus.
canterbury.ac.nz and http://people.unipmn.it/manzini/lightweight/corpus/. The multimedia files
are from https://github.com/johndyer/mediaelement-files, where the first ten are gzip compressed
data from different sources and the remaining six are multimedia files of mp3, mp4, jpg, webm, ogv,
and flv formats. The first d · 2d bits of each file is inspected for distinct values of d = {8, 12, 16, 20}, and
the corresponding observed payload and disambiguation information sizes are computed as well as
the overhead bits in each case.

Table 2 includes the comparisons of the observed and theoretical values on each analyzed
dimension. The payload size, which is the total length of the concatenated NPF code-words, and the
disambiguation information size, which is the total length of the prefix–free encoded code-word lengths,
are both observed to be compatible with the theoretical claims. This is also reflected on the overhead
bits as a consequence. Thus, in terms of space consumption, the experimental results on compressed
data support the theoretical findings based on perfect uniformly i.i.d. input data assumption.

http://corpus.canterbury.ac.nz
http://corpus.canterbury.ac.nz
http://people.unipmn.it/manzini/lightweight/corpus/
https://github.com/johndyer/mediaelement-files
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Table 2. Verification of the theoretical claims on selected files for d = {8, 12, 16, 20}.

File Name Payload Size Dis.Info. Size Overhead Bits Payload Size Dis.Info. Size Overhead Bits

chr22 1555 500 7 40,961 8213 22
etext99 1515 533 0 41,103 8060 11

gcc 1491 578 21 40,764 8410 22
howtobwt 1510 538 0 41,058 8127 33

howto 1551 511 14 41,079 8095 22
jdk 1522 540 14 41,074 8122 44

rctail 1535 527 14 41,075 8088 11
rfc 1522 526 0 40,769 8394 11

sprot34 1538 524 14 41,049 8125 22
w3c2 1529 519 0 41,016 8158 22
mp3 1470 585 7 41,021 8131 0
jpg 1426 636 14 40,819 8344 11

mp4 1415 654 21 41,373 7779 0
webm 1496 566 14 40,835 8317 0

ogv 1456 592 0 40,985 8189 22
flv 1571 484 7 40,796 8367 11

Expected 1554 508 14 40,986 8188 22

d = 8 d = 12

chr22 917,579 131,027 30 18,873,040 2,098,575 95
etext99 917,289 131,302 15 18,872,686 2,098,853 19

gcc 917,397 131,209 30 18,879,975 2,091,602 57
howtobwt 917,518 131,088 30 18,875,332 2,096,207 19

howto 917,812 130,794 30 18,875,502 2,096,037 19
jdk 917,412 131,179 15 18,873,190 2,098,406 76

rctail 917,139 131,437 0 18,876,497 2,095,042 19
rfc 917,346 131,275 45 18,873,175 2,098,364 19

sprot34 918,158 130,433 15 18,878,705 2,092,891 76
w3c2 917,707 130,899 30 18,876,613 2,094,945 38
mp3 914,926 133,695 45 18,863,837 2,107,721 38
jpg 915,821 132,770 15 18,878,914 2,092,625 19

mp4 905,887 142,689 0 18,898,789 2,072,826 95
webm 917,075 131,561 60 18,873,348 2,098,210 38

ogv 916,558 132,108 90 18,875,407 2,096,208 95
flv 915,335 133,286 45 18,909,861 2,061,735 76

Expected 917,538 131,068 30 18,874,410 2,097,148 38

d = 16 d = 20

2.2. Hardness of Decoding Payload in Absence of Disambiguation Information

The non-UD coding process represents the input data with two elements as the payload and
the disambiguation information. We have shown in Lemma 2 that the disambiguation information
occupies ≈ 2

d of the input size. Thus, if one encrypts the disambiguation information and leaves the
payload plain, the retrieval of the original sequence will require decoding the payload without the
disambiguation information. We provide a combinatorial analysis on the hardness of this decoding
below by first proving that disambiguation information of a payload is specific per se, and then use
this fact to count the number of possible distinct raw sequences that map to a given payload with the
same code-word mapping of Σ→W.

Lemma 3. Each distinct disambiguation information on a given NPF stream decodes into distinct
input sequence.

