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Abstract: This paper presents a robust and precise tension control method for a roll-to-roll (R2R)
system. In R2R processing, robust and precise tension control is very important because improper
web tension control leads to deterioration in the quality of web material. However, tension control
is not easy because the R2R system has a model variation in which the inertia of the web in roll
form is changed and external disturbances caused by web slip and crumpled web. Therefore,
a disturbance observer (DOB) was proposed to achieve robustness against model variations and
external disturbances. DOB is a robust control method widely used in various fields because of
its simple structure and excellent performance. Moreover, the web passes through various process
steps to achieve the finished product in the R2R process. Particularly, it is important to track the
tension when magnitude of the tension varies during process. Feedforward (FF) controller was
applied to minimize the tracking error in the transient section where tension changes. Moreover,
the signal processing of a sensor using the Kalman filter (KF) in the R2R system greatly improved
control performance. Finally, the effectiveness of the proposed control scheme is discussed using
experimental results.

Keywords: disturbance observer; Kalman filter; feedforward control; tension controller; roll-to-roll
system

1. Introduction

Roll-to-roll (R2R) technology has recently attracted a great deal of attention for the mass production
of electronic devices in the field of display and battery [1]. The R2R machine is composed of rewinder,
unwinder, and feeder motors. The rewinder motor is used to wind the web made in roll form with the
desired tension. On the other hand, the unwinder motor is used to unwind the web. The feeder motor
is used for web transfer motions at the proper speed.

In the R2R system, tension control is usually achieved by using a load cell or dancer roll. In R2R
processing, robust and precise tension control is essential because it affects the quality of the web
materials. The web has flexible substrates including metal foils, glass, and ceramics. In particular,
these substrates used in electronic devices require precise tension control because coating and printing
thickness variation occurs despite minute tension changes, resulting in changes in electrical properties.

Some studies have investigated the tension control of R2R equipment. In 1993, Ebler investigated
web tension control with dancer rolls and load cells [2]. The two different systems have been analyzed
and experimental results have been provided. In 1998, K. Okada designed an adaptive fuzzy control
for a web tension control system [3]. In 2002, Koç analyzed modeling and robust control of a
winding system [4]. The effectiveness of robust control strategy in a web system is compared to
a proportional-integral-derivative (PID) controller commonly used in the industry. In 2007, Shin
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presented the effect of tension on the lateral dynamics and control of a moving web [5]. Experimental
studies of the lateral motion of a web were carried out and a cross-couple controller was proposed,
which automatically tunes the proportional and integral gains of a lateral-position controller according
to the web tension.

However, despite these numerous studies, tension control is not easy because it has model
variations in which the inertia of the web in roll form is changed and external disturbances caused by
web slip and crumpled web. To achieve robustness against model variations and external disturbances,
robust control such as a disturbance observer (DOB) is required [6–10]. DOB has been widely used as
an effective methodology to overcome model uncertainty and external disturbance. Eum proposed
DOB for the robust tension control of the R2R system [11].

Unlike previous studies, we propose feedforward (FF) controller and signal processing technology
using the Kalman filter (KF) to improve tension control performance. The web is continuously
subjected to various processes for the final production. Particularly, it is important to control the
tension when magnitude of the tension varies during process. To improve tracking performance in the
transient section where tension changes, the feedforward controller was applied [12–14]. Moreover,
a high-price load cell with a highly accurate and noiseless signal should be used to improve tension
control performance in the R2R system. In order to reduce costs, which is an unavoidable issue in
today’s industry, the KF algorithm was suggested for signal processing [15–18]. Almost all load cell
applications require filtering to remove noise from the measured signal. A signal filter has a trade-off

between noise suppression and phase delay. Phase delay may cause a change in phase margin, stability
of the whole system, and accuracy of present information in the signal. Unlike the low pass filter (LPF),
a conventional signal filter, the KF minimizes the phase delay [19]. The KF is capable of processing the
signal by overcoming the phase delay problem even using a low-cost load cell.