Proof. Let S = s1s2 . . . sr and S′ = s′1s′2 . . . s′r denote two different disambiguation information, which
are actually the code–word length sequences such that ∑r

i=1 si = ∑r
i=1 s′i = |NPF(A)|, where si and s′i

are the bit lengths of the ith code–word in the corresponding decoding of the NPF(A). Since S and S′

are distinct, for some 1 ≤ j ≤ r, sj and s′j are not equal, which causes the corresponding code–words
extracted from the NPF code–stream to be of different length. Although there is a chance that different
code–words of length d may map onto the same symbol in W according to Definition 2, it is for sure
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that when the two code–word lengths are different they cannot map onto the same symbol. Thus, it is
not possible to find two distinct S and S′ that generate equal A sequences.

Lemma 4. A payload that is generated for an input n–bits longA with the proposed NPF scheme has more than
2α·(2d−1−2) distinct decodings for α = b n

d·2d c, where only one of them, which is specified with the disambiguation

information, is the original input A. When d is chosen to be n = d · 2d, Ω(2·(2
d−1−2)) different payload

generations are possible.

Proof. We will analyze the input A in blocks of 2d d–bits long symbols. Each symbol in a block is
mapped to a variable–length non–prefix–free code-word according to the Σ → W, and when the
code–word boundaries are unknown on that code–stream, then many different decoding possibilities
appear. We aim to first count how many different decoding would be possible for a block, and then
use this information to determine possibilities for the whole code–word stream.

In a block of 2d symbols, the number of `-bits long code–words is 2` for ` ∈ {1, 2, . . . , d− 1}, and
2 for ` = d according to Proposition 1. Therefore, the number of possible permutations of those items
is more than 2(2

d−1−2) as shown below.

2d!
2! · 2! · 4! · . . . · 2d−1!

=
1 · 2
1 · 2 ·

3 · 4
1 · 2 ·

5 · 6 · 7 · 8
1 · 2 · 3 · 4 · . . . · (2

d−2 + 2) · . . . 2d−1 + 1
1 · . . . · 2d−2 · 2d−1!

2d−1!
(14)

> 1 · 22 · 24 · 28 · . . . · 22d−2 · 1 = 2(2
d−1−2) (15)

Let α = b n
d·2d c be the number of blocks in an input n–bits long data stream. Since there are more

than 2(2
d−1−2) different decodings per each block, then α blocks in total will have more than 2α·(2d−1−2)

distinct decoding possibilities.

Given a payload and the used code–word mapping Σ→ W, the number of distinct original data
decodings is shown in Table 3. Notice that only one of them is the correct A, and actually generating
these possibilities is computationally not feasible. Therefore, decoding the NPF stream without the
code–word boundary information is computationally hard for sufficiently large d values, where as
a minimum d = 8 in practice brings a complexity of 2125) for possibilities. Thus, encrypting only
the code–word boundary information, and transmitting the code–word stream in plain can provide
privacy of the whole data in practice. The interesting point here is that the disambiguation information
occupies much less space when compared to the total size of the originl data as previously analyzed
in Lemma 2, which can provide a significant reduction in the encryption volume required for the
data security.

Table 3. When n = d · 2d, the payload size, the disambiguation information size, and the corresponding
number of possible decodings are shown. Last column depicts the percentage of the volume to be
encrypted to provide privacy with the specified level of ambiguity, i.e., when d = 8, encrypting only
around 25% of the input volume (2048 bits) introduces an ambiguity of around 2126.

n = d · 2d Payload Size Minimum Number of Dis. Info. Size Percentage of Dis.Info

d in Bits n ·
(
1 − 2

d + 2(d+1)
d·2d

)
Distinct Parse Ω(2·(2d−1−2)) n ·

( 2
d − 2(d+1)

2d

)
100 · Dis.In f o.Size

n

8 2048 1554 2126 508 % 24.80

12 48 K 40,986 22046 8188 % 16.65

16 1 M 917,538 232,766 131,068 % 12.49

20 20 M 18,874,410 2524,286 2,097,148 % 9.99
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2.3. Hardness of Decoding Disambiguation Information in Absence of Payload

For the users, who would like to keep their data top secret by the standard encryption algorithms,
applying the NPF coding scheme can still provide an advantage. In case of such a necessity, the
payload is encrypted, and the disambiguation information, which simply specifies the code–word
boundaries in the variable–length non–prefix–free code–words stream payload, is kept plain. Now
extracting the code-word bits from the payload can be achieved since disambiguation information is
plain, however, since the payload bits are encrypted, decoding the original data is not possible.