This paper suggests a robust and precise tension control method for the R2R system and is
organized as follows. In Section 2, we suggest dynamic model of the R2R system and how to
identify the nominal parameters of the system experimentally. In Section 3, the design of a signal
filter is presented. In Section 4, the proposed tension control for the R2R system is introduced and
robust stability is shown using the small-gain theorem [20–22]. The performance of the proposed
control method is verified with experimental results in Section 5. Finally, Section 6 provides some
concluding remarks.

2. System Modeling

In this section, modeling of the suggested R2R system is introduced. Moreover, we suggest how
to identify the nominal parameters of the system through an experiment [23].

2.1. Dynamic System Model

As shown in Figure 1a, the web is fed at a constant speed by the feeder motor and is wound with
the proper tension by the rewinder motor. The web dynamics Equation (1) and roll-to-roll system
dynamics model Equations (2)–(8) used throughout the paper are described in References [11] and [24].
The web can be represented in terms of spring and dashpot elements, which are described by the
elasticity modulus E and the viscosity modulus η. Lumped parameter models are expressed as the
Kelvin-Voigt model for web dynamics. In the case of the Kelvin-Voigt model, the web tensile stress σ is
expressed as follows:

σ(t) = Eε(t) + η
dε(t)

dt
(1)

where ε is web strain. Then web tension force f is related to the web tensile stress σ and web cross
sectional area A as follows:

f (t) = Aσ(t) (2)
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Figure 1. (a) Schematic of a proposed roll-to-roll (R2R system); (b) Schematic of a rewinder system. 

2. System Modeling 

Figure 1. (a) Schematic of a proposed roll-to-roll (R2R system); (b) Schematic of a rewinder system.

The load cell signal output FT varies depending on the web tension force f . According to
Figure 1a,b, it is expressed as follows:

FT(t) = 2 f (t)cosθ+ Fd(t) (3)

where Fd is external disturbance. Here, the load cell signal FT feeds back to control the web tension
force f . The torque τ generated by the rewinder motor is related to the web tension force f as follows:

f (t) =
τ(t)
R(t)

(4)

R(t) = R0 +
tweb
2π

θm(t) (5)

FT(t) = 2τ(t)cosθ
{
R0 +

tweb
2π

θm(t)
}−1

+ Fd(t) (6)

where R is the radius of the web, R0 is the initial radius of the web, tweb is the web thickness, and θm is
the angular position of the rewinder motor. The transfer function of the system from torque input τ to
load cell signal output FT is calculated as follows:

P(s) =
FT(s)
τ(s)

= 2cosθ{R0 +
tweb
2π

θm(s)}
−1

(7)

where P is the actual plant. Finally, we designed the plant as a first order lag element because it is a
simple structure and represents a system with time lag. It is expressed as follows:

P(s) =
FT(s)
τ(s)

=
2cosθ{R0 +

tweb
2π θm(s)}

−1

1 + τns
(8)

where τn is a time constant. The nominal model was obtained using an experimental method known
as system identification, which develops mathematical models of dynamic systems from the measured
input and output data of the system. The process of accurately obtaining a nominal model is important.
Because the proposed KF in Section 3 and the tension controller, FF, and DOB in Section 4 largely vary
in performance, depending on how accurately the nominal model is obtained, the experiment was



Algorithms 2019, 12, 86 4 of 13

carried out in three cases depending on the state of the film being wound. When step input with
various magnitudes is applied to the system, the dynamic model is determined through the output
data measured by the load cell. As shown in Figure 2, we focused on the characteristics of the system
by 100 N because the experiment was performed from 0 N to 100 N.
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Figure 2. Experimental results of system identification: (a) Empty film; (b) Half film; (c) Full film.