Considering that larger d values create smaller disambiguation information and increase the
payload size, in this case using small d will be preferred with the aim to achieve higher reduction
in the to-be-encrypted data volume. On the other side, when d gets smaller, the overhead becomes
more significant. For example, when d = 4, there appears 10% inflation in the data volume, where
both payload and disambiguation information occupy 50% of the inflated data. With that 10 percent
inflation it becomes possible to attain 50% decrease in the encryption. Similarly, by choosing d = 6,
the overhead becomes more acceptable by being around 3 bits per 100 bits, and since the ratio of the
payload becomes 2/3 of the final data, around 33% decrease is achieved in the encryption amount.

We start analyzing how much information is leaked by making the disambiguation information
public assuming that the code-word set is also public, and then investigate how much it would help to
keep the code-word mapping (Σ→W) secret.

Lemma 5. The number of distinct payloads that can be generated from a given disambiguation information is

2n− 2n
d + 4n

d2d by assuming the code-word set W, parameter d, and message length n are known.

Proof. A code-word of length ` = d− i, which is representing 2` distinct symbols, appears r
2i times in

the disambiguation information for i = 1 to d− 1 and r = n
d . The d bit long code-words appear r

2d−1

times, and represent two distinct symbols. Thus, the total number of distinct sequences that can be
generated from a known disambiguation information can be counted by

2
r(d−1)

2 · 2
r(d−2)

4 · . . . · 2
r

2d−1 · 2
r

2d−1 = 2rd ∑d−1
i=1 2−i · 2r ∑d−1

i=1 i2−i · 2
r

2d−1 (16)

= 2
rd(2d−1−1)−r(2d−d−1)+1

2d−1 (17)

= 2r(d−2+ 4
2d ) (18)

= 2n− 2n
d + 4n

d2d (19)

The result of Lemma 5 is consistent with previous Lemma 2 such that the disambiguation
information is not squeezing the possible message space by more than its size. In other words, when
the codeword set W is known, plain disambiguation information reduces the possible 2n message
space to 2n−ε, where ε = n( 2

d −
4

d·2d ).
However, when W is private, and we need to investigate whether that secrecy of W accommodates

the leakage due to the plain disambiguation information. Lemma 6 shows that for an attacker using the
knowledge revealed by the disambiguation information does not provide an advantage over breaking
the encryption on the payload as long as the code-word set W is kept secret.

Lemma 6. The shrinkage in the possible message space due to public disambiguation information can be
accommodated by keeping the code-word set W secret in the non-UD coding of n ≤ τ · d · 2d bit long data for
τ = d−1.44

2 .
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Proof. W is a secret permutation of the set {0, 1, 2, . . . , 2d−1} containing 2d numbers. Thus, there are
2d! distinct possibilities, which defines log 2d! bits of information. On the other hand, the amount of
revealed knowledge about the n bit long input by the disambiguation information is n( 2

d −
4

d·2d ) bits.
The advantage gained by keeping W secret should accommodate the loss by making disambiguation
information public. This simply yields the following equation.

log(2d!) ≥ n ·
(2

d
− 4

d · 2d

)
(20)

ln(2d!)
ln 2

≈ 2d · ln 2d − 2d

ln 2
≥ n · 2

d
(21)

2d · d · ln 2− 2d

ln 2
≥ n · 2

d
(22)

2d(d− 1.44) ≥ n · 2
d

(23)

d · 2d ·
(d− 1.44

2

)
≥ n (24)

Due to Lemma 6, the choice of d creates an upper bound on the size of the input data that will be
subject to the proposed non-UD coding scheme. On the other hand, it would be appropriate to select d
such that the input size is at least d · 2d bits to confirm with the computations in the size arguments of
the payload and the disambiguation information, which assumed all possible 2d symbols are uniformly
i.i.d. on the input. The minimum and maximum block sizes defined by the d parameter are listed in
Table 4 considering these facts.

Therefore, given an input bit string A, if it is preferred to keep payload secret and disambiguation
information plain, achieving the non-UD coding in blocks of the any preferred size in between these
values is appropriate in practice. The value of d plays a crucial role both in the security and in the
to-be-encrypted data size. It is good to choose large d for better security with less (even negligible
when d > 8) overhead. On the other hand, the payload size is inversely proportional with d, and thus,
the reduction in the data volume to be encrypted decreases when d increases.