3. Design of a Signal Filter

Signal processing of the sensor using a filter is essential to achieve precise control. Filters have
a trade-off between noise reduction and phase response, so the more noise is reduced, the higher
phase delay. The phase delay has an adverse effect on the phase margin and stability of the system.
In this paper, it was possible not only to eliminate the noise contained in the observed data but also to
minimize the phase delay by using the KF. The KF is an optimal estimation method that finds the true
value of variables from a set of noisy measurements. In this section, we introduce how to design the
KF and signal processing results. The design procedure of the KF is as follows. Firstly, the state space
model of the linear system should be constructed. Subsequently, the state variables of the system are
estimated by the KF algorithm using the state space model and measured values of the target system.
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The KF algorithm has two steps: prediction process and estimation process. Figure 3 illustrates the
relationship of the KF with the actual system [15].Algorithms 2019, 12, x FOR PEER REVIEW 5 of 13 
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3.1. Linear State Space Model

To design a KF, the linear state space model must be first obtained by modeling the target system.
The performance of the KF depends largely on how similar the system model is to the actual system.
Equation (8) can be described by the following differential equation:

τn
.

FT + FT − 2cosθRn
−1τe − Fξ = 0 (9)

where Rn is the nominal radius of the web and Fξ is the sensor noise. Defining the state variables
x(t) = FT(t), w(t) = Fξ(t), the state differential equation is

.
x(t) = −

1
τn

x(t) +
2cosθRn(t)

−1

τn
u(t) + w(t) (10)

z(t) = x(t) + v(t) (11)

where x is the state of the system, z is the output of the system, u is the system input, w is the system
noise, and v is the measurement noise.

3.2. Kalman Filter Algorithm

The KF algorithm is divided into two stages: prediction process and correction process. Based on
the system model variables A and Q, the prediction process guesses how the estimated value x̂k changes
when the time changes from tk to tk+1. A is the system matrix and Q is the covariance matrix of W.
Depending on how the system model variables, such as A, Q, R, and H, are selected, the performance
of KF varies. Equations (12)–(17) refer to the KF algorithm mentioned in Reference [15]. The following
equation is the state variable and error covariance, which are the predicted variables as follows:

x̂k
− = Ax̂k−1 + Buk (12)

Pk
− = APk−1AT + Q (13)

In the correction process, the KF’s final estimated value x̂k is calculated using the system model
variables H and R. H is the measurement matrix and R is the covariance matrix of V. The KF computes
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the final estimated value x̂k by adding the predicted value x̂k
− and the current measurement Zk

multiplied by the appropriate weight value as follows:

x̂k = x̂k
− + Kk(Zk −Hx̂k

−) (14)

Here, the weight value Kk is known as a Kalman gain, and is newly calculated by repeating the
algorithm differently from the LPF and high pass filter (HPF) as follows:

Kk = Pk
−HT
(
HPk

−HT + R
)−1

(15)

Pk is the error covariance. The error covariance reflects how far the estimated value is from the
true value as follows:

Pk = (I −KkH)Pk
− (16)

According to the definition of error covariance, if Pk is large, the estimation error is large, and if Pk
is small, the estimation error is then small. Error covariance is defined as follows:

Pk = E{(xk − x̂k)(xk − x̂k)
T
} (17)

where E(·) refers to the expected value.
Noise covariance matrices Q and R have limitations to be determined analytically because it is

difficult to grasp noise characteristics with multiple errors. In this paper, the Q and R values were
determined experimentally through trial and error process. The larger the Q, the more influenced by
the measured value. Since R has the opposite tendency to Q, the larger the R, the less affected the
measured value.

3.3. Signal Processing Results

Figure 4 shows the load cell signal, the signal processed by the LPF, and the signal processed by
the KF. Unlike LPF, which has a limitation in lowering the cutoff frequency due to the phase delay, the
KF further reduced noise.
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Figure 4. Results of signal processing.