Table 4. The minimum (d · 2d) and maximum (d · 2d · ( d−1.44
2 )) block sizes that are appropriate according

to the proposed non-UD coding scheme for selected d values.

d
Block Size in Bits

min max

6 384 875
8 2 K 6.7 K

10 10 K 43 K
12 49 K 256 K
14 230 K 144 K
16 1 M 7 M
18 4.7 M 39 M
20 21 M 194 M

2.4. Implementation of the NPF Encoding

The implementation of the proposed scheme is available at https://github.com/qua11q7/
NPFCoding. The Figure 3 presents the speed performance of the implementation on randomly
generated files of size 1, 10, 100, and 1000 megabytes respectively. The machine used in the experiments
had 16GB memory and Intel i5-6600 CPU with Ubuntu 18.04.2 operating system. For fast processing the
implementation follows a similar scheme as in the case of Huffman decoding with lookup tables [19].
Empirical observations showed that this type of look up make sense on small d values, particularly

https://github.com/qua11q7/NPFCoding
https://github.com/qua11q7/NPFCoding
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on d = 4 and d = 8. However, on larger d values due to the expansion of the number of tables as
well as their sizes the performance is not improved. In the regarding tables, the “NoMap” option
means look up tables are not used. We observed that the NPF coding maximizes its speed both in
coding and decoding process, when d is chosen to be 8, where around 170 megabyte per second is
achieved. The performance does not change much with the file size, and seems totally dependent on
the d parameter. The payload and disambiguation sizes and overall percentages are also given and
observed to be consistent with the theoretical calculations. The decoding speed is about two times of
the encoding speed when d is chosen to be 16 or 20, where it reaches 200 MB per second for d = 16
on 1GB files. More details about the implementation is available on the mentioned code distribution
web site.

4 8 8 NoMap 12 12 NoMap 16 16 NoMap 20 NoMap
0

20
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80

100
120
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160
180
200

d value

Sp
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d 
(M

B/
s)

Encoding Speeds

1 MB 10 MB 100 MB 1GB

4 8 8 NoMap 12 12 NoMap 16 16 NoMap 20 NoMap
0
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iB
/s
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Decoding Speeds

Figure 3. NPF encoding/decoding speed in megabytes per second on different file sizes with different
d values. Note that “NoMap” means no look-up table is used.

3. Results

We have shown that the NPF encoding of an input n–bits long high-entropy data creates a payload
of size ≈ n · (1− 2

d ) which requires n. 2
d bits disambiguation information for a chosen d parameter.

Larger d, e.g., d ≥ 8, values decrease the overhead and total space consumption becomes almost equal
with the input.

The hardness of decoding an encoded data without the knowledge of the used code-word set
had been addressed as early as in 1979 by Rubin [20], and later by others [21,22]. More recently,
non-prefix-free codes have also been mentioned [23] in that sense. We observe that in absence of any of
the two partitions in the proposed scheme, decoding the original data is hard, which can help to keep
data privacy. We proved that a given payload, which has been generated from an input via a known
code-word mapping Σ → W, has more than 22d−1−2 possible decodings in absence of the correct
disambiguation information, when d is chosen such that n = d · 2d. Since a given payload cannot be
decoded properly back into the original input without the correct disambiguation information due to
this exponential ambiguity, it can be preferred to encrypt only the disambiguation information, and
leave the payload plain. In such a case, the amount of to-be-encrypted volume would be 2

d of the
original data. For instance, this brings a reduction of around 75% when d = 8 and 90% when d = 20.
Notice that the ambiguity is computed assuming the Σ→ W mapping is public, where keeping the
code–word set secret will introduce additional strength in privacy.

We also analyzed the how much information is released by the disambiguation information
regarding the payload. It is proved that when 2 · 2d ≤ n ≤ τ · d · 2d, for τ = d−1.44

2 , the contraction of
the possible message space 2n due to the public disambiguation information can be accommodated
by keeping the code-word set secret. Thus, if one encrypts the payload and keeps the code–word
mapping secret, an attacker can not gain an advantage by knowing the disambiguation information.
Such a scheme can still provide a reduction in encryption cost, which is expected to be much less when
compared with the first scenario above. In this case, the d value needs to be small since the ratio of
the payload increases with the larger d values. However, since smaller d values generate an overhead,
it seems appropriate to use d = 6 in practice.
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4. Discussions

Applying entropy compression before the transmission is a common daily practice. For instance,
the mpeg4 encoded video streams, jpg images, or text resources encoded with arithmetic or Huffman
schemes are possible data sources fit well to the proposed architecture with their high entropy. It is
noteworthy that the security of the high-entropy data has been previously addressed in [24–26].
These studies mainly state that although the perfect security of an input data requires a key length
equal to its size (one-time pad), the security of high-entropy data can be provided with much shorter
key sequences. However, again the data as a whole should be fed into encryption. On the other hand,
high entropy data representation with our proposal creates two elements, where encrypting one of
them is adequate since decoding the original data from the plain element is hard in absence of the
other encrypted element.

A recursive application of the proposed coding can even reduce the to-be-encrypted volume
more. For example, after creating the two elements of the non-UD representation, the disambiguation
information or the payload can itself be subject to a one more round of NPF coding. We have shown
that when d = 8, ≈ 25 percent is the disambiguation information, and with one more round, the
disambiguation information will become less then 7 percent of the final volume, where encrypting only
that 7% can be considered for privacy. A similar scenario on the payload can be considered as well.

We assumed that the input to the non-UD encoder is uniformly i.i.d. in ideal case, and empirically
verified that the compressed volumes ensures the mentioned results. Actually, applying entropy
coding before the encryption is a common daily practice, which makes the proposed method to be
directly applicable in such a scenario. The mpeg4 video streams, jpg images, compressed text sequences,
or mp3 songs are all typical data sources of high-entropy. Digital delivery of such multi-media content
has a significant market share in daily practice [27]. Related previous work [24,25] had stated that
although the perfect security of an input data requires a key length equal to its size (one-time pad),
high-entropy data can be perfectly secured with much shorter keys. This study addressed another
dimension and investigated achieving security of such volumes by encrypting less than their original
sizes by using the introduced non-UD coding scheme.

Although we target high-entropy data and analyze space consumption and security features
based on the assumption of i.i.d input, it might be also interesting to have a look what would happen
if we apply the non-UD coding to normal files with biased distributions. On the corpus we studied,
we omitted the compression step on the files that have non-uniform symbol distributions, and applied
our proposed coding directly with a randomly selected Σ → W mapping. The results are given on
Table 5, where repeating the same experiment with different Σ → W assignments reported similar
values. The empirical observation on these results show that the disambiguation information is roughly
less than one third of the input volume, when the input sequence is not uniformly distributed. Thus,
encrypting only the disambiguation information may make sense still on non i.i.d files as well.

Table 5. The sizes of the payload and disambiguation information when non-UD coding is applied on
the files that have non-uniform symbol distribution.

File Name File Size Payload Size Disinfo. Size

etext 100.4 76.4 28.8
howto 37.6 30.1 9.3
rctail96 109.4 84.7 29.9

rfc 111.1 87.4 29.1
w3c2 99.3 77.1 27.2
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Reducing the amount of data to-be-encrypted can make sense in scenarios where the encryption
process defines a bottleneck in terms of some metrics. Non-UD coding becomes particularly efficient on
securing large collections over power-limited devices, where the cost of encryption becomes heavy in
terms of energy. This reduction also helps to increase the throughput of a security pipeline without a need
to expand the relatively expensive security hardware. For instance, let’s assume a case where the data is
waiting to be processed by a hardware security unit. When the amount of data exceeds the capacity of
this unit, a bottleneck appears, which can be resolved by increasing the number of such security units.
However, adding and managing more security units is costly, particularly when the bottleneck is not
so frequent, but only appearing at some time. An alternative solution is to use the proposed non-UD
coding, where instead of expanding the security units, data can be processed appropriately while waiting
in the queue, and the amount to be encrypted can be reduced up to desired level by applying the scheme
recursively if needed. Notice that as opposed to previous selective encryption schemes, non-UD coding
supports the security of the whole file instead of securing only the selected partitions. Besides massive
multimedia files, small public key files around a few kilobytes that are used in asymmetric encryption
schemes are also very suitable inputs for the non-UD coding. The exchange of public keys via symmetric
ciphers can also benefit from the reduction introduced.

5. Conclusions

We have investigated the non-UD data coding with non-prefix-free codes on high-entropy
sources. The proposed scheme represents the input data with two elements as the payload and
the disambiguation information, where the later has a smaller footprint depending on the choice of the
bit-block length parameter d. Such an encoding can help in privacy protection of the massive volumes
with less encryption overhead by keeping one of the partitions secret via encryption, while the other one
is kept plain. This encoding model can also help for privacy preserving pattern matching applications
without making use of any encryption as well, where an immediate usage can be distributed file
storage in cloud environments such that the payload and disambiguation information are stored and
maintained by independent vendors, and thus, none can see the data content but still the owner can
run efficient search queries. Studying such a scenario for privacy preserving distributed data storage
on the cloud can be the next research avenue for non-UD.

6. Patents

Külekci, M.O., Istanbul Teknik Universitesi, 2018. An efficient encryption method to secure data
with reduced number of encryption operations. U.S. Patent Application 15/779,853 [28].
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