4. Control Design

In this study, the main purpose was to control the tension robustly and precisely in all sections
with constant and varying tension. To achieve this goal, we propose a tension controller design based
on a model expression and FF controller with excellent tracking performance in the transient section.
Moreover, model uncertainty and external disturbance were compensated for by using the DOB. Finally,
robust stability of proposed control system was proved by using the small-gain theorem. The proposed
tension control structure is shown in Figure 5 and the unwinder motor was also controlled by the same
control structure.
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4.1. Tension Controller

In this study, the tension controller was designed using a proportional-integral (PI) controller
based on the model expression. The model-based PI controller is widely used in practice because it
is simple to apply and easy to analyze in the frequency domain [25]. If the zero of a PI controller is
designed to cancel the pole of system, the closed loop response characteristic can be made to be equal
to the first order lag element. The equation is written as follow:

FT

Fr
=

CFbPn

1 + CFbPn
=

ωc

s +ωc
(18)

where Fr is the input signal, Pn is the nominal plant, CFb is the tension controller, and ωc is the control
bandwidth. Therefore, the tension controller has the following form:

CFb =
Kps + Ki

s
=

1 + τns

2cosθRn(s)
−1
×
ωc

s
(19)

As shown in Equation (18), the frequency bandwidth of the controller is given by ωc. Therefore,
it is possible to design a controller without overshoot only by determining the frequency bandwidth of
the desired controller.

4.2. Feedforward Controller

Unlike the feedback control, which can only react after the error between the reference signal and
the measured system state occurs, a FF controller that does not feed back the signal provides excellent
tracking performance in the transient section because the response speed is fast. Thus, the FF is used
to quickly implement the desired behavior when we know the dynamics model of the control system.
It is designed as shown below:

FT

Fr
=

CFFPn + CFbPn

1 + CFbPn
= 1 (20)

where CFF is the FF controller. Therefore, the FF controller has the form of

CFF = Pn
−1 (21)

Theoretically, to achieve perfect control without any error between the reference signal and the
actual system state, the transfer function must be 1. Therefore, the FF controller must have an exact
reciprocal relationship with the plant. In this way, the FF controller is simple in design and powerful in
performance, but it has the disadvantage that it is impossible to compensate the uncertainty of the
model and the external disturbance.
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4.3. Disturbance Observer

The DOB is an effective method of robust control to solve external disturbance and model
uncertainty, and is widely used in various fields. It is not only excellent in control performance but
also convenient to apply because of its simple structure. In particular, by simply adding the DOB to
the inner loop of the existing controller, the performance of the outer loop controller can be guaranteed
without separately considering the performance degradation due to disturbance and model uncertainty.
The DOB estimates the disturbance, and the estimated disturbance signal is used as a disturbance
cancellation input. The DOB is composed of an inverse nominal plant Pn(s)

−1 and LPF Q(s) that cuts
off the disturbance in the low-frequency region. Q(s) is expressed as follows:

Q(s) =
ωq

s +ωq
(22)

where ωq is the cutoff frequency. To improve the performance in suppressing disturbance, the cutoff

frequency should be increased. However, this is restricted to guarantee robust stability, as more
unnecessary frequencies can be passed. Thus, it is critical to design an appropriate cutoff frequency.

The effectiveness of the DOB is clearly explained by transfer functions written as follows:

FT

ua
=

P(s)Pn(s)
Q(s)[P(s) − Pn(s)] + Pn(s)

(23)

FT

Fd
=

P(s)Pn(s)[1−Q(s)]
Q(s)[P(s) − Pn(s)] + Pn(s)

(24)

FT

ξ
=

P(s)Q(s)
Q(s)[P(s) − Pn(s)] + Pn(s)

(25)

where ua is the control input and ξ is the measurement noise.
Q(s) plays an important role in compensating disturbance and model uncertainty in the DOB.

If the input frequency is smaller than the bandwidth of the Q(s) (i.e., Q = 1), the first expression is
Pn and the second expression is zero. This means that model uncertainty is compensated for and
low frequency disturbances are rejected. On the other hand, if the input frequency is higher than the
band-width of the Q(s) (i.e., Q = 0), the third equation is zero. Therefore, the high-frequency noise
is removed.

4.4. Robust Stabilty Analysis of a Closed Loop Control System

In this section, we demonstrate the robust stability of the closed loop control system. The R2R
system has model uncertainty because the inertia of the web in roll form changes during the process.
To reflect this model variation, the actual plant is expressed as follows:

P(s) = Pn(s)[1 + ∆(s)] (26)

where ∆ is the multiplicative model uncertainty.
In Equation (8), the actual plant can be represented by the following parameters as follows:

P(s) =
2cosθR(s)−1

1 + τns
=

1
As + B

(27)

Actually, these parameters have confidence intervals, not single values (i.e., confidence interval
A = (0.005, 0.0015), B = (0.15, 0.25)) Moreover, the multiplicative model uncertainty ∆(s) is calculated
as follows:

∆(s) =
P(s) − Pn(s)

Pn(s)
(28)
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The small-gain theorem was applied to demonstrate the robust stability of the closed loop control
system. As shown in Figure 6b, the following conditions are given by the small-gain theorem:∣∣∣∆( jω) × T ( jω)

∣∣∣ < 1 (29)

where T( jω) is the complementary sensitivity function and is expressed as follows:

T ( jω) =
Pn( jω)CFb( jω) + Q( jω)

1 + Pn( jω)CFb( jω)
(30)
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In the bode plot of Figure 7, the magnitude of the complementary sensitivity function T(s) is
below the magnitude of inverse multiplicative uncertainty. This means it is possible to implement
good tracking performance over the whole range of frequencies.
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5. Experimental Verification

In this section, we introduce the R2R system used in the experiment and the experimental results
of the proposed control scheme.

5.1. Experimental Setup

All experiments were conducted on the R2R system depicted in Figure 8 and the procedure was as
follows. After fixing the web of the roll form to the rewinder motor, the load cell signal, which varies
according to the rewinder motor torque, was controlled in real time by the proposed control algorithm.
Then, the opposite ends of the web were fixed to the unwinder motor and the motor was controlled
equally. Finally, the feeder motor, which operates only for web feed, was controlled at a constant speed
by the proportional-integral controller. A Mitsubishi AC servo motor HF-KP43 and Mitsubishi motor
driver MR-J3-70A were driven as rewinder, unwinder, and feeder motors. These were controlled in real
time by a Power PMAC ACC 24E3 axis-interface board with 0.1-ms sampling time. The Power PMAC’s
Integrated Development Environment (IDE) program includes the GNU compiler; thus, we designed
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the control algorithm with a C-based user code. Figures 8 and 9 show the overall control system and
program flow chart for the R2R system.Algorithms 2019, 12, x FOR PEER REVIEW 10 of 13 
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5.2. Experimental Results

In order to evaluate the tension tracking performance of the proposed control scheme, experiments
were carried out under the following conditions. The web was transported at a constant speed by the
feeder motor and the tension command had a section varying from 0 N to 100 N. Figure 10 shows the
experimental results for verifying the performance of the KF. As shown in Figure 10b, the tracking error
could be reduced and the bandwidth could be increased when signal processing was performed with
the proposed KF relative to the LPF, which is a conventional signal processing method in R2R systems.
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Figure 11 shows the results of applying the proposed control scheme in the case of signal processing
with KF. Particularly, the tracking performance of the FF controller was powerful in the transient
section where the tension changes. Moreover, the experimental results demonstrate that the DOB is
effective in compensating for disturbance and model uncertainty.
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6. Conclusions

This paper aims to propose a robust and precise control scheme for a R2R machine to overcome
the problems of conventional tension control method. A robust control method such as a DOB is
essential in R2R systems with model variation and external disturbance. Therefore, a DOB with PI
controller was employed to nominalizes the plant and reject external disturbance. The robust stability
of the closed loop control system was proved using the small-gain theorem. Moreover, a FF controller
was applied to minimize the tracking error in the transient section. The signal processing of the sensor
is very important for precise control in the R2R system. The KF not only reduces sensor noise but also
overcomes phase delay problem to improve control performance. Experimental results demonstrate
the performance of the proposed control schemes.
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